Toegepaste data-analyse: oefensessie 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Toegepaste data-analyse: oefensessie 2"

Transcriptie

1 Toegepaste data-analyse: oefensessie 2 Depressie 1. Beschrijf de clustering van de dataset en geef aan op welk niveau de verschillende variabelen behoren Je moet weten hoe de data geclusterd zijn om uit te maken wat je fixed effects zijn. Als het gaat over patiënten en instellingen, kan je bvb zeggen dat de patiënten (level 1) geclusterd zijn in de instellingen (level 2). Hier zijn de meetmomenten geclusterd binnen de individuen. Meetmoment = level 1. Subject = level 2. Waarom is het subject bijvoorbeeld niet geclusterd binnen dosis? Dosis is hier het fixed effect. We willen net het effect van dosis willen zien. Het is niet random, want als we de studie opnieuw zouden willen doen, zullen we de dosissen niet veranderen. We zullen wss wel andere subjecten hebben, maar we zouden nog steeds het effect van dezelfde dosissen zoeken. Hetzelfde geldt voor leeftijd: hiervan zoeken we ook het effect. Leeftijd en dosis zijn variabelen op subjectniveau en horen dus op level 2. Stel dat we een verschillende dosis zouden geven op verschillende meetmomenten, dan zou dosis een level 1 variabele zijn. Maar hier gaat het om dezelfde dosis over verschillende meetmomenten. Hetzelfde geldt voor leeftijd. Moest het over een longitudinale studie gaan, dan zou leeftijd niet samenhangen met het subject, maar met het meetmoment. In dat geval zou leeftijd een level 1 variabelen zijn. Stel dat er nog een variabele zou bijkomen zoals de eiwitwaarden in het bloed, zou dit een variabele zijn die samen hangt met het meetmoment. Dit zou dus een level 1 variabele zijn. 2. Fit een model met dosis, moment en hun interactie als fixed effects en een random intercept voor alle individuen. Beschouw hierbij moment als factor. Wat kan je besluiten? Bereken tevens de ICC. We werken hier met een hiërarchisch model. Meetmomenten zijn geclusterd in de subjecten. Bij Subjects moeten we altijd het hoogste niveau noteren. In dit geval is dit dus SubjectID. Repeated vul je enkel in bij een marginaal model.

2 Nadat je op Continue hebt gedrukt, kom je op dit scherm. Bij Fixed kan je het model gaan specifiëren. Include intercept gaat over het fixed intercept. Dit zal bij mixed effects altijd zo zijn (itt. bij APIM, maar dit zien we later nog). Nadat je op Continue hebt gedrukt, ga je ook de random effects specifiëren door op Random te klikken.

3 Door Include intercept aan te vinken, geven we aan dat ons intercept random (bi) is. We hebben niets anders dan een random intercept, dus we moeten ook niets anders specifiëren. We geven ook SubjectID in bij combinations, want we gaan voor de verschillende subjecten random intercept schatten.

4 Wat is de verwachte depressiemaat voor - Iemand met dosis 3 op meetmoment 3? Iemand met dosis 1 op meetmoment 3? ,066 = 21,866 - Iemand met dosis 1 op meetmoment 1? , ,733 8,066 = 21,533 Type III Tests of Fixed Effects a Source Numerator df Denominator df F Sig. Intercept ,290,000 dosis ,184,000 moment ,697,000 dosis * moment ,059,021 a. Dependent Variable: De depressiemaat. Dit komt exact overeen met de repeated measures vanuit de vorige oefensessie.

5 Estimates of Covariance Parameters a Parameter Estimate Std. Error Residual 27, , Intercept [subject = subject] Variance 2, , a. Dependent Variable: De depressiemaat. Variantie van het subject = onderaan Residuele variantie = bovenaan ICC = 2,46 / (27,21 + 2,46) = 0,082 Opmerking: Het is hier wel een beetje vreemd dat we de meetmomenten als factor hebben beschouwd. De H0 luidt dan m1 = m2 = m3. Ha = minstens 1 verschillend. Als we dit op deze manier toetsen, houden we er geen rekening mee dat meetmoment 1 voor meetmoment 2 komt en 2 voor 3. Het zou bovendien veel interessanter zijn om van meetmoment een lineair effect te maken. Dit betekent dat we meetmoment als covariaat gaan opnemen. 3. Fit vervolgens hetzelfde model, maar nu met moment als covariaat. Hoe verandert de interpretatie hier?

6 Interpretatie van het hoofdeffect. Alhoewel het hoofdeffect van dosis hier niet significant blijkt te zijn, mogen we dit toch niet eenduidig interpreteren. De significantie van de interactie-effecten toont immers aan dat het effect van meetmoment wel degelijk afhangt van de dosis die men toegediend krijgt. Je kan hier dus niet zomaar zeggen dat dosis onbelangrijk is geworden. Interpretatie van de parameterschatting voor moment : In de groep die dosis 3 toegediend krijgt (referentiegroep) zal de score op de depressiemaat per meetmoment telkens 3,866 eenheden afnemen. Wat is het effect van moment in dosis 3? de parameter bij moment is dus geen globale schatting, maar een schatting voor de referentiegroep, met dosis 3. -3,866 = maw de helling van de geschatte rechte die de evolutie over meetmomenten weergeeft, voor mensen in de groep met dosis 3. In de groep met dosis 3 is deze rechte dus een dalende rechte met helling -3,866. Wat is het effect van moment in dosis 2? ,900 = In groep met dosis 2 gaat het om een dalende rechte die iets lichter daalt dan de rechte in dosis 3, nl. met een helling Wat is het effect van moment in dosis 1? = In de groep met dosis 1 gaat het om een licht stijgende rechte met een helling van Stijgt of daalt de depressie voor mensen in dosis 1 (placebo)? Effect van meetmoment = Interactie-effect = + 4,033 Totaal effect = Op welk meetmoment vinden we het intercept? De intercepten voor de verschillende dosisgroepen zijn een schatting van de gemiddelde score op de depressiemaat op meetmoment 0. Dit intercept verwijst naar het snijpunt met de Y-as. Dit betekent dat we de gevonden effecten hebben geëxtrapoleerd (want we hebben de patiënten niet geobserveerd wanneer ze geen medicatie kregen). Je moet hiermee oppassen! Het is veel zinvoller om VERDER in de tijd te extrapoleren en een voorspelling te maken voor deze verschillende groepen.

7 ICC verandert een klein beetje, maar niet zoveel. 4. Fit vervolgens een model met random intercept en slope. Bepaal een interval waarbinnen ongeveer 95% van de intercepten en slopes in de populatie zullen liggen. Hoe zijn de intercepten en de slopes gecorreleerd? Wat betekent dit concreet? Fixed-gedeelte van het moment blijft onveranderd. Bij Random gaan we niet enkel een intercept toevoegen, maar ook een random slope. Het heeft enkel zin om voor continue variabelen op te nemen om een random slope per subject te modelleren. Hier betekent dat dat we moment gaan opnemen bij Model. Het covariantie-type is Unstructured.

8 De correlatie tussen de slopes en de intercepten is negatief. Dit betekent dat hoe hoger het intercept, hoe kleiner de slope zal zijn. Ook andersom: hoe lager het intercept, hoe groter de slope zal zijn. Globale schatting Individuele schattingen

9 Betrouwbaarheidsinterval voor de intercepten 2 [ β (σσ ssssssssssssss 2 ), β (σσ ssssssssssssss ) ] iiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiii [ (3,234), (3,234) ] Betrouwbaarheidsinterval voor de slopes 2 [ β (σσ ssssssssssssss ssssssssss 2 ), β (σσ ssssssssssssss ) ] ssssssssss [ (0.803), (0.803)] Dit betrouwbaarheidsinterval gaat rond de nauwkeurigheid waarmee me de echte schatter kunnen bereiken. Het verwijs naar het échte intercept. Het betrouwbaarheidsinterval dat wij hebben opgesteld rond het intercept, gaat over het interval waarbinnen 95% van de individuen zullen vallen. 95% van de individuen zullen een intercept hebben binnen dit interval. Maar dit zegt niets over het echte intercept. Hetzelfde geldt voor de betrouwbaarheidsintervallen voor de slopes. Scholen 1. Beschrijf de clustering van de dataset en geef aan op welk niveau de verschillende variabelen behoren. Elke student (= level 1) zit geclusterd in een bepaalde school (= level 2). Sex en iq zijn leerlingspecifiek (level 1). FSM en denom zijn schoolvariabelen (level2). Exam is hier de afhankelijke variabele. Moesten we enkel meisjes- of enkel jongensscholen hebben gehad, was sex een schoolgerelateerde variabele zijn. Nu variëren sex en Iiq binnen dezelfde school, maar FSM en denom variëren niet binnen dezelfde school.

10 2. Centreer de level 1 predictoren (IQ en sex). Waarom is dit belangrijk? Welke veronderstelling maken we als we dit niet doen?

11 3. We willen nagaan of de visie van de school een invloed heeft op de examenscores Hierbij willen we controleren voor de hoofdeffecten van fsm, seks en iq. Voer deze analyse uit, rekening houdend met het feit dat de data geclusterd zijn, veronderstel een random intercept in elke school. Wat is het effect van een toename in IQ op individueel niveau en op schoolniveau? Heeft de visie van de school een invloed op de scores? Op welke manier? FIXED GEDEELTE AV: exam OV: denom (categorisch) Fsm Seks_mean (nu continu!) Seks_c Iq_mean Iq_c RANDOM GEDEELTE Random intercept per school

12 Wat is het effect van een toename in IQ op individueel niveau en op schoolniveau? Op individueel niveau: Als 1 leerling een IQ-punt hoger heeft dan een andere leerling, zal zijn examenpunt 0.22 punten hoger liggen als van die andere leerling. Op schoolniveau: Als 1 school een IQ punt hoger heeft dan een andere school, zal de examenscore in die school gemiddeld 0.11 punten hoger liggen. Binnen een school scoren meisjes gemiddeld 2.1 hoger dan jongens. Moest een school volledig uit meisjes bestaat, zou deze school 4 punten hoger scoren dan een school die uit jongens bestaat. Dit is een lineair effect, dus we kunnen dit gedeeltelijk interpreteren. Als de proportie meisjes in een school 10% groter is dan in een andere school, zal deze school ook 0.4 punten hoger scoren op het examen. Door het centreren kunnen we een onderscheid maken tussen de within- en betweensubjectseffecten!!! Heeft de visie van de school een invloed op de scores? We vinden een significant effect van denom. Op welke manier? In de referentiecategorie (denom=3) is de gemiddelde examenscore 16,32. In denom=1 is de gemiddelde examenscore In denom=2 is de gemiddelde examenscore

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 Bjorn Winkens Methodologie en Statistiek Universiteit Maastricht 21 maart

Nadere informatie

Dit jaar gaan we MULTIVARIAAT TOETSEN. Bijvoorbeeld: We willen zien of de scores op taal en rekenen van kinderen afwijken in de populatie.

Dit jaar gaan we MULTIVARIAAT TOETSEN. Bijvoorbeeld: We willen zien of de scores op taal en rekenen van kinderen afwijken in de populatie. Toetsen van hypothesen Bijvoorbeeld: nagaan of het gemiddeld IQ bij een bepaalde steekproef groter/kleiner is als in de populatie. µ = 100 Normaalverdeling, waarbij we de score van de steekproef gaan vergelijken

Nadere informatie

Toegepaste data-analyse: sessie 3

Toegepaste data-analyse: sessie 3 Toegepaste data-analyse: sessie 3 Mixed Models II: Actor-partner model Corr (Yij, Yik) = σσ 2 kkkkkkkkkkkk σσ 2 kkkkkkkkkkkk+ σσ 2 rrrrrr Je kan deze data niet modelleren a.d.h.v. lineaire regressie. Er

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

MLW -- Toets stroomblok 2.2: Epidemiologie en Biostatistiek

MLW -- Toets stroomblok 2.2: Epidemiologie en Biostatistiek MLW -- Toets stroomblok 2.2: Epidemiologie en Biostatistiek Vrijdag 1 april 2005 Opzet: 5 onderdelen, elk 4 punten. Schrijf uw naam en nummer op elke ingeleverde pagina. Vraag 1 In een cohort van 2000

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) op dinsdag 3-03-00, 9- uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

College 2 Enkelvoudige Lineaire Regressie

College 2 Enkelvoudige Lineaire Regressie College Enkelvoudige Lineaire Regressie - Leary: Hoofdstuk 7 tot p. 170 (Advanced Correlational Strategies) - MM&C: Hoofdstuk 10 (Inference for Regression) - Aanvullende tekst 3 Jolien Pas ECO 011-01 Correlatie:

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008 Examen Statistische Modellen en Data-analyse Derde Bachelor Wiskunde 14 januari 2008 Vraag 1 1. Stel dat ɛ N 3 (0, σ 2 I 3 ) en dat Y 0 N(0, σ 2 0) onafhankelijk is van ɛ = (ɛ 1, ɛ 2, ɛ 3 ). Definieer

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) Avondopleiding. donderdag 6-6-3, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Reconstructie Bedrijfsstatistiek 2016

Reconstructie Bedrijfsstatistiek 2016 Reconstructie Bedrijfsstatistiek 2016 Open vragen Vraag 1 1. Bewijs dat σ^² een onvertekende schatter is voor σ²=σi 1/n * Xi² 2. Bereken de variantie van o^² 3. Is de schatter consistent? 4. Teken chi-kwadraat

Nadere informatie

Classification - Prediction

Classification - Prediction Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training

Nadere informatie

M M M M M M M M M M M M M M La La La La La La La Mid Mid Mid Mid Mid Mid Mid 65 56 83 68 64 47 59 63 93 65 75 68 68 51

M M M M M M M M M M M M M M La La La La La La La Mid Mid Mid Mid Mid Mid Mid 65 56 83 68 64 47 59 63 93 65 75 68 68 51 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 7 1. Een onderzoeker wil nagaan of de fitheid van jongeren tussen 14 en 18 jaar (laag, matig, hoog) en het geslacht (M, V) een

Nadere informatie

Meervoudige variantieanalyse

Meervoudige variantieanalyse Meervoudige variantieanalyse Inleiding In dit hoofdstuk, dat aansluit op hoofdstuk II-12 (deel2) van het statistiekboek, wordt besproken hoe met SPSS gemiddelden van verschillende groepen met elkaar vergeleken

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Faculteit der Wiskunde en Informatica 2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Opgave 1: (5 x 6 = 30 punten) (Bij deze opgave is gebruik van resultaten uit bijlage 1 noodzakelijk)

Nadere informatie

SPSS. Statistiek : SPSS

SPSS. Statistiek : SPSS SPSS - hoofdstuk 1 : 1.4. fase 4 : verrichten van metingen en / of verzamelen van gegevens Gegevens gevonden bij een onderzoek worden systematisch weergegeven in een datamatrix bij SPSS De datamatrix Gebruik

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Samenvatting Nederlands

Samenvatting Nederlands Samenvatting Nederlands 178 Samenvatting Mis het niet! Incomplete data kan waardevolle informatie bevatten In epidemiologisch onderzoek wordt veel gebruik gemaakt van vragenlijsten om data te verzamelen.

Nadere informatie

TYPE EXAMENVRAGEN VOOR TOEGEPASTE STATISTIEK

TYPE EXAMENVRAGEN VOOR TOEGEPASTE STATISTIEK TYPE EXAMENVRAGEN VOOR TOEGEPASTE STATISTIEK Prof. Dr. M. Vandebroek 1. Een aantal proefpersonen werd gevraagd een frisdrank te beoordelen door aan te geven in hoeverre ze het eens zijn met de volgende

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 30 januari 2009 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 2 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies

Nadere informatie

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek cursus 23 mei 2012 werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen onderzoek streeft naar inzicht in relatie tussen variabelen bv. tussen onafhankelijke

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

Opgave 1: (zowel 2DM40 als 2S390)

Opgave 1: (zowel 2DM40 als 2S390) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit College 7 Regressie-analyse en Variantie verklaren Inleiding M&T 2012 2013 Hemmo Smit Neem mee naar tentamen Geslepen potlood + gum Collegekaart (alternatief: rijbewijs, ID-kaart, paspoort) (Grafische)

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Bij factor ANOVA is er een tweede onafhankelijke variabele in de analyse bij gekomen. Er zijn drie soorten designs mogelijk:

Bij factor ANOVA is er een tweede onafhankelijke variabele in de analyse bij gekomen. Er zijn drie soorten designs mogelijk: 13. Factor ANOVA De theorie achter factor ANOVA (tussengroep) Bij factor ANOVA is er een tweede onafhankelijke variabele in de analyse bij gekomen. Er zijn drie soorten designs mogelijk: 1. Onafhankelijke

Nadere informatie

College 6 Eenweg Variantie-Analyse

College 6 Eenweg Variantie-Analyse College 6 Eenweg Variantie-Analyse - Leary: Hoofdstuk 11, 1 (t/m p. 55) - MM&C: Hoofdstuk 1 (t/m p. 617), p. 63 t/m p. 66 - Aanvullende tekst 6, 7 en 8 Jolien Pas ECO 01-013 Het Experiment: een voorbeeld

Nadere informatie

Bestaat er een betekenisvol verband tussen het geslacht en het voorkomen van dyslexie? Gebruik de Chi-kwadraattoets voor kruistabellen.

Bestaat er een betekenisvol verband tussen het geslacht en het voorkomen van dyslexie? Gebruik de Chi-kwadraattoets voor kruistabellen. Oplossingen hoofdstuk IX 1. Bestaat er een verband tussen het geslacht en het voorkomen van dyslexie? Uit een aselecte steekproef van 00 leerlingen (waarvan 50% jongens en 50% meisjes) uit het basisonderwijs

Nadere informatie

Examenvragen KBM (herexamen)

Examenvragen KBM (herexamen) Examenvragen KBM 2012-2013 (herexamen) THEORIE: - BetaGLS en BetaOLS berekenen - Bewijs met principale componenten - Vraag over variantieanalyse: o wanneer stochastisch gebruiken o wanneer het andere (ben

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking Opdracht 9a ----------- t-procedures voor een enkelvoudige steekproef Voor de meting van de leesvaardigheid van kinderen wordt als toets de Degree of Reading Power (DRP) gebruikt. In een onderzoek onder

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4) woensdag 8 oktober 9, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven Statistisch

Nadere informatie

College 7 Tweeweg Variantie-Analyse

College 7 Tweeweg Variantie-Analyse College 7 Tweeweg Variantie-Analyse - Leary: Hoofdstuk 12 (p. 255 t/m p. 262) - MM&C: Hoofdstuk 12 (p. 618 t/m p. 623 ), Hoofdstuk 13 - Aanvullende tekst 9, 10, 11 Jolien Pas ECO 2012-2013 Het Experiment

Nadere informatie

Moderatie-analyse met continue moderator (wijzigingen in rood) Cursus Bachelor Project 2 B&O College 5 Harry B.G. Ganzeboom

Moderatie-analyse met continue moderator (wijzigingen in rood) Cursus Bachelor Project 2 B&O College 5 Harry B.G. Ganzeboom Moderatie-analyse met continue moderator (wijzigingen in rood) Cursus Bachelor Project 2 B&O College 5 Harry B.G. Ganzeboom 1 AGENDA Responsiecollege a.s. vrijdag Nabespreking Practicum 4: moderatie met

Nadere informatie

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse 10.1 Eenwegs-variantieanalyse: Als we gegevens hebben verzameld van verschillende groepen en we willen nagaan of de populatiegemiddelden van elkaar verscihllen,

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het gebruik

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

Eindtoets Toegepaste Biostatistiek

Eindtoets Toegepaste Biostatistiek Eindtoets Toegepaste Biostatistiek 2013-2014 29 januari 2014 Dit tentamen bestaat uit vier opgaven, onderverdeeld in 24 subvragen. Begin bij het maken van een nieuwe opgave steeds op een nieuw antwoordvel.

Nadere informatie

De interpretatie van interactieeffecten in regressiemodellen. Jan Pickery

De interpretatie van interactieeffecten in regressiemodellen. Jan Pickery De interpretatie van interactieeffecten in regressiemodellen Jan Pickery Samenstelling Diensten voor het Algemeen Regeringsbeleid Studiedienst van de Vlaamse Regering Jan Pickery Verantwoordelijke uitgever

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Beschrijvende statistiek Beschrijvende en toetsende statistiek Beschrijvend Samenvatting van gegevens in de steekproef van onderzochte personen (gemiddelde, de standaarddeviatie, tabel, grafiek) Toetsend

Nadere informatie

Experimenteel Onderzoek en Experimentele Controle

Experimenteel Onderzoek en Experimentele Controle Experimenteel Onderzoek en Experimentele Controle ECO 2011-2012 Hemmo Smit Wilhelm Wundt en William James 3 criteria voor Causaliteit (herhaling) 1. Covariantie: samenhang tussen variabelen aantonen 2.

Nadere informatie

Enkelvoudige lineaire regressie

Enkelvoudige lineaire regressie Enkelvoudige lineaire regressie Inleiding Dit hoofdstuk sluit aan op hoofdstuk I-9 van het statistiekboek. Er wordt hier steeds gesproken over het verband tussen één afhankelijke variabele Y en één onafhankelijke

Nadere informatie

SPSS 15.0 in praktische stappen voor AGW-bachelors Uitwerkingen Stap 7: Oefenen I

SPSS 15.0 in praktische stappen voor AGW-bachelors Uitwerkingen Stap 7: Oefenen I SPSS 15.0 in praktische stappen voor AGW-bachelors Uitwerkingen Stap 7: Oefenen I Hieronder volgen de SPSS uitvoer en de antwoorden van de opgaven van Stap 7: Oefenen I. Daarnaast wordt bij elke opgave

Nadere informatie

Examenvragen KBM/EMS 09-15

Examenvragen KBM/EMS 09-15 THEORIE Examenvragen KBM/EMS 09-15 Je krijgt een logistisch model met lineaire predictor = beta 0. Leid via de maximum likelihoodfunctie een schatter af voor beta 0. Bewijs met principale componenten Vraag

Nadere informatie

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte Classroom Exercises GEO2-4208 Opgave 7.1 a) Regressie-analyse dicteert hier geen stricte regels voor. Wanneer we echter naar causaliteit kijken (wat wordt door wat bepaald), dan is het duidelijk dat hoogte

Nadere informatie

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA)

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) DATA STRUKTUUR Afhankelijke variabele: Eén kontinue variabele Onafhankelijke variabele(n): - één discrete variabele: één gecontroleerde factor - twee discrete variabelen:

Nadere informatie

De evolutie van individueel welbevinden, academisch zelfconcept en prestaties doorheen het middelbaar onderwijs: verschillen tussen scholen.

De evolutie van individueel welbevinden, academisch zelfconcept en prestaties doorheen het middelbaar onderwijs: verschillen tussen scholen. 1 De evolutie van individueel welbevinden, academisch zelfconcept en prestaties doorheen het middelbaar onderwijs: verschillen tussen scholen Georges Van Landeghem Jan Van Damme K.U.Leuven Inleiding Een

Nadere informatie

Verband tussen twee variabelen

Verband tussen twee variabelen Verband tussen twee variabelen Inleiding Dit practicum sluit aan op hoofdstuk I-3 van het statistiekboek en geeft uitleg over het maken van kruistabellen, het berekenen van de correlatiecoëfficiënt en

Nadere informatie

ORS. LEK EN LINGE POSTBUS AL CULEMBORG

ORS. LEK EN LINGE POSTBUS AL CULEMBORG ORS. LEK EN LINGE POSTBUS 461 4 AL CULEMBORG Onderstaand rapport is gebaseerd op de afnamegegevens van de groep kandidaten "M6mo6" die uw school na afname van het centraal schriftelijk examen aan Cito

Nadere informatie

10 VeROudeRINg VAN de TeSTNORMeN 10.1 AANWIJzINgeN VOOR een MINdeR STeRk flynn-effect

10 VeROudeRINg VAN de TeSTNORMeN 10.1 AANWIJzINgeN VOOR een MINdeR STeRk flynn-effect 10 VEROUDERING VAN DE TESTNORMEN Een belangrijk, en voor de diagnostiek uitermate lastig probleem, is de veroudering van testnormen. De prestatie op intelligentietests van personen van dezelfde leeftijd

Nadere informatie

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing M, M & C, Chapter 6, Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Use and Abuse

Nadere informatie

Faculteit der Wiskunde en Informatica

Faculteit der Wiskunde en Informatica Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4), op woensdag 7 januari 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek II voor TeMa (2S195) op maandag ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek II voor TeMa (2S195) op maandag , TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek II voor TeMa (2S195) op maandag 8-5-26, 9.-12. uur Bij het tentamen mag gebruik worden gemaakt van een (grafisch)

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 3 februari 2012

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 3 februari 2012 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 3 februari 2012 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 27 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

4 Domein STATISTIEK - versie 1.2

4 Domein STATISTIEK - versie 1.2 USolv-IT - Boomstructuur DOMEIN STATISTIEK - versie 1.2 - c Copyrighted 42 4 Domein STATISTIEK - versie 1.2 (Op initiatief van USolv-IT werd deze boomstructuur mede in overleg met het Universitair Centrum

Nadere informatie

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN Interim Toegepaste Biostatistiek deel december 2009 Versie A ANTWOORDEN C 2 B C A 5 C 6 B 7 B 8 B 9 D 0 D C 2 A B A 5 C Lever zowel het antwoordformulier als de interim toets in Versie A 2. Dit tentamen

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag , TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op maandag 08-03-2004, 9.00-2.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Vertaling van enkele termen uit de kansrekening en statistiek alternative hypothesis alternatieve hypothese approximate methods benaderende methoden asymptotic variance asymptotische variantie asymptotically

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) dinsdag 2-08-2003, 4.00-7.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

Onderzoek naar de relatie tussen. de slaapkwaliteit en het slaapsysteem

Onderzoek naar de relatie tussen. de slaapkwaliteit en het slaapsysteem Onderzoek naar de relatie tussen de slaapkwaliteit en het slaapsysteem October 18, 2004 Liesbeth Bruckers, MsC Biostatistics Center for Statistics Limburgs Universitair Centrum Universitaire Campus B-3590

Nadere informatie

d. Formuleer voor het hoofdeffect Afmeting H_0 en H_a. Is dit hoofdeffect significant?

d. Formuleer voor het hoofdeffect Afmeting H_0 en H_a. Is dit hoofdeffect significant? Opdracht 14a ------------ Twee-factor ANOVA In een groot research-project bestudeerde men de fysische eigenschappen van multiplex houtmaterialen, vervaardigd door kleine plakjes hout aan elkaar te hechten.

Nadere informatie

College 6. Samenhang tussen variabelen. Inleiding M&T Hemmo Smit

College 6. Samenhang tussen variabelen. Inleiding M&T Hemmo Smit College 6 Samenhang tussen variabelen Inleiding M&T 2012 2013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap 2. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek

Nadere informatie

1 vorig = omzet voorgaande jaar. Forward (Criterion: Probability-of-F-to-enter <=,050) 2 bezoek = aantal bezoeken vertegenwoordiger

1 vorig = omzet voorgaande jaar. Forward (Criterion: Probability-of-F-to-enter <=,050) 2 bezoek = aantal bezoeken vertegenwoordiger De groothandel Onderwerp: regressieanalyse met SPSS Bij: hoofdstuk 10 Een groothandel heeft onderzoek gedaan onder de klanten en daarbij geprobeerd met regressieanalyse vast te stellen wat de bepalende

Nadere informatie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Inleveren: uiterlijk maandag 6 februari 16.00 bij Marianne Jonker (Kamer: R3.46) Afspraken De opdrachten maak je in tweetallen. Schrijf duidelijk

Nadere informatie

Vragen: 1 Is de relatie tussen X en Y significant (bij alpha = 0,05)?

Vragen: 1 Is de relatie tussen X en Y significant (bij alpha = 0,05)? Vraag 1 Running-for-health In een running -for- health programma worden bij 17 mannelijke deelnemers na verloop van één jaar de volgende metingen verricht: X: aantal sprongen dat de persoon kan maken voordat

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

WISKUNDE 3 PERIODEN EUROPEES BACCALAUREAAT 2010. DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : TOEGESTANE HULPMIDDELEN : OPMERKINGEN : Geen

WISKUNDE 3 PERIODEN EUROPEES BACCALAUREAAT 2010. DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : TOEGESTANE HULPMIDDELEN : OPMERKINGEN : Geen EUROPEES BACCALAUREAAT 010 WISKUNDE 3 PERIODEN DATUM : 4 juni 010 DUUR VAN HET EXAMEN : 3 uur (180 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

Wat gaan we doen? Help! Statistiek! Wat is een lineaire relatie? De rechte-lijn-vergelijking: Y = a + b X. Relatie tussen gewicht en lengte

Wat gaan we doen? Help! Statistiek! Wat is een lineaire relatie? De rechte-lijn-vergelijking: Y = a + b X. Relatie tussen gewicht en lengte Help! Statistiek! Wat gaan we doen? Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Derde woensdag in de maand,

Nadere informatie

Toelichting bij applicatie "betekenis geven aan cijfers"

Toelichting bij applicatie betekenis geven aan cijfers Toelichting bij applicatie "betekenis geven aan cijfers" De toelichting op deze applicatie bestaat uit twee onderdelen: een praktische handleiding voor het gebruik van de applicatie; uitleg over de informatie

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

4. Resultaten. 4.1 Levensverwachting naar geslacht en opleidingsniveau

4. Resultaten. 4.1 Levensverwachting naar geslacht en opleidingsniveau 4. Het doel van deze studie is de verschillen in gezondheidsverwachting naar een socio-economisch gradiënt, met name naar het hoogst bereikte diploma, te beschrijven. Specifieke gegevens in enkel mortaliteit

Nadere informatie