TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

Maat: px
Weergave met pagina beginnen:

Download "TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur."

Transcriptie

1 VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. Bij het tentamen mag gebruik worden gemaakt van een (eventueel grafische) zakrekenmachine en van een ONBESCHREVEN Statistisch Compendium. De antwoorden dienen gemotiveerd, duidelijk geformuleerd en overzichtelijk opgeschreven te worden. Er zijn?? vraagstukken met in totaal 20 onderdelen. Elk onderdeel wordt gewaardeerd met 2 punten. Het cijfer voor het schriftelijk wordt bepaald door het totaal der behaalde punten door 4 te delen. Het uiteindelijke cijfer voor het vak 2DD70 wordt bepaald volgens de regeling in de studeerwijzer. 1. In een pak stroopwafels zitten 12 stuks. Een stroopwafel zou 30 gram moeten wegen. Het gewicht van een stroopwafel is normaal verdeeld. De gewichten van afzonderlijke stroopwafels zijn onafhankelijk. a) Neem aan dat de standaardafwijking van een stroopwafel gelijk is aan 2 gram. Men wil dat de kans dat het totale netto gewicht van een pak van 12 stroopwafels minder is dan 360 gram hoogstens gelijk is aan Wat moet dan de verwachte waarde van het gewicht van één stroopwafel zijn? b) Neem aan dat de kans dat een pak te weinig weegt (dat wil zeggen minder weegt dan 360 gram) gelijk is aan Een klant koopt iedere week een pak stroopwafels. Na hoeveel weken heeft hij naar verwachting 10 pakken gehad met te weinig gewicht? c) Neem nu aan dat de verwachte waarde van het gewicht van één stroopwafel gelijk is aan 30.5 gram. Hoe groot moet de standaardafwijking zijn om te zorgen dat de kans dat een pak van 12 stroopwafels minder weegt dan 360 gram hoogstens gelijk is aan 0.03? 1

2 2. Het aantal hits van een bepaalde website kan gemodelleerd worden volgens een Poissonproces met een verwachting van 15 hits per uur. a) Vanaf 12 uur s middags zijn in het eerste uur 10 hits geweest. Wat is de kans dat in het volgend uur precies 10 hits zijn? Er wordt een contract gesloten met een firma. Deze firma mag een advertentie op de site plaatsen. Voor iedere 3000 hits van de site betaalt de firma een zeker bedrag aan de eigenaar van de site. b) Het contract gaat in. Geef een benadering (met de normale verdeling) voor de kans dat men meer dan 208 uur moet wachten tot de eerste 3000 hits binnen zijn. Vanaf het moment dat de eerste 3000 hits binnen zijn begint men opnieuw te tellen. c) Na 104 uur zijn de eerste 1500 hits binnen. Wat is de kans dat men meer dan 104 uur moet wachten totdat de resterende 1500 hits binnen zijn? 3. De hoeveelheid brood (met als eenheid 100 kilogram) die door een bakkerij op een dag verkocht wordt kan beschreven worden met de volgende kansdichtheid cx 0 x < 3, f(x) = c(6 x) 3 x 6, 0 anders. a) Bereken het getal c. Neem in het vervolg aan dat c gelijk is aan 1/9. antwoord op onderdeel a) te zijn. Dat hoeft niet het correcte b) De gebeurtenis dat in een dag meer dan 300 kg verkocht wordt noemen we A. De gebeurtenis dat in een dag tussen de 150 en 450 kg verkocht wordt noemen we B. Laat zien dat de gebeurtenissen onafhankelijk zijn. 2

3 4. Beschouw twee discrete stochastische variabelen X en Y. De simultane kansverdeling wordt gegeven door de kansen P (X = x, Y = y) in de volgende tabel: a) Wat is de variantie van X? y a a a x 0 a 0 a 1 a a 2a b) Wat is de verwachte waarde van X als bekend is dat Y = 1? c) Zijn X en Y onafhankelijk? (motiveer uw antwoord) 5. Een bedrijf maakt gipsen platen die een lengte van 200 cm moeten hebben en een breedte van 60 cm. De breedte X van een gipsplaat kan gemodelleerd worden met een continue uniforme verdeling op het interval (59, 60). Dus f X (x) = 1 voor 59 < x < 60. Voor de lengte Y geldt Y = 260 X. a) Wat is de verwachte waarde van de oppervlakte X(260 X)? b) Wat is de covariantie van X en Y? 6. Zoals bekend bestaat er het volgende verband tussen de temperatuur C in graden Celsius en de temperatuur F in graden Fahrenheit. C = 5(F 32)/9. a) Men heeft 10 waarnemingen aan de temperatuur in graden Fahrenheit. Het gemiddelde is 44 en de variantie is gelijk aan 4. Als men de waarnemingen had gedaan in graden Celsius, wat zou dan het gemiddelde en de variantie zijn? 7. Laat (X 1, X 2, X 3, X 4, X 5 ) een aselecte steekproef zijn uit een exponentiële verdeling f X (x) = λe λx, x > 0, λ > 0. Beschouw de volgende schatter voor de verwachte waarde van X. W = 1 8 (X 1 + X 2 + X 3 + X 4 ) X 5. a) Is W een zuivere schatter voor de verwachte waarde van X? Wat is de onzuiverheid van de schatter? b) Wat is de gemiddelde kwadratische afwijking (MSE)? 3

4 8. De productietijd (in minuten) van een bepaald product is een stochastische variabele. De tijd wordt genoteerd met X. Men heeft 20 onafhankelijke metingen x i, i = 1,, 20 van die productietijd. De metingen zijn Hiervoor geldt n i=1 x2 i = en n i=1 x i = 240. a) Geef een schatting voor de kans dat de productietijd groter is dan Doe hierbij geen aanname over de verdeling van X. b) Neem nu aan dat X normaal verdeeld is. Schat de parameters van die verdeling en geef nu ook een schatting voor de kans dat de productietijd groter is dan c) De kosten bij het maken van een product zijn gelijk aan het kwadraat van de productietijd vermenigvuldigd met 5. Schat de verwachte kosten voor het maken van een product. Doe geen aanname over de verdeling. d) Bereken een 95% tweezijdig betrouwbaarheidsinterval voor de verwachte productietijd. Neem hierbij aan aan dat de waarnemingen uit een normale verdeling komen. e) Toets tweezijdig de nulhypothese dat de verwachte waarde van de productietijd gelijk is aan 13. Neem hierbij aan dat de waarnemingen uit een normale verdeling komen en neem α = f) Toets tweezijdig de nulhypothese dat de verwachte waarde van de productietijd gelijk is aan 13. Neem hierbij alleen aan dat de waarnemingen uit een symmetrische verdeling komen en neem α = g) Toets tweezijdig de nulhypothese dat de mediaan van de productietijd gelijk is aan 13. Neem hierbij niets aan over de kansverdeling van X en neem α = h) Men gaat een product maken. Geef een 95%-voorspellingsinterval voor de productietijd van dat product. Neem weer aan dat de waarnemingen uit een normale verdeling komen. 4

5 9. Men onderzoekt de verwachte levensduur µ in uren van een batterij. Men wil de nulhypothese µ = 10 tweezijdig toetsen. Daartoe neemt men een aselecte steekproef ter grootte 25. De nulhypothese wordt verworpen als het steekproefgemiddelde groter is dan of kleiner is dan Aangenomen wordt dat de levensduur normaal verdeeld is met bekende standaardafwijking σ = 3 uur. a) Wat is de onbetrouwbaarheid (α) van deze toets? Men vindt als steekproefresultaat x = b) Wat is de p-waarde? Wat is de conclusie van de toets? c) Op grond van het steekproefresultaat x = stelt men een 100(1 α)% betrouwbaarheidsinterval op met dezelfde α als in onderdeel a). Geef dat interval. Opmerking: deze vraag kan ook beantwoord worden als u het antwoord op a) niet heeft gevonden. d) Neem nu een onbetrouwbaarheid van de toets van Indien de werkelijke verwachte levensduur gelijk is aan 11.0 uur wil men dat het onderscheidingsvermogen minstens 0.90 is. Hoeveel waarnemingen moeten er minstens worden gedaan? 10. Men doet onderzoek naar bepaalde genetische variëteiten onder muizen. Hiertoe wordt een bepaald kenmerk bekeken en men verwacht drie typen hiervan in de verhouding 2:1:1. Om deze nulhypothese te toetsen onderzoekt men 200 muizen. De tabel hieronder bevat de resultaten. Type 1 Type 2 Type a) Wat zijn de verwachte aantallen onder de nulhypothese? Welke toetsingsgrootheid wordt gebruikt? b) Moet de nulhypothese worden verworpen (α = 0.05)? Waarom wel/niet? 5

6 11. Uit een grote partij aspirinetabletten worden twee onafhankelijke steekproeven genomen, één toen de machine net in gebruik was genomen en één tien dagen later. Men meet het gewicht van de aspirinetabletten in een zekere eenheid. Er is verondersteld dat de gewichten van de twee steekproeven uit twee normale verdelingen komen, waarvan de varianties aan elkaar gelijk zijn. De gewichten van de twee steekproeven werden met behulp van SPSS geanalyseerd. Hieronder staan resultaten Summary Statistics Steekproef 1 Steekproef Count 8 10 Average Standard deviation Minimum Maximum Range a) Geef een 95% betrouwbaarheidsinterval voor het verwachte verschil in gewicht. 12. In een experiment wordt de elasticiteit van een rubberen onderdeel (y) gemeten als functie van de test-tijd (x) in minuten. De waarnemingen zijn x y Beschouw een enkelvoudig regressiemodel: Y = β 0 + β 1 x 1 + ε, waarbij x 1 = x 4 en met de gebruikelijke veronderstellingen voor ε. a) Geef de schatting voor β 1. b) Laat zien dat de determinatiecoëfficiënt gelijk is aan c) Indien de testtijd stochastisch zou zijn, kan men spreken van de correlatiecoëfficiënt tussen de testtijd en de elasticiteit. Geef de schatting voor die correlatiecoëfficiënt. 6

7 13. In het kader van een kostenbesparing wil een manager meer inzicht krijgen in het energieverbruik van een chemische fabriek. Hij past enkelvoudige regressie-analyse toe op het maandelijkse energieverbruik (power) met als onafhankelijke variabele de gemiddelde maandtemperatuur (in Fahrenheit). Het gebruikelijke model Y = β 0 + β 1 x + ε wordt geformuleerd met de gebruikelijke veronderstellingen. De waarnemingen zijn y i (power) x i (temperatuur) Hiervoor geldt 12 i=1 12 x i = 685, y i = 3345, i=1 12 i=1 12 x 2 i = 43245, x i y i = i=1 a) Bereken de kleinste kwadratenschatting voor β 1. Hieronder staat uitvoer van een statistisch pakket Regression Analysis - Linear model: Y = a + b*x Dependent variable: power Independent variable: temperature Standard T Parameter Estimate Error Statistic P-Value Intercept?? ?? Slope?? ???? Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model ???????? Residual?????? Total (Corr.) ?? b) Toets de hypothese β 1 = 0 tegen het alternatief β 1 0. Neem α =

8 14. Het onderhoud van zwembaden is kostbaar omdat men veel chloor moet toevoegen om bacteriën te bestrijden. Een hotelketen met buitenbaden wil de kosten reduceren door te onderzoeken hoe de chloorafname afhangt van een aantal factoren. Men gaat er van uit dat de snelheid waarmee de hoeveelheid chloor afneemt afhankelijk is van de temperatuur van het water (hoe hoger de temperatuur, hoe sneller de afname) en de PH-waarde, die een maat is voor de zuurgraad van het water. De PH-waarde varieert tussen 0 en 14, waarbij 0 erg zuur is en 14 erg basisch (alkalisch). Bij waarden rond de 7.5 wordt het minste chloor verbruikt. Men meet het percentage afname (Pct Afn) in 8 uur van het chloor bij verschillende waarden van temperatuur en zuurgraad. Er zijn 188 waarnemingen. Men doet stapsgewijze regressie met de TWEE variabelen Temperatuur en PH-waarde. Gegeven is de volgende output. MODEL 1 Dependent variable: Pct Afn Standard T Parameter Estimate Error Statistic P-Value CONSTANT Temperatuur ?? MODEL 2 Dependent variable: Pct Afn Standard T Parameter Estimate Error Statistic P-Value CONSTANT PH-waarde ?? a) Er geldt 188 T i = 14115, i 188 y i = , i 188 Ti 2 = , i 188 yi 2 = , i 188 y i T i = , waarin y i de i-de waarneming van het percentage afname is (Pct Afn) en T i de i-de waarneming van de temperatuur is (in graden Fahrenheit). Geef de schatting voor σ 2 in MODEL 1. b) Welke variabele (Temperatuur of Ph-waarde) wordt als eerste aan het model toegevoegd en waarom? i 8

9 Het model met beide variabelen heeft de volgende output. MODEL 3 Dependent variable: Pct Afn Standard T Parameter Estimate Error Statistic P-Value CONSTANT Temperatuur ?? PH-waarde ?? Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model?? Residual Total (Corr.) R-squared =?? percent c) De R 2 is een criterium voor de geschiktheid van het model. Wat is het nadeel van dit criterium? Er is een soortgelijk criterium dat dit nadeel niet kent. Welk criterium is dat? Geef de waarde van dat andere criterium. Omdat de waarde van R 2 erg klein is probeert men het model te verbeteren door het kruisproduct van Temperatuur en PH-waarde toe te voegen. Dit levert de volgende output MODEL 4 Dependent variable: Pct Afn Source Sum of Squares Df Mean Square F-Ratio P-Value Model Residual Total (Corr.) R-squared =?? percent d) De restkwadratensom is afgenomen. Kan men tevreden zijn met deze uitbreiding van het model? Beantwoord deze vraag met behulp van een geschikte toets. 9

10 Men bedenkt dat het weertype mogelijk van belang is. Gelukkig heeft men bij de metingen genoteerd wat het weer was. Daarbij zijn drie categorieën onderscheiden: zonnig, bewolkt en gedeeltelijk bewolkt. Men neemt het Weertype mee in het model door twee indicator-variabelen in te voeren. De variabele Dummy bewolkt heeft de waarde 1 als het bewolkt is en anders niet. De variabele Dummy zonnig heeft de waarde 1 als het zonnig is an anders niet. De output van het model dat men nu beschouwt is MODEL 5 Dependent variable: Pct Afn Standard T Parameter Estimate Error Statistic P-Value CONSTANT Temperatuur PH-waarde Dummy bewolkt Dummy zonnig Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model Residual Total (Corr.) R-squared = percent e) Geef het 95%-betrouwbaarheidsinterval voor de coëfficiënt van de Temperatuur in Model 5. f) Toets of het Weertype van belang is in Model 5. g) Men voegt aan Model 5 alle mogelijke kruisproducten van twee factoren toe (maar niet de kwadratische termen). Hoeveel vrijheidsgraden heeft dan de restkwadratensom in dat model? 10

11 Toevoegen van die kruisproducten levert geen echte verbetering op. Men analyseert Model 5 door plaatjes te tekenen. De volgende plaatjes worden gevonden. 11

12 h) Gezien bovenstaande plaatjes en ook gezien de vraagstelling is het wenselijk een term in het model toe te voegen. Welke term is dat? Geef twee argumenten waarom u die term wilt toevoegen. 12

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

Opgave 1: (zowel 2DM40 als 2S390)

Opgave 1: (zowel 2DM40 als 2S390) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) op dinsdag 3-03-00, 9- uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4) woensdag 8 oktober 9, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven Statistisch

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) Avondopleiding. donderdag 6-6-3, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op woensdag 12 november 2008 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op woensdag 12 november 2008 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op woensdag 2 november 28 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Faculteit der Wiskunde en Informatica

Faculteit der Wiskunde en Informatica Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4), op woensdag 7 januari 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4 en 2S39) op maandag 2--27, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

College 2 Enkelvoudige Lineaire Regressie

College 2 Enkelvoudige Lineaire Regressie College Enkelvoudige Lineaire Regressie - Leary: Hoofdstuk 7 tot p. 170 (Advanced Correlational Strategies) - MM&C: Hoofdstuk 10 (Inference for Regression) - Aanvullende tekst 3 Jolien Pas ECO 011-01 Correlatie:

Nadere informatie

Tentamenbundel Statistiek voor T (2S070)

Tentamenbundel Statistiek voor T (2S070) Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamenbundel Statistiek voor T (2S070) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Examen Statistiek voor T

Nadere informatie

Wiskunde B - Tentamen 1

Wiskunde B - Tentamen 1 Wiskunde B - Tentamen Tentamen 57 Wiskunde B voor CiT vrijdag januari 5 van 9. tot. uur Dit tentamen bestaat uit 6 opgaven, formulebladen en tabellen. Vermeld ook uw studentnummer op uw werk en tentamenbriefje.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 17-11-2003 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een zakrekenmachine.

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

STATISTIEK 2 VERSIE A MAT15403 1308-1. Tentamen Statistiek 2 (MAT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur

STATISTIEK 2 VERSIE A MAT15403 1308-1. Tentamen Statistiek 2 (MAT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur STTISTIEK 2 VERSIE MT15403 1308-1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 2 (MT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur EZE PGIN NIET vóór 11.00 uur OMSLN! STRT MET INVULLEN

Nadere informatie

Residual Plot for Strength. predicted Strength

Residual Plot for Strength. predicted Strength Uitwerking tentamen DS mei 4 Opgave Een uitwerking geven is hier niet mogelijk. Het is van belang het iteratieve optimaliseringsproces goed uit te voeren (zie ook de PowerPoint sheets): screening design

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 23-11-2005 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een (eventueel grafisch)

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek I voor B (2S410) op woensdag 26 juni 2013, 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek I voor B (2S410) op woensdag 26 juni 2013, 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek I voor B (2S410) op woensdag 26 juni 2013, 9-12 uur. Bij het tentamen mag gebruik worden gemaakt van een (eventueel

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek II voor TeMa (2S195) op maandag ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek II voor TeMa (2S195) op maandag , TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek II voor TeMa (2S195) op maandag 8-5-26, 9.-12. uur Bij het tentamen mag gebruik worden gemaakt van een (grafisch)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag , TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op maandag 08-03-2004, 9.00-2.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Vertaling van enkele termen uit de kansrekening en statistiek alternative hypothesis alternatieve hypothese approximate methods benaderende methoden asymptotic variance asymptotische variantie asymptotically

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

Inleiding Applicatie Software - Statgraphics

Inleiding Applicatie Software - Statgraphics Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 30 januari 2009 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 2 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN Interim Toegepaste Biostatistiek deel december 2009 Versie A ANTWOORDEN C 2 B C A 5 C 6 B 7 B 8 B 9 D 0 D C 2 A B A 5 C Lever zowel het antwoordformulier als de interim toets in Versie A 2. Dit tentamen

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Classification - Prediction

Classification - Prediction Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training

Nadere informatie

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)?

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)? Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs Vraag 2. In een

Nadere informatie

1 vorig = omzet voorgaande jaar. Forward (Criterion: Probability-of-F-to-enter <=,050) 2 bezoek = aantal bezoeken vertegenwoordiger

1 vorig = omzet voorgaande jaar. Forward (Criterion: Probability-of-F-to-enter <=,050) 2 bezoek = aantal bezoeken vertegenwoordiger De groothandel Onderwerp: regressieanalyse met SPSS Bij: hoofdstuk 10 Een groothandel heeft onderzoek gedaan onder de klanten en daarbij geprobeerd met regressieanalyse vast te stellen wat de bepalende

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995 Schriftelijk examen statistiek, data-analyse en informatica Maandag 29 mei 1995 Tweede jaar kandidaat arts + Tweede jaar kandidaat in de biomedische wetenschappen Naam: Voornaam: Vraa Kengetal g Blad 1

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) dinsdag 2-08-2003, 4.00-7.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 Bjorn Winkens Methodologie en Statistiek Universiteit Maastricht 21 maart

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 29 juni uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 29 juni uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 29 juni 2011 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het

Nadere informatie

DEZE PAGINA NIET vóór 8.30u OMSLAAN!

DEZE PAGINA NIET vóór 8.30u OMSLAAN! STTISTIEK 1 VERSIE MT15303 1308 1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 5 augustus 2013, 8.30-10.30 uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER,

Nadere informatie

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Faculteit der Wiskunde en Informatica 2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Opgave 1: (5 x 6 = 30 punten) (Bij deze opgave is gebruik van resultaten uit bijlage 1 noodzakelijk)

Nadere informatie

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling Kwantitatieve Data Analyse (KDA) Onderzoekspracticum Sessie 2 11 Aanpassingen takenboek! Check studienet om eventuele verbeteringen te downloaden! Huidige versie takenboek: 09 Gjalt-Jorn Peters gjp@ou.nl

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Studentnaam: Studentnummer: Voorblad bij tentamen (in te vullen door de examinator) Vaknaam:Biostatistiek en Lineaire Algebra Vakcode: 2DM81 Datum: Begintijd:13.30 Eindtijd: 16.30 Aantal pagina s:2 voor

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN 4.1 PARAMETERTOESTEN 1 A. Toetsen van het gemiddelde Beschouw een steekproef X 1, X,, X n van n onafhankelijke N(µ, σ) verdeelde kansveranderlijken Men

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

laboratory for industrial mathematics eindhoven Endinet Regressie-analyse Energiekamer

laboratory for industrial mathematics eindhoven Endinet Regressie-analyse Energiekamer Endinet Regressie-analyse Energiekamer Laboratory for Industrial Mathematics Eindhoven Postbus 513 5600 MB Eindhoven tel.: 040 247 4875 fax: 040 244 2489 e-mail: lime@tue.nl WWW: http://www.lime.tue.nl

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit College 7 Regressie-analyse en Variantie verklaren Inleiding M&T 2012 2013 Hemmo Smit Neem mee naar tentamen Geslepen potlood + gum Collegekaart (alternatief: rijbewijs, ID-kaart, paspoort) (Grafische)

Nadere informatie

4 Meervoudige lineaire regressie

4 Meervoudige lineaire regressie 4 Meervoudige lineaire regressie In het vorige hoofdstuk is enkelvoudige lineaire regressie besproken. Hierbij was er slechts één onafhankelijke variabele. In de praktijk zijn er echter gevallen waarin

Nadere informatie

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter

Nadere informatie

Bijlage 3: Multiple regressie analyse

Bijlage 3: Multiple regressie analyse Bijlage 3: Multiple regressie analyse REGRESSION /DESCRIPTIVES MEAN STDDEV CORR SIG N /MISSING PAIRWISE /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT

Nadere informatie

Kruis per vraag slechts één vakje aan op het antwoordformulier.

Kruis per vraag slechts één vakje aan op het antwoordformulier. Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor

Nadere informatie

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet? Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

STATISTIEK 2 VERSIE A MAT Tentamen Statistiek 2 (MAT-15403) Donderdag 13 maart 2014, uur

STATISTIEK 2 VERSIE A MAT Tentamen Statistiek 2 (MAT-15403) Donderdag 13 maart 2014, uur STTISTIEK 2 VERSIE MT15403 1403-1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 2 (MT-15403) onderdag 13 maart 2014, 8.30-10.30 uur EZE PGIN NIET vóór 8.30 uur OMSLN! STRT MET INVULLEN VN

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het gebruik

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Enkelvoudige lineaire regressie

Enkelvoudige lineaire regressie Enkelvoudige lineaire regressie Inleiding Dit hoofdstuk sluit aan op hoofdstuk I-9 van het statistiekboek. Er wordt hier steeds gesproken over het verband tussen één afhankelijke variabele Y en één onafhankelijke

Nadere informatie

Meervoudige lineaire regressie

Meervoudige lineaire regressie Meervoudige lineaire regressie Inleiding In dit hoofdstuk dat aansluit op hoofdstuk II- (deel 2) wordt uitgelegd hoe een meervoudige regressieanalyse uitgevoerd kan worden met behulp van SPSS. Aan de hand

Nadere informatie

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking Opdracht 9a ----------- t-procedures voor een enkelvoudige steekproef Voor de meting van de leesvaardigheid van kinderen wordt als toets de Degree of Reading Power (DRP) gebruikt. In een onderzoek onder

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april 2009 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch

Nadere informatie

Introductie tot de statistiek

Introductie tot de statistiek Introductie tot de statistiek Hogeschool Gent 04/05/2010 Inhoudsopgave 1 Basisbegrippen en beschrijvende statistiek 8 1.1 Onderzoek............................ 8 1.1.1 Data........................... 8

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie