Classification - Prediction

Maat: px
Weergave met pagina beginnen:

Download "Classification - Prediction"

Transcriptie

1 Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training data: om model te bouwen Validatie data: om accuraatheid model te testen confusion matrix

2 Nu: ook prediction k-nearest Neighbours Multiple Linear Regression... Op basis van predictor variabelen X 1, X 2,..., X p waarde van continue variabele Y proberen te voorspellen. Training data: om model te bouwen Validatie data: om accuraatheid model te testen numerieke maten Voor elke observatie i, prediction error (residu): e i = y i ŷ i met y i : de echte waarde ŷ i : de voorspelde waarde (door het model)

3 Numerieke maten voor accuraatheid prediction model MAE/MAED (Mean Absolute Error/Deviation) Average Error 1 n 1 n n i=1 e i n e i i=1 MAPE (Mean Absolute Percentage Error) 100% 1 n n i=1 e i y i RMSE (Root Mean Squared Error) 1 n n e 2 i i=1 TSSE Total Sum of Squared Erros n e 2 i i=1

4 Enkelvoudige lineaire regressie Op basis van 1 predictor variabele X de waarde van 1 continue output variabele Y proberen te voorspellen. Theoretisch model (populatie): Y = β 0 + β 1 X + ɛ met ɛ ruis, spreiding in Y. Veronderstellingen: spreiding in Y voor elke waarde van X hetzelfde (ɛ N(0, σ 2 )) = homoscedasticiteit prediction errors (residuen) onafhankelijk van elkaar Training data (v.b. 40% volledige dataset) coëfficiënten β 0 en β 1 schatten Y = b 0 + b 1 X parameter ɛ, spreiding in Y schatten Std. Dev. estimate in output

5 Hoe goed is gevonden model? afhankelijk van het doel! Doel analyse: beschrijving (typisch statistiek) goodness of fit berekenen op training data! R 2 (of R) berekenen hoe dichter bij 1 (of -1), hoe beter R-squared in output Doel analyse: voorspelling (typisch data mining) numerieke maten voor accuraatheid voorspelling (zie vorige slide) berekenen op validatie data! Validation Data scoring in output evenwicht zoeken tussen de twee voor data mining: vooral voorspellende kracht belangrijk

6 Wat bij een andere partitie? bijvoorbeeld verhouding 60%-40%, maar andere seed bijvoorbeeld andere verhouding, maar zelfde seed andere schattingen b 0 en b 1 voor β 0 en β1 hoe veel kan dit verschillen van partitie tot partitie? para- schattingen voor de spreiding in de meters van partitie tot partitie Std. Error in output bij Coefficient

7 Meervoudige lineaire regressie Op basis van meerdere predictor variabelen X 1, X 2,..., X p de waarde van 1 continue output variabele Y proberen te voorspellen. Theoretisch model (populatie): Y = β 0 + β 1 X β p X p + ɛ met ɛ ruis, spreiding in Y. Veronderstellingen: spreiding in Y voor elke waarde van X hetzelfde (ɛ N(0, σ 2 )) = homoscedasticiteit prediction errors (residuen) onafhankelijk van elkaar Training data (v.b. 40% volledige dataset) parameters β 0, β 1,..., β p schatten Y = b 0 + b 1 X b p X p parameter ɛ, spreiding in Y schatten Std. Dev. estimate in output

8 Welke predictor variabelen dragen echt bij tot de voorspelling? Welke coëfficiënten b 0, b 1,... b p zijn significant verschillend van 0? Het niet nul zijn van een coëfficiënt in het model kan toeval zijn! (bijvoorbeeld door de (toevallige) observaties in de training data) p-waarde berekenen p-waarde: kans om die waarde voor coëfficiënt toevallig bij het model in de training data te vinden als die coëfficiënt in de populatie nul is. Kleine p-waarde: coëfficiënt signifcant verschillend van nul, levert echte bijdrage tot de voorspelling p-value in output bij Coefficient

9 Optimaal aantal + keuze predictor variabelen? Te veel variabelen: kans op overfitting! eventueel weinig voorspellingskracht Liefst geen variabelen opnemen die geen bijdrage leveren tot de voorspelling. verhogen de spreiding in de voorspellingen Liefst geen variabelen vewijderen die wel echte bijdrage leveren tot de voorspelling. verhogen de gemiddelde fout in voorspellingen Opgelet voor predictor variabelen die onderling sterk gecorreleerd zijn! kan coëfficiënten vertekenen onderlinge correlaties opsporen ( matrix plot of correlation matrix ) Opgelet voor outliers! Vuistregel: aantal observaties n in training data minstens gelijk aan 5 (p + 2)

10 Methodes om de beste subset van predictor variabelen te kiezen eerst: met domeinkennis aantal predictor variabelen reeds reduceren daarna: algoritmes gebruiken Exhaustive search : alle subsets van predictor variabelen proberen Forward selection : starten met 1 predictor variabele, telkens de meest significante toevoegen Backward selection : starten met alle predictor variabelen, telkens de minst signifcante verwijderen...

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

1 vorig = omzet voorgaande jaar. Forward (Criterion: Probability-of-F-to-enter <=,050) 2 bezoek = aantal bezoeken vertegenwoordiger

1 vorig = omzet voorgaande jaar. Forward (Criterion: Probability-of-F-to-enter <=,050) 2 bezoek = aantal bezoeken vertegenwoordiger De groothandel Onderwerp: regressieanalyse met SPSS Bij: hoofdstuk 10 Een groothandel heeft onderzoek gedaan onder de klanten en daarbij geprobeerd met regressieanalyse vast te stellen wat de bepalende

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

laboratory for industrial mathematics eindhoven Endinet Regressie-analyse Energiekamer

laboratory for industrial mathematics eindhoven Endinet Regressie-analyse Energiekamer Endinet Regressie-analyse Energiekamer Laboratory for Industrial Mathematics Eindhoven Postbus 513 5600 MB Eindhoven tel.: 040 247 4875 fax: 040 244 2489 e-mail: lime@tue.nl WWW: http://www.lime.tue.nl

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

4 Domein STATISTIEK - versie 1.2

4 Domein STATISTIEK - versie 1.2 USolv-IT - Boomstructuur DOMEIN STATISTIEK - versie 1.2 - c Copyrighted 42 4 Domein STATISTIEK - versie 1.2 (Op initiatief van USolv-IT werd deze boomstructuur mede in overleg met het Universitair Centrum

Nadere informatie

Deze opdracht lossen we eenvoudig op door in de vergelijking X1 en X2 te vervangen door de geobserveerde waarden van deze variabelen:

Deze opdracht lossen we eenvoudig op door in de vergelijking X1 en X2 te vervangen door de geobserveerde waarden van deze variabelen: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 10 1. Volgende regressievergelijking werd opgesteld na onderzoek: YY ii = 6 + 2.5 XX ii1 + 3 XX ii2 + εε ii Bereken de voorspelde

Nadere informatie

Enkelvoudige lineaire regressie

Enkelvoudige lineaire regressie Enkelvoudige lineaire regressie Inleiding Dit hoofdstuk sluit aan op hoofdstuk I-9 van het statistiekboek. Er wordt hier steeds gesproken over het verband tussen één afhankelijke variabele Y en één onafhankelijke

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4) woensdag 8 oktober 9, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven Statistisch

Nadere informatie

College 6 Eenweg Variantie-Analyse

College 6 Eenweg Variantie-Analyse College 6 Eenweg Variantie-Analyse - Leary: Hoofdstuk 11, 1 (t/m p. 55) - MM&C: Hoofdstuk 1 (t/m p. 617), p. 63 t/m p. 66 - Aanvullende tekst 6, 7 en 8 Jolien Pas ECO 01-013 Het Experiment: een voorbeeld

Nadere informatie

Opgave 1: (zowel 2DM40 als 2S390)

Opgave 1: (zowel 2DM40 als 2S390) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Principe Maken van een Monte Carlo data-set populatie-parameters en standaarddeviaties standaarddeviatie van de bepaling statistische verdeling

Principe Maken van een Monte Carlo data-set populatie-parameters en standaarddeviaties standaarddeviatie van de bepaling statistische verdeling Monte Carlo simulatie In MW\Pharm versie 3.30 is een Monte Carlo simulatie-module toegevoegd. Met behulp van deze Monte Carlo procedure kan onder meer de betrouwbaarheid van de berekeningen van KinPop

Nadere informatie

Regressie-analyse doel menu hulp globale werkwijze aandachtspunten Doel: Voor de uitvoering in SPSS: Missing Values Globale werkwijze

Regressie-analyse doel menu hulp globale werkwijze aandachtspunten Doel: Voor de uitvoering in SPSS: Missing Values Globale werkwijze Regressie-analyse Regressie-analyse is gericht op het voorspellen van één (numerieke) afhankelijke variabele met behulp van een of meerdere onafhankelijke variabelen (numerieke en/of dummy-variabelen).

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Correlatie = statistische samenhang Meest gebruikt = Spearman s rang correlatie Ordinaal geschaalde variabelen -1 <= r s <= +1 waarbij:

Correlatie = statistische samenhang Meest gebruikt = Spearman s rang correlatie Ordinaal geschaalde variabelen -1 <= r s <= +1 waarbij: Correlatie analyse Correlatie = statistische samenhang Meest gebruikt = Spearman s rang correlatie Ordinaal geschaalde variabelen -1

Nadere informatie

Meervoudige lineaire regressie

Meervoudige lineaire regressie Meervoudige lineaire regressie Inleiding In dit hoofdstuk dat aansluit op hoofdstuk II- (deel 2) wordt uitgelegd hoe een meervoudige regressieanalyse uitgevoerd kan worden met behulp van SPSS. Aan de hand

Nadere informatie

Uitwerking Tentamen Datamining (2II15) 26/06/09

Uitwerking Tentamen Datamining (2II15) 26/06/09 Uitwerking Tentamen Datamining (2II15) 26/06/09 1. (3p) (Clustering) Welke van de volgende uitspraken zijn correct? Voor de correcte uitspraken: leg uit, voor de incorrecte: geef een tegenvoorbeeld. (a)

Nadere informatie

Verband tussen twee variabelen

Verband tussen twee variabelen Verband tussen twee variabelen Inleiding Dit practicum sluit aan op hoofdstuk I-3 van het statistiekboek en geeft uitleg over het maken van kruistabellen, het berekenen van de correlatiecoëfficiënt en

Nadere informatie

4 Meervoudige lineaire regressie

4 Meervoudige lineaire regressie 4 Meervoudige lineaire regressie In het vorige hoofdstuk is enkelvoudige lineaire regressie besproken. Hierbij was er slechts één onafhankelijke variabele. In de praktijk zijn er echter gevallen waarin

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op woensdag 12 november 2008 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op woensdag 12 november 2008 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op woensdag 2 november 28 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Faculteit der Wiskunde en Informatica 2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Opgave 1: (5 x 6 = 30 punten) (Bij deze opgave is gebruik van resultaten uit bijlage 1 noodzakelijk)

Nadere informatie

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit College 7 Regressie-analyse en Variantie verklaren Inleiding M&T 2012 2013 Hemmo Smit Neem mee naar tentamen Geslepen potlood + gum Collegekaart (alternatief: rijbewijs, ID-kaart, paspoort) (Grafische)

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Studentnaam: Studentnummer: Voorblad bij tentamen (in te vullen door de examinator) Vaknaam:Biostatistiek en Lineaire Algebra Vakcode: 2DM81 Datum: Begintijd:13.30 Eindtijd: 16.30 Aantal pagina s:2 voor

Nadere informatie

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling Kwantitatieve Data Analyse (KDA) Onderzoekspracticum Sessie 2 11 Aanpassingen takenboek! Check studienet om eventuele verbeteringen te downloaden! Huidige versie takenboek: 09 Gjalt-Jorn Peters gjp@ou.nl

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Toegepaste data-analyse: oefensessie 2

Toegepaste data-analyse: oefensessie 2 Toegepaste data-analyse: oefensessie 2 Depressie 1. Beschrijf de clustering van de dataset en geef aan op welk niveau de verschillende variabelen behoren Je moet weten hoe de data geclusterd zijn om uit

Nadere informatie

Bijlage 3: Multiple regressie analyse

Bijlage 3: Multiple regressie analyse Bijlage 3: Multiple regressie analyse REGRESSION /DESCRIPTIVES MEAN STDDEV CORR SIG N /MISSING PAIRWISE /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Technische appendix bij DNBulletin Voor lagere werkloosheid is meer economische groei nodig. Variable Coefficient Std. Error t-statistic Prob.

Technische appendix bij DNBulletin Voor lagere werkloosheid is meer economische groei nodig. Variable Coefficient Std. Error t-statistic Prob. Technische appendix bij DNBulletin Voor lagere werkloosheid is meer economische groei nodig Schatting Okun s law; Nederland, periode 1979-2017 Variabelen Afhankelijke variabele UD= jaar op jaarmutatie

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

SPSS. Statistiek : SPSS

SPSS. Statistiek : SPSS SPSS - hoofdstuk 1 : 1.4. fase 4 : verrichten van metingen en / of verzamelen van gegevens Gegevens gevonden bij een onderzoek worden systematisch weergegeven in een datamatrix bij SPSS De datamatrix Gebruik

Nadere informatie

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Dr.ir. P.W. Heijnen Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 22 april 2010 1 1 Introductie De

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

Residual Plot for Strength. predicted Strength

Residual Plot for Strength. predicted Strength Uitwerking tentamen DS mei 4 Opgave Een uitwerking geven is hier niet mogelijk. Het is van belang het iteratieve optimaliseringsproces goed uit te voeren (zie ook de PowerPoint sheets): screening design

Nadere informatie

Toegepaste Biostatistiek CAST oefeningen 1

Toegepaste Biostatistiek CAST oefeningen 1 Toegepaste Biostatistiek CAST oefeningen 1 CAST Exercises CAST is een gratis online e-book (eigenlijk 3 e-books), met oefeningen. De link voor de site (http://cast.massey.ac.nz/collection_public.html)

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Dr.ir. P.W. Heijnen Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 6 mei 2010 1 1 Introductie De Energiekamer

Nadere informatie

2. Geef een voorbeeld van hoe datamining gebruikt kan worden om frauduleuze geldtransacties te identificeren.

2. Geef een voorbeeld van hoe datamining gebruikt kan worden om frauduleuze geldtransacties te identificeren. 1. Veronderstel dat je als datamining consultant werkt voor een Internet Search Engine bedrijf. Beschrijf hoe datamining het bedrijf kan helpen door voorbeelden te geven van specifieke toepassingen van

Nadere informatie

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 Bjorn Winkens Methodologie en Statistiek Universiteit Maastricht 21 maart

Nadere informatie

Samenvatting Nederlands

Samenvatting Nederlands Samenvatting Nederlands 178 Samenvatting Mis het niet! Incomplete data kan waardevolle informatie bevatten In epidemiologisch onderzoek wordt veel gebruik gemaakt van vragenlijsten om data te verzamelen.

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

DATA-ANALYSE I OEFENINGEN ACADEMIEJAAR 2000 2001. Feedback Praktische Proef

DATA-ANALYSE I OEFENINGEN ACADEMIEJAAR 2000 2001. Feedback Praktische Proef DATA-ANALYSE I OEFENINGEN ACADEMIEJAAR 2000 2001 Feedback Praktische Proef 1 Vooraf Het is onbegonnen werk om voor elke versie van de praktische proef een volledig uitgeschreven rapport te presenteren.

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies

Nadere informatie

Wat gaan we doen? Help! Statistiek! Wat is een lineaire relatie? De rechte-lijn-vergelijking: Y = a + b X. Relatie tussen gewicht en lengte

Wat gaan we doen? Help! Statistiek! Wat is een lineaire relatie? De rechte-lijn-vergelijking: Y = a + b X. Relatie tussen gewicht en lengte Help! Statistiek! Wat gaan we doen? Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Derde woensdag in de maand,

Nadere informatie

Regressie-analyse. Cursus Bachelor Project 2 B&O College 2 Harry B.G. Ganzeboom. Regressie-model en mediatie-analyse 1

Regressie-analyse. Cursus Bachelor Project 2 B&O College 2 Harry B.G. Ganzeboom. Regressie-model en mediatie-analyse 1 Regressie-analyse Cursus Bachelor Project 2 B&O College 2 Harry B.G. Ganzeboom Regressie-model en mediatie-analyse 1 Agenda Lineaire regressie-model (herhaling) Enkelvoudig (simple) Meervoudig (multiple)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4 en 2S39) op maandag 2--27, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Universiteit Gent. Faculteit Economie en Bedrijfskunde. Academiejaar 2013 2014

Universiteit Gent. Faculteit Economie en Bedrijfskunde. Academiejaar 2013 2014 Universiteit Gent Faculteit Economie en Bedrijfskunde Academiejaar 2013 2014 KOSTENVOORSPELLING BINNEN PROJECTMANAGEMENT: EEN OVERZICHT VAN DE BELANGRIJKSTE TECHNIEKEN Tussentijds rapport Student X Onder

Nadere informatie

Voorspellen van webwinkel aankopen met een Random Forest

Voorspellen van webwinkel aankopen met een Random Forest Voorspellen van webwinkel aankopen met een Random Forest Dorenda Slof Erasmus Universiteit Rotterdam Econometrie en Operationele Research 30 juni 2014 Samenvatting In dit empirische onderzoek voorspellen

Nadere informatie

Handleiding SPSS. 1) Maak je bestand

Handleiding SPSS. 1) Maak je bestand Handleiding SPSS 1) Maak je bestand In de file die op Minerva staat, zijn de data opgenomen van alle groepjes. Het is de bedoeling dat je je eindverslag schrijft over de data van jouw groepje. Om dit te

Nadere informatie

College 7 Tweeweg Variantie-Analyse

College 7 Tweeweg Variantie-Analyse College 7 Tweeweg Variantie-Analyse - Leary: Hoofdstuk 12 (p. 255 t/m p. 262) - MM&C: Hoofdstuk 12 (p. 618 t/m p. 623 ), Hoofdstuk 13 - Aanvullende tekst 9, 10, 11 Jolien Pas ECO 2012-2013 Het Experiment

Nadere informatie

2.9 Het adolescentieonderzoek 69 2.10 Opgaven 72

2.9 Het adolescentieonderzoek 69 2.10 Opgaven 72 Inhoud Hoofdstuk 1 Design en analyse 11 1.1 Specificatie van designs 13 1.2 Definities 14 1.3 Het verschil tussen een afhankelijke variabele en een niveau van een within-subjectfactor 19 1.4 Kiezen van

Nadere informatie

Voorspelling van Boodschappenlijstjes

Voorspelling van Boodschappenlijstjes Voorspelling van Boodschappenlijstjes Petra Tol Stageverslag Voorspelling van Boodschappenlijstjes Petra Tol Stageverslag Universiteit: Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen

Nadere informatie

Examen Methodologie 3. Kwalitatief deel

Examen Methodologie 3. Kwalitatief deel Examen Methodologie 3 Kwalitatief deel 1. Welke techniek wordt toegepast indien de code angst voor slachtofferschap vergeleken wordt met de code onveiligheidsgevoelens? a. flip flop b. far out c. close

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) dinsdag 2-08-2003, 4.00-7.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995 Schriftelijk examen statistiek, data-analyse en informatica Maandag 29 mei 1995 Tweede jaar kandidaat arts + Tweede jaar kandidaat in de biomedische wetenschappen Naam: Voornaam: Vraa Kengetal g Blad 1

Nadere informatie

Bijlage bij Meesterlijk gedrag. Leren van compareren., Rechtstreeks 2009/3

Bijlage bij Meesterlijk gedrag. Leren van compareren., Rechtstreeks 2009/3 Bijlage bij Meesterlijk gedrag. Leren van compareren., Rechtstreeks 2009/3 Inleiding In de analyses vormen de uitkomsten van de comparities (schikking bereikt? Ervaren dwangschikking? Ervaren rechtvaardigheid)

Nadere informatie

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen SPSS Introductiecursus Sanne Hoeks Mattie Lenzen Statistiek, waarom? Doel van het onderzoek om nieuwe feiten van de werkelijkheid vast te stellen door middel van systematisch onderzoek en empirische verzamelen

Nadere informatie

Data Mining: Clustering

Data Mining: Clustering Data Mining: Clustering docent: dr. Toon Calders Gebaseerd op slides van Tan, Steinbach, and Kumar. Introduction to Data Mining Wat is clustering? Het onderverdelen van de objecten in een database in homogene

Nadere informatie

TYPE EXAMENVRAGEN VOOR TOEGEPASTE STATISTIEK

TYPE EXAMENVRAGEN VOOR TOEGEPASTE STATISTIEK TYPE EXAMENVRAGEN VOOR TOEGEPASTE STATISTIEK Prof. Dr. M. Vandebroek 1. Een aantal proefpersonen werd gevraagd een frisdrank te beoordelen door aan te geven in hoeverre ze het eens zijn met de volgende

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 3 februari 2012

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 3 februari 2012 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 3 februari 2012 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 27 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

College 6. Samenhang tussen variabelen. Inleiding M&T Hemmo Smit

College 6. Samenhang tussen variabelen. Inleiding M&T Hemmo Smit College 6 Samenhang tussen variabelen Inleiding M&T 2012 2013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap 2. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek

Nadere informatie

Gedragsanalyse Experiment Verzekeren per Kilometer

Gedragsanalyse Experiment Verzekeren per Kilometer Gedragsanalyse Experiment Verzekeren per Kilometer Jasper Knockaert mailto:jknockaert@feweb.vu.nl 11 oktober 29 1 Inleiding Het Transumo project Verzekeren per Kilometer onderzoekt de mogelijkheden van

Nadere informatie

Biomerkers van effect bij de moeder gebiedsvergelijking. Gecorrigeerde gegevens (gecorrigeerd voor confounders)

Biomerkers van effect bij de moeder gebiedsvergelijking. Gecorrigeerde gegevens (gecorrigeerd voor confounders) Biomerkers van effect bij de moeder gebiedsvergelijking Gecorrigeerde gegevens (gecorrigeerd voor confounders) Voor elke effect merkers werden confounders gedefiniëerd op basis van de literatuur (zie analyseplan).

Nadere informatie

Data Mining: Classificatie

Data Mining: Classificatie Data Mining: lassificatie docent: dr. Toon alders Gebaseerd op slides van Tan, Steinbach, and Kumar. Introduction to Data Mining Vorige les lassificatie: Het groeperen van objecten in voorgedefinieerde

Nadere informatie

Complexe selectieprocedures simuleren. op de computer. Bijlagen. Ben Wilbrink

Complexe selectieprocedures simuleren. op de computer. Bijlagen. Ben Wilbrink Complexe selectieprocedures simuleren op de computer Bijlagen Ben Wilbrink oktober 1990 Bijlage bij hoofdstuk 8 ( niet opgenomen in rapport 246) #1 90... 10, huidige selectieprocedure, lage intercorrelaties

Nadere informatie

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

Oriëntatie Econometrie Tijdreeksmodellen en Voorspellen. Marius Ooms. 23 April 2002, Amsterdam

Oriëntatie Econometrie Tijdreeksmodellen en Voorspellen. Marius Ooms. 23 April 2002, Amsterdam Oriëntatie Econometrie Tijdreeksmodellen en Voorspellen Marius Ooms 23 April 2002, Amsterdam Carlson and Thorne (1997) Multiple Regression Key Ideas: 15.1, 15.2, 15.10, 15.14, 15.17, 15.19, 15.20 Ch. 16.1-16.4:

Nadere informatie

Gebruik van Correlatiecoëfficiënt in onderzoek

Gebruik van Correlatiecoëfficiënt in onderzoek Gebruik van Correlatiecoëfficiënt in onderzoek Wim Krijnen Lector Analyse Technieken voor Praktijkonderzoek Lectoraat Healthy Ageing, Allied Health Care and Nursing Hanze University of Applied Sciences

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

Vragen: 1 Is de relatie tussen X en Y significant (bij alpha = 0,05)?

Vragen: 1 Is de relatie tussen X en Y significant (bij alpha = 0,05)? Vraag 1 Running-for-health In een running -for- health programma worden bij 17 mannelijke deelnemers na verloop van één jaar de volgende metingen verricht: X: aantal sprongen dat de persoon kan maken voordat

Nadere informatie

BY: KENNY LI STUDENTNR: 1833731 CALLCENTER CALL VOLUME FORECASTING MET ARMA(P,Q) EN HOLT-WINTERSMODELLEN

BY: KENNY LI STUDENTNR: 1833731 CALLCENTER CALL VOLUME FORECASTING MET ARMA(P,Q) EN HOLT-WINTERSMODELLEN BY: KENNY LI STUDENTNR: 1833731 CALLCENTER CALL VOLUME FORECASTING MET ARMA(P,Q) EN HOLT-WINTERSMODELLEN BWI-WERKSTUK VRIJE UNIVERSITEIT TE AMSTERDAM FACULTEIT DER EXACTE WETENSCHAPPEN BEDRIJFSWISKUNDE

Nadere informatie

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende

Nadere informatie

Toegepaste data-analyse: sessie 3

Toegepaste data-analyse: sessie 3 Toegepaste data-analyse: sessie 3 Mixed Models II: Actor-partner model Corr (Yij, Yik) = σσ 2 kkkkkkkkkkkk σσ 2 kkkkkkkkkkkk+ σσ 2 rrrrrr Je kan deze data niet modelleren a.d.h.v. lineaire regressie. Er

Nadere informatie

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA)

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) DATA STRUKTUUR Afhankelijke variabele: Eén kontinue variabele Onafhankelijke variabele(n): - één discrete variabele: één gecontroleerde factor - twee discrete variabelen:

Nadere informatie

Cursus Statistiek 2. Fellowonderwijs Opleiding Intensive Care. UMC St Radboud, Nijmegen

Cursus Statistiek 2. Fellowonderwijs Opleiding Intensive Care. UMC St Radboud, Nijmegen Cursus Statistiek 2 Fellowonderwijs Opleiding Intensive Care UMC St Radboud, Nijmegen Cursus Statistiek 2 Steekproefgrootte en power berekening Vergelijken van gemiddelden (T-testen) Niet-parametrische

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Beknopte handleiding SPSS versie 18.0 1 van 28

Beknopte handleiding SPSS versie 18.0 1 van 28 Beknopte handleiding SPSS versie 18.0 1 van 28 Beknopte handleiding SPSS versie 18.0 2 van 28 Inhoudsopgave Inleiding...3 SPSS- tips...4 Kopiëren van datakenmerken...6 Van SPSS naar Excel...7 Opsturen

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Studentnaam: Studentnummer: Voorblad bij tentamen (in te vullen door de examinator) Vaknaam:Biostatistiek & Lineaire Algebra Vakcode: DM80 Datum: 14-4-015 Begintijd:13.30 Eindtijd: 16.30 Aantal pagina

Nadere informatie

College 4 Inspecteren van Data: Verdelingen

College 4 Inspecteren van Data: Verdelingen College Inspecteren van Data: Verdelingen Inleiding M&T 01 013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek.

Nadere informatie

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient Opdracht 4a ----------- Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient In 1738 werd in de haven van Stockholm voor een aantal landen voor elk land geregistreerd hoeveel schepen

Nadere informatie

lengte aantal sportende broers/zussen

lengte aantal sportende broers/zussen Oefening 1 Alvorens opgenomen te worden in een speciaal begeleidingsprogramma s voor jonge talentvolle lopers, worden jonge atleten eerst onderworpen aan een aantal vragenlijsten en onderzoeken. Uit het

Nadere informatie

5 Technische aspecten i.v.m. de statistische verwerking

5 Technische aspecten i.v.m. de statistische verwerking 5 Technische aspecten i.v.m. de statistische verwerking 5.1 Gebruikte technieken: frequentietabellen en regressie De bekomen data werden uitgezuiverd aan de hand van strikte regels (Nuyts & Zwerts 2001b),

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Tentamen Data Mining

Tentamen Data Mining Tentamen Data Mining Algemene Opmerkingen Dit is geen open boek tentamen, noch mogen er aantekeningen gebruikt worden. Laat bij het uitvoeren van berekeningen zien hoe je aan een antwoord gekomen bent.

Nadere informatie

De relatie tussen de groente- en fruitconsumptie en sociaal economische status bij zwangere vrouwen. Nanda Gost en Manon Ritico Referaat, 7 juni 2013

De relatie tussen de groente- en fruitconsumptie en sociaal economische status bij zwangere vrouwen. Nanda Gost en Manon Ritico Referaat, 7 juni 2013 De relatie tussen de groente- en fruitconsumptie en sociaal economische status bij zwangere vrouwen Nanda Gost en Manon Ritico Referaat, 7 juni 2013 ONDERZOEKSDOEL Wat is de associatie tussen de groente-

Nadere informatie

Logistische regressie analyse: een handleiding Inge Sieben 1 Liesbeth Linssen

Logistische regressie analyse: een handleiding Inge Sieben 1 Liesbeth Linssen Logistische regressie analyse: een handleiding Inge Sieben 1 Liesbeth Linssen Inhoudsopgave: Wat is logistische regressie analyse Hoe stuur je logistische regressie analyse in SPSS aan Hoe interpreteer

Nadere informatie