G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

Maat: px
Weergave met pagina beginnen:

Download "G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing"

Transcriptie

1 G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag te halen is het niet altijd noodzakelijk om alle elementen die in deze oplossing aangehaald worden te vermelden. 1 Dataset lengte 1. Bestudeer de verdeling van de variabele lengte voor enerzijds de mannen en anderzijds de vrouwen. (a) Numeriek mannen vrouwen gemiddelde mediaan modus standaarddeviatie IQR Tabel 1: Numerieke kenmerken van de verdeling van de lengte. Uit Tabel 1 blijkt dat de gemiddelde lengte van de mannen cm is, terwijl de mediaan 182 cm bedraagt. Als het gemiddelde en de mediaan dicht bij elkaar liggen, wijst dit op een symmetrische verdeling. Ook de modus (180 cm) ligt niet ver van het gemiddelde en de mediaan, wat het vermoeden van symmetrie alleen maar versterkt. Aangezien de normaalverdeling een symmetrische verdeling is, hebben we hier een eerste aanwijzing dat de lengte van de mannen wel eens normaal verdeeld zou kunnen zijn. Ook de spreidingsmaten geven informatie over de verdeling. De standaarddeviatie s voor de lengte van de mannen bedraagt 9.14 cm en de interkwartielafstand (IQR) 11 cm. Bij normaalverdeelde gegevens geldt de volgende eigenschap: IQR s Voor de lengte van de mannen vinden we dat IQR = 11 = Dit ligt niet s 9.14 zo heel ver af van 1.34, dus we kunnen zeker niet uitsluiten dat de lengte van 1

2 de mannen normaal verdeeld is op basis van de numerieke kenmerken van de gegevens. De gemiddelde lengte van de vrouwen is cm, de mediaan cm, en de modus 172 cm. Hoewel de modus nu iets meer afwijkt van de beide andere waarden, die wel heel dicht bij elkaar liggen, is dit nog geen indicatie voor het niet-symmetrisch zijn van de verdeling, en kan normaliteit van de gegevens dus niet uitgesloten worden. De standaarddeviatie van de lengte van de vrouwen is kleiner dan die van de lengte van de mannen, s is nu gelijk aan 7.13 cm. De IQR bedraagt 9.5 cm, zodat IQR = 9.5 = Dit ligt heel dicht bij wat men zou verwachten als de s 7.13 gegevens normaal verdeeld zijn, dus net zoals bij de mannen kunnen we ook voor de vrouwen besluiten dat de numerieke eigenschappen van de variabele lengte zeker niet uitsluiten dat deze normaal verdeeld is. Grafisch Zowel op het histogram voor de lengte van de mannen (Figuur 1(a)) als het histogram voor de lengte van de vrouwen (Figuur 1) merken we symmetrie op. Ook de klokvorm die men zou verwachten bij normaliteit komt hier duidelijk naar voor. (a) Figuur 1: Histogram voor de lengte van de (a) mannen; vrouwen. De QQ-plot volgt zowel voor de mannen (Figuur 2(a)) als voor de vrouwen (Figuur 2) min of meer een rechte lijn. Dit is nog een aanwijzing dat de gegevens uit een normaalverdeling komen. Bij de mannen zien we een iets betere rechte verschijnen dan bij de vrouwen, een deel van de verklaring zou kunnen zijn dat er van de mannen 6 gegevens meer beschikbaar zijn dan van de vrouwen. Op beide boxplots (Figuur 3) zien we weer de eerder opgemerkte symmetrie terug: het gemiddelde en de mediaan liggen dicht bij elkaar en beide staarten zijn ongeveer even lang. Bij de mannen zijn er 3 waarnemingen die niet meer binnen de snorhaar van de boxplot vallen, maar deze kunnen zeker niet als extreme uitschieters beschouwd worden. 2

3 (a) Figuur 2: QQ-plot voor de lengte van de (a) mannen; vrouwen. Figuur 3: Boxplots voor de lengte van de mannen en de vrouwen. (c) Formeel: Shapiro-Wilk test We onderzoeken nu op een formele manier of de variabele lengte normaal verdeeld is, zowel voor de mannen als voor de vrouwen. Eerst wordt de test uitgevoerd voor de lengte van de mannen, dit wil zeggen dat de hypothese H 0 : De lengte van de mannen is normaal verdeeld versus H 1 : De lengte van de mannen is niet normaal verdeeld getest wordt. De teststatistiek die gebruikt wordt is T = X µ 0 S/ met S de steekproefstandaarddeviatie. Onder H 0 geldt dat T een student t-verdeling heeft n met 3

4 n 1 vrijheidsgraden. De bijbehorende P-waarde wordt berekend door 2P (T > t ) te berekenen, waarbij t de waarde van de teststatistiek is. De waarde van de teststatistiek t is hier met bijbehorende P-waarde Deze P-waarde is zeker niet kleiner dan het opgelegde significantieniveau α = 0.05, dus er is geen reden om H 0 te verwerpen op dit significantieniveau. We mogen dus uitgaan van de veronderstelling dat de lengte van de mannen normaal verdeeld is. Ook voor de vrouwen volgen we dezelfde aanpak. Nu onderzoeken we dus de volgende hypothese: H 0 : De lengte van de vrouwen is normaal verdeeld versus H 1 : De lengte van de vrouwen is niet normaal verdeeld. De teststatistiek heeft de waarde met bijbehorende P-waarde Ook hier is de P-waarde zeker niet kleiner dan het opgelegde significantieniveau α = 0.05, dus weerom is er geen reden om H 0 te verwerpen op dit significantieniveau. We mogen dus uitgaan van de veronderstelling dat de lengte van de vrouwen normaal verdeeld is. (d) Besluit De variabele lengte is zowel voor de mannen als voor de vrouwen normaal verdeeld op significantieniveau α = Voor geen van beide groepen zitten er uitschieters in de data. 2. Is het aantal ondervraagden van een bepaald geslacht gerelateerd aan de studierichting van de ondervrager? We zoeken naar een verband tussen 2 discrete variabelen, namelijk geslacht en studierichting. De volgende hypothese wordt getest: H 0 : Er is geen verband tussen het geslacht van de ondervraagde en de studierichting van de ondervrager versus H 1 : Er is wel een verband tussen het geslacht van de ondervraagde en de studierichting van de ondervrager. De geobserveerde aantallen zijn gegeven in Tabel 2. Indien beide variabelen onafhankebiochemie biologie chemie geologie totaal mannelijk vrouwelijk totaal Tabel 2: Tabel met geobserveerde aantallen. lijk zouden zijn, kan men berekenen welke waarden men zou verwachten. Deze getallen zijn terug te vinden in Tabel 3. 4

5 biochemie biologie chemie geologie totaal mannelijk vrouwelijk totaal Tabel 3: Tabel met verwachte aantallen. Op het zicht zien we al dat de verwachte aantallen niet zo sterk afwijken van de geobserveerde. Formeel wordt dit bevestigd door het berekenen van het χ 2 -getal. χ 2 (geobserveerde waarde verwachte waarde) 2 -getal = = verwachte waarde alle cellen Uit de formule van het χ 2 -getal volgt dat hoe kleiner dit getal, hoe dichter de geobserveerde en verwachte waarden bij elkaar liggen. Het χ 2 -getal is hier behoorlijk klein, wat bevestigt wat we al zagen, namelijk dat er geen grote afwijkingen zijn tussen de geobserveerde en de verwachte waarden. De bijbehorende P-waarde is , veel groter dan het vooropgestelde significantieniveau α = 0.05, dus kunnen we H 0 niet verwerpen op significantieniveau α = Besluit: Het aantal ondervraagden van een bepaald geslacht is niet gerelateerd aan de studierichting van de ondervrager op significantieniveau α = Een recente studie stelt dat de gemiddelde lengte van de Vlaming cm is. Je weet echter niet of in die studie enkel mannen, enkel vrouwen of beide geslachten onderzocht werden. Tracht hierop een antwoord te vinden aan de hand van je gegevens. We testen de volgende hypothese H 0 : µ 0 = versus H 1 : µ (1) met µ 0 de echte gemiddelde lengte van de populatie, waarbij de populatie in het eerste geval de Vlaamse mannen is, in het tweede geval de Vlaamse vrouwen en in het laatste geval alle Vlamingen. Als de gegevens normaal verdeeld zijn, kunnen we gebruik maken van de t-test zoals beschreven in deel 1 van deze vraag. Geval 1: We weten al dat de lengte voor de mannen normaal verdeeld is. We mogen dus de t-test zoals eerder beschreven uitvoeren. De waarde t van de teststatistiek bedraagt 9.88 en de bijbehorende P-waarde is < Dat betekent dat we H 0 moeten verwerpen op significantieniveau α = 0.05, de studie werd niet op enkel mannen uitgevoerd. Geval 2: We weten ook dat de lengte voor de vrouwen normaal verdeeld is. We mogen dus weer de t-test uitvoeren. De waarde t van de teststatistiek bedraagt en de bijbehorende P-waarde is < Dat betekent dat we ook hier H 0 moeten verwerpen op significantieniveau α = 0.05, de studie werd niet op enkel vrouwen uitgevoerd. 5

6 (a) Figuur 4: (a) Histogram en boxplot voor de variabele lengte. Geval 3: Vooraleer we de hypothesetest mogen uitvoeren op de volledige dataset moeten we nagaan of de variabele lengte voor de mannen en de vrouwen samen normaal verdeeld is. Op het histogram in Figuur 4(a) zien de we dat de variabele lengte voor beide geslachten samen redelijk symmetrisch verdeeld is. Dit wordt ook bevestigd door de boxplot in Figuur 4. Bovendien zien we op de QQ-plot (Figuur 5) dat de gegevens uitgezet ten opzichte van standaardnormale kwantielen mooi op een rechte liggen. Op basis van deze grafieken lijkt het waarschijnlijk dat de variabele lengte voor beide geslachten samen normaal verdeeld is. Figuur 5: QQ-plot voor de lengte van de mannen en de vrouwen samen. Dit wordt bevestigd door de Shapiro-Wilk test. De waarde van de teststatistiek bedraagt en de bijbehorende P-waarde , dus er is geen reden om de normaliteitsassumptie te verwerpen op significantieniveau α = We kunnen dus hypothese (1) voor beide groepen samen testen met behulp van de t-test uit deel 1 van deze vraag. Als we de waarde van de teststatistiek berekenen, vinden we t = 1.78 en voor de bijbehorende P-waarde Dit is groter dan 6

7 het opgegeven significantieniveau α = 0.05, dus we mogen niet verwerpen dat er in de studie zowel mannen als vrouwen gebruikt werden. 2 Dataset eikel Kan je uit log(volume) de hoogte voorspellen? Als men de gegevens bekijkt, kan men opmerken dat er een uitschieter in de gegevens zit. Boom nummer 8 heeft een hoogte van 0.3 m, en een eikelvolume van 6.8 cm 3. Aangezien men van een boom van 30 cm hoog niet verwacht dat er eikels aan hangen, zou men deze waarneming beter als een uitschieter beschouwen. We vinden deze uitschieter ook terug rechts onderaan op de scatterplot in Figuur 6(a). Figuur 6 toont een scatterplot van de gegevens zonder de uitschieter. Op deze laatste scatterplot is er met wat goede wil een (a) Figuur 6: Scatterplot log(volume) versus hoogte (a) met en zonder uitschieter. licht stijgend verband tussen hoogte en log(volume) te zien. We verwachten dus dat we uit log(volume) de hoogte zullen kunnen voorspellen. Om dit te onderzoeken passen we lineaire regressie toe op de nieuwe dataset (zonder uitschieter): we fitten een lineair verband van hoogte in functie van log(volume). Het onderliggend model is dus hoogte i = a + b log(volume) i + ɛ i met ɛ i de onafhankelijke en normaal verdeelde foutentermen met gemiddelde 0 en constante variantie. De kleinstekwadratenmethode geeft als resultaat de rechte hoogte = log(volume). We onderzoeken nu of de helling in deze rechte significant verschilt van 0. Dit doen we door de volgende hypothese te testen: H 0 : b = 0 versus H 1 : b 0. 7

8 We vinden voor de waarde van de teststatistiek t = ˆb = 2.56, met bijbehorende P- s.e.(ˆb) waarde Deze P-waarde is kleiner dan α = 0.05, zodat we H 0 kunnen verwerpen. We kunnen hieruit besluiten dat b 0 en het is in dit geval dus zinvol om een lineaire regressie uit te voeren. Dat ook aan de modelonderstellingen voor lineaire regressie voldaan is (de foutentermen ɛ i zijn onafhankelijk, normaal verdeeld en hebben dezelfde varianties), blijkt uit Figuur 7, waarin we de residuen beschouwen als een benadering voor de foutentermen. Op de scatter- (a) Figuur 7: (a) Scatterplot van de gestandaardiseerde residuen; QQ-plot van de residuen. plot van de residuen in Figuur 7(a) zien we dat de residuen mooi verspreid liggen, er valt geen patroon te ontdekken. Dat wijst erop dat de foutentermen onafhankelijk zijn van elkaar en dezelfde variantie hebben. Uit de QQ-plot van de residuen (Figuur 7) blijkt ook dat de punten min of meer op een rechte liggen zoals we verwachten. Met andere woorden, de modelonderstellingen zijn correct. We kunnen dus besluiten dat de variabele hoogte op een lineaire manier uit de variabele log(volume) kan voorspeld worden, en wel op de volgende manier: hoogte = log(volume). Merk wel op dat het lineair verband niet zo sterk is, want R 2 = en dus redelijk klein. Dit wijst erop dat de punten erg verspreid liggen rond de rechte die het lineair verband uitdrukt, wat ook op de scatterplot in Figuur 6 te zien is. Men moet dus opletten met het maken van voorspellingen want ze zijn niet erg nauwkeurig. 8

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

EXAMEN : Basisbegrippen statistiek. Examen 16 januari 2015

EXAMEN : Basisbegrippen statistiek. Examen 16 januari 2015 EXAMEN : Basisbegrippen statistiek Examen 16 januari 2015 Oplossingen 1 Vraag 1 a) Leg in max. 3 lijnen uit wat een dichtheidsfunctie is en illustreer met 3 duidelijk verschillende voorbeelden. Een (kans)

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

4 Domein STATISTIEK - versie 1.2

4 Domein STATISTIEK - versie 1.2 USolv-IT - Boomstructuur DOMEIN STATISTIEK - versie 1.2 - c Copyrighted 42 4 Domein STATISTIEK - versie 1.2 (Op initiatief van USolv-IT werd deze boomstructuur mede in overleg met het Universitair Centrum

Nadere informatie

Inleiding statistiek

Inleiding statistiek Inleiding Statistiek Pagina 1 uit 8 Inleiding statistiek 1. Inleiding In deze oefeningensessie is het de bedoeling jullie vertrouwd te maken met een aantal basisbegrippen van de statistiek, meer bepaald

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Examen Data Analyse II - Deel 2

Examen Data Analyse II - Deel 2 Examen Data Analyse II - Deel 2 Tweede Bachelor Biomedische Wetenschappen 10 januari 2011 Naam....................................... 1. De systolische bloeddruk (in mmhg) van 21 mannen is weergegeven

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen SPSS Introductiecursus Sanne Hoeks Mattie Lenzen Statistiek, waarom? Doel van het onderzoek om nieuwe feiten van de werkelijkheid vast te stellen door middel van systematisch onderzoek en empirische verzamelen

Nadere informatie

Zomerschool Vakdidactisch Onderzoek Leuven, 8-10 september 2010 Sessie 8: Analyse van kwantitatieve data

Zomerschool Vakdidactisch Onderzoek Leuven, 8-10 september 2010 Sessie 8: Analyse van kwantitatieve data Zomerschool Vakdidactisch Onderzoek Leuven, 8-10 september 2010 Sessie 8: Analyse van kwantitatieve data An Carbonez Leuven Statistics Research Centre Katholieke Universiteit Leuven Voorstelling van de

Nadere informatie

Statistiek voor A.I. College 12. Dinsdag 23 Oktober

Statistiek voor A.I. College 12. Dinsdag 23 Oktober Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

College 4 Inspecteren van Data: Verdelingen

College 4 Inspecteren van Data: Verdelingen College Inspecteren van Data: Verdelingen Inleiding M&T 01 013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek.

Nadere informatie

S0A17D: Examen Sociale Statistiek (deel 2)

S0A17D: Examen Sociale Statistiek (deel 2) S0A17D: Examen Sociale Statistiek (deel 2) 21 juni 2011 Naam : Jaar en studierichting : Lees volgende aanwijzingen eerst voor het examen te beginnen : Wie de vragen aanneemt en bekijkt, moet minstens 1

Nadere informatie

Onderzoek. B-cluster BBB-OND2B.2

Onderzoek. B-cluster BBB-OND2B.2 Onderzoek B-cluster BBB-OND2B.2 Succes met leren Leuk dat je onze bundels hebt gedownload. Met deze bundels hopen we dat het leren een stuk makkelijker wordt. We proberen de beste samenvattingen voor jou

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je op welke manier centrum- en spreidingsmaten je helpen bij de interpretatie van statistische gegevens. Je leert ook dat grafische voorstellingen

Nadere informatie

Herkansing eindtoets statistiek voor HBO

Herkansing eindtoets statistiek voor HBO Herkansing 1A 1 Herkansing eindtoets statistiek voor HBO Schrijf de antwoorden op de vragen alleen op deze pagina s. Antwoorden geschreven op andere vellen papier worden niet meegenomen in de beoordeling.

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Dr.ir. P.W. Heijnen Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 22 april 2010 1 1 Introductie De

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

SPSS. Statistiek : SPSS

SPSS. Statistiek : SPSS SPSS - hoofdstuk 1 : 1.4. fase 4 : verrichten van metingen en / of verzamelen van gegevens Gegevens gevonden bij een onderzoek worden systematisch weergegeven in een datamatrix bij SPSS De datamatrix Gebruik

Nadere informatie

Het gebruik van Excel 2007 voor statistische analyses. Een beknopte handleiding.

Het gebruik van Excel 2007 voor statistische analyses. Een beknopte handleiding. Het gebruik van Excel 2007 voor statistische analyses. Een beknopte handleiding. Bij Excel denken de meesten niet direct aan een statistisch programma. Toch biedt Excel veel mogelijkheden tot statistische

Nadere informatie

Normale Verdeling Inleiding

Normale Verdeling Inleiding Normale Verdeling Inleiding Wisnet-hbo update maart 2010 1 De Normale verdeling De Normale Verdeling beschrijft het gedrag van een continue kansvariabele x. Om kansen te berekenen, moet de dichtheidsfunctie

Nadere informatie

Statistiek: Herhaling en aanvulling

Statistiek: Herhaling en aanvulling Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,

Nadere informatie

Grafieken Cirkeldiagram

Grafieken Cirkeldiagram Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Statistiek: Stam-bladdiagram en boxplot 6/12/2013. dr. Brenda Casteleyn

Statistiek: Stam-bladdiagram en boxplot 6/12/2013. dr. Brenda Casteleyn Statistiek: Stam-bladdiagram en boxplot 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Stam-bladdiagram en boxplot zijn methoden om visueel een verdeling voor te stellen.

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Classification - Prediction

Classification - Prediction Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

d. Maak een spreidingsdiagram van de gegevens. Plaats de x-waarden op de x-as en de z-waarden op de y-as.

d. Maak een spreidingsdiagram van de gegevens. Plaats de x-waarden op de x-as en de z-waarden op de y-as. Opdracht 6a ----------- Dichtheidskromme, normaal-kwantiel-plot Een nauwkeurige waarde van de lichtsnelheid is van belang voor ontwerpers van computers, omdat de elektrische signalen zich uitsluitend met

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen

Nadere informatie

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2 Vraag 1. Voor welk van de onderstaande variabelen zal een placebo effect waarschijnlijk het grootst zijn? 1. Haarlengte. 2. Lichaamstemperatuur. 3. Mate van tevredenheid met de behandeling. 4. Hemoglobinegehalte

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

College Week 4 Inspecteren van Data: Verdelingen

College Week 4 Inspecteren van Data: Verdelingen College Week 4 Inspecteren van Data: Verdelingen Inleiding in de Methoden & Technieken 2013 2014 Hemmo Smit Dus volgende week Geen college en werkgroepen Maar Oefententamen on-line (BB) Data invoeren voor

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1/19

Stochastiek 2. Inleiding in de Mathematische Statistiek 1/19 Stochastiek 2 Inleiding in de Mathematische Statistiek 1/19 Herhaling H.1 2/19 Mathematische Statistiek We beschouwen de beschikbare data als realisatie(s) van een stochastische grootheid X.(Vaak een vector

Nadere informatie

Onderzoeksmethodiek LE: 2

Onderzoeksmethodiek LE: 2 Onderzoeksmethodiek LE: 2 3 Parameters en grootheden 3.1 Parameters Wat is een parameter? Een karakteristieke grootheid van een populatie Gem. gewicht van een 34-jarige man 3.2 Steekproefgrootheden Wat

Nadere informatie

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek cursus 23 mei 2012 werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen onderzoek streeft naar inzicht in relatie tussen variabelen bv. tussen onafhankelijke

Nadere informatie

uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo

uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo uitwerkingen voorbeeldexamenopgaven statistiek wiskunde A havo - 5-6-205 lees verder Kijkcijfers maximumscore 4 Het toepassen van de formule

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

College 6. Samenhang tussen variabelen. Inleiding M&T Hemmo Smit

College 6. Samenhang tussen variabelen. Inleiding M&T Hemmo Smit College 6 Samenhang tussen variabelen Inleiding M&T 2012 2013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap 2. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek

Nadere informatie

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 2 : Grafische beschrijving van data Marnix Van Daele Marnix.VanDaele@UGent.be Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Grafische beschrijving van data p. 1/35 Soorten meetwaarden

Nadere informatie

Schriftelijk tentamen - UITWERKINGEN

Schriftelijk tentamen - UITWERKINGEN Business Administration / Bedrijfskunde Schriftelijk tentamen - UITWERKINGEN Algemeen Vak : Statistische Methoden Groep : niet van toepassing en Technieken Vakcode : BKB0019t Soort tentamen : gesloten

Nadere informatie

Statistiek 2 deel A 30 minuten over statistisch toetsen

Statistiek 2 deel A 30 minuten over statistisch toetsen Statistiek 2 deel A 30 minuten over statistisch toetsen R.J. Baars, MSc Kruytgebouw N710 r.j.baars@uu.nl februari 2014 Opbouw van statistiek Statistiek 1 (periode 2: vandaag) Dit college + zelfstudie +

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Agrarische grondprijzen in soorten en maten

Agrarische grondprijzen in soorten en maten Agrarische grondprijzen in soorten en maten Oktober 2015 Wietse Dol, Paul Peter Kuiper 1 en Martien Voskuilen De gemiddelde grondprijs geeft een goed beeld van de grondprijsontwikkeling, mits rekening

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet? Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

De normale verdeling

De normale verdeling De normale verdeling Les 2 De klokvorm en de normale verdeling (Deze les sluit aan bij paragraaf 8 en 9 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor

Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor 4 juni 2012 Het voorkomen van ziekte kan op drie manieren worden weergegeven: - Prevalentie - Cumulatieve incidentie - Incidentiedichtheid In de

Nadere informatie

Beschrijvend statistiek

Beschrijvend statistiek 1 Beschrijvend statistiek 1. In een school werd het intelligentiequotiënt gemeten van de leerlingen van het zesde jaar (zie tabel). De getallen werden afgerond tot op de eenheid. De berekeningen mogen

Nadere informatie

TIP 10: ANALYSE VAN DE CIJFERS

TIP 10: ANALYSE VAN DE CIJFERS TOETSTIP 10 oktober 2011 Bepaling wat en waarom je wilt meten Toetsopzet Materiaal Betrouw- baarheid Beoordeling Interpretatie resultaten TIP 10: ANALYSE VAN DE CIJFERS Wie les geeft, botst automatisch

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Dr.ir. P.W. Heijnen Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 6 mei 2010 1 1 Introductie De Energiekamer

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 4 Twee groepen vergelijken 4.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 4.4 Oefenen Voorbeeld Bekijk de dataset

Nadere informatie

8.1 Centrum- en spreidingsmaten [1]

8.1 Centrum- en spreidingsmaten [1] 8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte

Nadere informatie

4 HAVO wiskunde A HOOFDSTUK voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken

4 HAVO wiskunde A HOOFDSTUK voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken 4 HAVO wiskunde A HOOFDSTUK 6 0. voorkennis 1. soorten verdelingen 2. de normale verdeling 3. betrouwbaarheidsintervallen 4. groepen en kenmerken 0. voorkennis Centrum- en spreidingsmaten Centrummaten:

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel)

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) In 1947 werd in opdracht van N.V. Magazijn De Bijenkorf een statistisch onderzoek verricht naar de lichaamsafmetingen van de Nederlandse

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

Verband tussen twee variabelen

Verband tussen twee variabelen Verband tussen twee variabelen Inleiding Dit practicum sluit aan op hoofdstuk I-3 van het statistiekboek en geeft uitleg over het maken van kruistabellen, het berekenen van de correlatiecoëfficiënt en

Nadere informatie

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW]

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW] bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst statistiek/gegevensverwerking los materiaal, niet uit boek [PW] procenten percentage: bv: van de 0 kinderen hadden er 7: hoeveel procent

Nadere informatie

De eerste stappen met de TI-Nspire 2.1 voor de derde graad

De eerste stappen met de TI-Nspire 2.1 voor de derde graad De eerste stappen met TI-Nspire 2.1 voor de derde graad. Technisch Instituut Heilig Hart, Hasselt Inleiding Ik gebruik al twee jaar de TI-Nspire CAS in de derde graad TSO in de klassen 6TIW( 8 uur wiskunde)

Nadere informatie

3 In een klas hebben de meisjes en de jongens gemeten hoe lang ze zijn. De resultaten staan in de tabel hieronder.

3 In een klas hebben de meisjes en de jongens gemeten hoe lang ze zijn. De resultaten staan in de tabel hieronder. 4N4p Oefningen statistiek met de rekenmachine 1 De resultaten van een test voor Engels zijn als volgt: 5 9 4 6 7 5 9 6 5 7 6 7 5 8 Voer de cijfers in op de grafische rekenmachine a) Plot en schets een

Nadere informatie

Statistiek basisbegrippen

Statistiek basisbegrippen MARKETING / 07B HBO Marketing / Marketing management Raymond Reinhardt 3R Business Development raymond.reinhardt@3r-bdc.com 3R 1 M Statistiek: wetenschap die gericht is op waarnemen, bestuderen en analyseren

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

Testen omtrent µ (normale populatie): BI. Testen omtrent µ (normale populatie): fouten. Testen omtrent µ (normale populatie): P-waarde

Testen omtrent µ (normale populatie): BI. Testen omtrent µ (normale populatie): fouten. Testen omtrent µ (normale populatie): P-waarde Testen omtrent µ (normale populatie) Hoofdstuk VII: HYPOTHESETESTEN Voorbeeld : X: Mortaliteit N(µ, σ ) µ = 1000 of µ 1000? x = 940.35 X µ S/ n tn 1 als µ = 1000: Terminologie: X 1000 S/ 60 t59 P ( t 59,0.05

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1.4 Oefenen Opgave 9 Bekijk de genoemde dataset

Nadere informatie

Kansverdelingen Inductieve statistiek met Geogebra 4.2

Kansverdelingen Inductieve statistiek met Geogebra 4.2 Kansverdelingen Inductieve statistiek met Geogebra 4.2 Brecht Dekeyser Pedic 20 november 2013 Gent 1 Inhoud Nieuw in Geogebra 4.2 Kansverdelingen: Berekeningen en grafische voorstellingen Manueel in rekenblad

Nadere informatie

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit College 7 Regressie-analyse en Variantie verklaren Inleiding M&T 2012 2013 Hemmo Smit Neem mee naar tentamen Geslepen potlood + gum Collegekaart (alternatief: rijbewijs, ID-kaart, paspoort) (Grafische)

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

Extra Opgaven. 3. Van 10 personen meten we 100 keer de hartslag na het sporten. De gemiddelde hartslag van

Extra Opgaven. 3. Van 10 personen meten we 100 keer de hartslag na het sporten. De gemiddelde hartslag van Extra Opgaven 1. Een persoon doet een HIV-test. Helaas is de uitslag positief. De test is echter niet perfect. De persoon vraagt zich af wat de kans is dat hij nu ook echt HIV heeft. Gegeven is: de kans

Nadere informatie

Correctievoorschrift VMBO-GL en TL 2004

Correctievoorschrift VMBO-GL en TL 2004 Correctievoorschrift VMBO-GL en TL 2004 tijdvak 2 WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO-D 4 BEOORDELINGSMODEL Vraag Antwoord Scores EURO maximumscore 3 per land ( ) 3,88 2 3,88 het antwoord is ( ) 46,56

Nadere informatie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Inleveren: uiterlijk maandag 6 februari 16.00 bij Marianne Jonker (Kamer: R3.46) Afspraken De opdrachten maak je in tweetallen. Schrijf duidelijk

Nadere informatie