Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen."

Transcriptie

1 Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen. 2. Laat bij het uitvoeren van berekeningen zien hoe u aan een antwoord gekomen bent. Als u alleen een antwoord opschrijft en dat is fout, rest ons niets anders dan het geheel fout te rekenen. Opgave 1 Korte vragen (25 punten) Geef korte, ter zake doende antwoorden op de volgende vragen: a) Wat verstaan we onder de curse of dimensionality als het gaat om het schatten van een kansdichtheid (density estimation)? b) Wanneer we een lineair regressiemodel met de kleinste kwadraten methode schatten op basis van een steekproef van n waarnemingen, dan geldt n i=1 e i = 0. Is het ook waar dat n i=1 ε i = 0? Leg uit. c) Iemand beweert: De kleinste-kwadraten methode voor lineaire regressie is alleen correct wanneer Y normaal verdeeld is. Wat is uw antwoord hierop? d) Zoals bekend lineariseert de logit transformatie ( ) π π = ln 1 π de logistische responsfunctie. Waarom kunnen we deze transformatie dan niet gewoon op de individuele waarnemingen Y i toepassen, en daarna een lineaire responsfunctie schatten? 1

2 e) Een student beweert: Het toevoegen van verklarende variabelen aan een regressiemodel kan nooit leiden tot een afname van R 2, dus we moeten gewoon alle beschikbare verklarende variabelen in het model opnemen. Wat is uw reactie hierop? Opgave 2 Lineaire Regressie (30 punten) Uitgebreide studies hebben aangetoond dat de prestaties van werknemers afhangen van de temperatuur in de werkomgeving volgens het model Y = 230 2x + ε Hierin geeft de variabele x de temperatuur in graden Celcius en Y de prestaties van een werknemer (in een bepaalde eenheid); de relatie geldt voor 20 x 35. Een ondernemer vermoedt dat in zijn bedrijf de temperatuur een nog sterkere negatieve invloed heeft op de pretaties. Hij besluit enige waarnemingen te doen, met de volgende resultaten: i x i y i Op basis van deze waarnemingen schatten we het model Y = β 0 + β 1 x + ε Neem aan dat de gebruikelijke veronderstellingen van het lineaire regressiemodel van toepassing zijn. a) Bereken de kleinste-kwadraten schattingen van β 0 en β 1. b) Welk percentage van de variatie in prestatie wordt door de variatie in temperatuur verklaard? c) Ga met behulp van een toets na of het vermoeden van de ondernemer juist kan worden bevonden. Neem hierbij α = Geef de nulhypothese, de alternatieve hypothese, de beslissingsregel en de conclusie. d) Om de resultaten op een congres in de Verenigde Staten te kunnen presenteren moet de temperatuur in graden Fahrenheit worden uitgedrukt. Geef de regressievergelijking die u op het congres gaat presenteren (Omrekening van graden Celsius naar graden Fahrenheit gebeurt door het aantal graden Celsius met 9/5 te vermenigvuldigen en bij het zo ontstane getal nog 32 op te tellen). 2

3 Opgave 3 Logistische Regressie (15 punten) Onderstaande tabel geeft de testresultaten van het afvuren van 25 luchtdoelraketten op doelen met uiteenlopende snelheid. Het resultaat van iedere test is ofwel een treffer (y = 1) of een misser (y = 0). De verklarende variabele x geeft de snelheid van het doel gemeten in knopen. Snelheid doel Snelheid doel Test (x) in knopen y Test (x) in knopen y We schatten het model E(y) = P (y = 1) = exp(β 0 + β 1 x) 1 + exp(β 0 + β 1 x) met behulp van maximum likelihood. Dit levert onder andere de volgende resultaten op Coefficients: Value Std. Error (Intercept) doel.snelheid Model Deviance: on 23 degrees of freedom a) We berekenen dat exp(50 ˆβ 1 ) = exp( 0.89) Hoe dienen we dit getal te interpreteren? b) Ga door middel van een toets na of een toename van de snelheid van het doelobject een negatieve invloed heeft op de trefkans bij α = (Neem aan dat de steekproefomvang zodanig is, dat de asymptotische verdeling van de maximum likelihood schatters van toepassing is). Geef de nulhypothese, de alternatieve hypothese, de beslissingsregel en de conclusie. 3

4 Iemand beweert dat voor een goede voorspelling van de trefkans er ook een kwadratische term in x in het model moet worden opgenomen. We schatten daarom tevens het alternatieve model E(y) = P (y = 1) = exp(β 0 + β 1 x + β 2 x 2 ) 1 + exp(β 0 + β 1 x + β 2 x 2 ) met behulp van maximum likelihood. Dit levert de volgende resultaten op Coefficients: Value Std. Error (Intercept) e doel.snelheid e doel.snelheid e Model Deviance: on 22 degrees of freedom Hierbij bevat de rij doel.snelheid.2 de resultaten voor de kwadratische term. c) Bereken de AIC score van het lineaire en het kwadratische model en geef aan welke van de twee op basis van die score de voorkeur geniet. Opgave 4 Discriminantanalyse (30 punten) Gegeven is de trainingsverzameling 2 5 X 1 = 0 3 X 2 = X 3 = waarbij X 1 drie waarnemingen van x = [x 1 x 2 ] T voor groep 1 bevat, X 2 drie waarnemingen van x voor groep 2, en X 3 drie waarnemingen van x voor groep 3. Bijvoorbeeld: de eerste waarneming van groep 1 heeft de waarden x 1 = 2 en x 2 = 5. De groepsgemiddelden zijn derhalve [ ] 1 x 1 = 3 De gepoolde covariantiematrix is [ S = [ ] 1 x 2 = 4 1 1/3 1/3 4 [ x 3 = Neem verder aan dat de priorkansen van de drie groepen gelijk zijn, dat wil zeggen: π 1 = π 2 = π 3. ] 0 2 ] 4

5 a) Schat de lineaire discriminantfuncties f 1 (x), f 2 (x) en f 3 (x) voor de drie groepen. b) Classificeer de nieuwe waarneming x 0 = [ 2 1] T op basis van het resultaat onder a. c) Bereken S 1 (de zuivere schatter van de covariantiematrix van groep 1) en S 2 op basis van de waarnemingen in de trainingsverzameling. Lijkt op basis van de waarden van S 1 en S 2 aan de veronderstellingen van lineaire discriminantanalyse te zijn voldaan? Leg uit. EINDE 5

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

College 2 Enkelvoudige Lineaire Regressie

College 2 Enkelvoudige Lineaire Regressie College Enkelvoudige Lineaire Regressie - Leary: Hoofdstuk 7 tot p. 170 (Advanced Correlational Strategies) - MM&C: Hoofdstuk 10 (Inference for Regression) - Aanvullende tekst 3 Jolien Pas ECO 011-01 Correlatie:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) op dinsdag 3-03-00, 9- uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Tentamen Biostatistiek 3 / Biomedische wiskunde

Tentamen Biostatistiek 3 / Biomedische wiskunde Tentamen Biostatistiek 3 / Biomedische wiskunde 25 maart 2014; 12:00-14:00 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau. Het

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 12 : Regressie en correlatie Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Regressie en correlatie p 1/26 Regressielijn Vraag : vind het

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen.

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. 1. (a) In de appendix van deze vraag, is een dataset gegeven met de corresponderende

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte

b) Het spreidingsdiagram ziet er als volgt uit (de getrokken lijn is de later uit te rekenen lineaire regressie-lijn): hoogte Classroom Exercises GEO2-4208 Opgave 7.1 a) Regressie-analyse dicteert hier geen stricte regels voor. Wanneer we echter naar causaliteit kijken (wat wordt door wat bepaald), dan is het duidelijk dat hoogte

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B 1. (a) Bereken het gemiddelde salaris van de werknemers in de tabel hiernaast. (b) Bereken ook het mediale salaris. (c) Hoe groot is het modale salaris hier? salaris in euro s aantal werknemers 15000 1

Nadere informatie

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R Tentamenset A. Gegeven de volgende verzamelingen A en B. A is de verzameling van alle gehele getallen tussen de 0 en 0 die deelbaar zijn door, en B is de verzameling gehele positieve getallen deelbaar

Nadere informatie

DEZE PAGINA NIET vóór 8.30u OMSLAAN!

DEZE PAGINA NIET vóór 8.30u OMSLAAN! STTISTIEK 1 VERSIE MT15303 1308 1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 5 augustus 2013, 8.30-10.30 uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER,

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 30 januari 2009 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 2 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek cursus 23 mei 2012 werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen onderzoek streeft naar inzicht in relatie tussen variabelen bv. tussen onafhankelijke

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur Tentamen Kansrekening en statistiek wi205in 25 juni 2007, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur Kansrekening en statistiek wi2105in deel 2 27 januari 2010, 14.00 16.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na

Nadere informatie

Je kunt al: -de centrummaten en spreidingsmaten gebruiken -een spreidingsdiagram gebruiken als grafische weergave van twee variabelen

Je kunt al: -de centrummaten en spreidingsmaten gebruiken -een spreidingsdiagram gebruiken als grafische weergave van twee variabelen Lesbrief: Correlatie en Regressie Leerlingmateriaal Je leert nu: -een correlatiecoëfficient gebruiken als maat voor het statistische verband tussen beide variabelen -een regressielijn te tekenen die een

Nadere informatie

Toegepaste Statistiek, Week 6 1

Toegepaste Statistiek, Week 6 1 Toegepaste Statistiek, Week 6 1 Eén ordinale en één nominale variabele Nominale variabele met TWEE categorieën, 1 en 2 Ordinale variabele normaal verdeeld binnen iedere categorie? Variantie in beide categorieën

Nadere informatie

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008 Examen Statistische Modellen en Data-analyse Derde Bachelor Wiskunde 14 januari 2008 Vraag 1 1. Stel dat ɛ N 3 (0, σ 2 I 3 ) en dat Y 0 N(0, σ 2 0) onafhankelijk is van ɛ = (ɛ 1, ɛ 2, ɛ 3 ). Definieer

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

beoordelingskader zorgvraagzwaarte

beoordelingskader zorgvraagzwaarte 1 beoordelingskader zorgvraagzwaarte In dit document geven we een beoordelingskader voor de beoordeling van de zorgvraagzwaarte-indicator. Dit beoordelingskader is gebaseerd op de resultaten van de besprekingen

Nadere informatie

Wat gaan we doen? Help! Statistiek! Wat is een lineaire relatie? De rechte-lijn-vergelijking: Y = a + b X. Relatie tussen gewicht en lengte

Wat gaan we doen? Help! Statistiek! Wat is een lineaire relatie? De rechte-lijn-vergelijking: Y = a + b X. Relatie tussen gewicht en lengte Help! Statistiek! Wat gaan we doen? Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Derde woensdag in de maand,

Nadere informatie

Hoofdstuk 19. Voorspellende analyse bij marktonderzoek

Hoofdstuk 19. Voorspellende analyse bij marktonderzoek Hoofdstuk 19 Voorspellende analyse bij marktonderzoek Voorspellen begrijpen Voorspelling: een uitspraak over wat er naar verwachting in de toekomst zal gebeuren op basis van ervaringen uit het verleden

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april 2009 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het

Nadere informatie

Herkansing eindtoets statistiek voor HBO

Herkansing eindtoets statistiek voor HBO Herkansing 1A 1 Herkansing eindtoets statistiek voor HBO Schrijf de antwoorden op de vragen alleen op deze pagina s. Antwoorden geschreven op andere vellen papier worden niet meegenomen in de beoordeling.

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 13-14

Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 13-14 Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 1314 Bijlage Figuren en formules voor de stof van Professionele Ontwikkeling en Wetenschap, 1314 Figuren en formules

Nadere informatie

Inleiding tot de natuurkunde

Inleiding tot de natuurkunde OBC Inleiding tot de Natuurkunde 01-09-2009 W.Tomassen Pagina 1 Inhoud Hoofdstuk 1 Rekenen.... 3 Hoofdstuk 2 Grootheden... 5 Hoofdstuk 3 Eenheden.... 7 Hoofdstuk 4 Evenredig.... 10 Inleiding... 10 Uitleg...

Nadere informatie

Wiskunde Basis Onderbouw

Wiskunde Basis Onderbouw Onderwijs & Ontwikkeling Wiskunde Basis Onderbouw Voorbeeldexamen en zelftoets Dit voorbeeldexamen is bedoeld voor mensen die het toelatingsexamen Wiskunde Basis Onderbouw moeten halen om aan een opleiding

Nadere informatie

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt A. Effect & het onderscheidingsvermogen Effectgrootte (ES) De effectgrootte (effect size) vertelt ons iets over hoe relevant de relatie tussen twee variabelen is in de praktijk. Er zijn twee soorten effectgrootten:

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

laboratory for industrial mathematics eindhoven Endinet Regressie-analyse Energiekamer

laboratory for industrial mathematics eindhoven Endinet Regressie-analyse Energiekamer Endinet Regressie-analyse Energiekamer Laboratory for Industrial Mathematics Eindhoven Postbus 513 5600 MB Eindhoven tel.: 040 247 4875 fax: 040 244 2489 e-mail: lime@tue.nl WWW: http://www.lime.tue.nl

Nadere informatie

Examen HAVO. wiskunde A1,2. tijdvak 1 woensdag 28 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A1,2. tijdvak 1 woensdag 28 mei uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2008 tijdvak 1 woensdag 28 mei 13.30-16.30 uur wiskunde A1,2 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor

Nadere informatie

Classification - Prediction

Classification - Prediction Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

Dit jaar gaan we MULTIVARIAAT TOETSEN. Bijvoorbeeld: We willen zien of de scores op taal en rekenen van kinderen afwijken in de populatie.

Dit jaar gaan we MULTIVARIAAT TOETSEN. Bijvoorbeeld: We willen zien of de scores op taal en rekenen van kinderen afwijken in de populatie. Toetsen van hypothesen Bijvoorbeeld: nagaan of het gemiddeld IQ bij een bepaalde steekproef groter/kleiner is als in de populatie. µ = 100 Normaalverdeling, waarbij we de score van de steekproef gaan vergelijken

Nadere informatie

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen

Nadere informatie

Opgaven hoofdstuk 15 Tijdreeksen: Beschrijvende analyses, modellen en voorspellingen

Opgaven hoofdstuk 15 Tijdreeksen: Beschrijvende analyses, modellen en voorspellingen Opgaven hoofdstuk 15 Tijdreeksen: Beschrijvende analyses, modellen en voorspellingen 15.1 Leg met woorden uit wat het verschil is tussen een Laspeyres index en een Paasche index. 15.2 Het Bruto Binnenlands

Nadere informatie

5.5 Gemengde opgaven. Gemengde opgaven 159

5.5 Gemengde opgaven. Gemengde opgaven 159 Gemengde opgaven 159 5.5 Gemengde opgaven Opgave 40 a) Teken de lijn l waarvan alle punten dezelfde x- en -coördinaat hebben. Geefdeformulevan l. b) Tekendelijnkloodrechtopl endooro. Geefdeformule van

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel januari 2014 van 14:50 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel januari 2014 van 14:50 17:00 uur TECHISCHE UIVERSITEIT EIDHOVE Eindtoets Experimentele Fysica 1 (3A1X1) - Deel januari 014 van 14:50 17:00 uur Gebruik van dictaat, aantekeningen en laptop computer is niet toegestaan Gebruik van (grafische)

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 5 februari 2010

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 5 februari 2010 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 5 februari - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 9 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

Statistiek: Centrummaten 12/6/2013. dr. Brenda Casteleyn

Statistiek: Centrummaten 12/6/2013. dr. Brenda Casteleyn Statistiek: Centrummaten 12/6/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie 1) Nominaal niveau: Gebruik de Modus, dit is de meest frequente waarneming 2) Ordinaal niveau:

Nadere informatie

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch

Nadere informatie

Toegepaste data-analyse: oefensessie 2

Toegepaste data-analyse: oefensessie 2 Toegepaste data-analyse: oefensessie 2 Depressie 1. Beschrijf de clustering van de dataset en geef aan op welk niveau de verschillende variabelen behoren Je moet weten hoe de data geclusterd zijn om uit

Nadere informatie

Lesbrief hypothesetoetsen

Lesbrief hypothesetoetsen Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies

Nadere informatie

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit College 7 Regressie-analyse en Variantie verklaren Inleiding M&T 2012 2013 Hemmo Smit Neem mee naar tentamen Geslepen potlood + gum Collegekaart (alternatief: rijbewijs, ID-kaart, paspoort) (Grafische)

Nadere informatie

Wiskunde B - Tentamen 1

Wiskunde B - Tentamen 1 Wiskunde B - Tentamen Tentamen 57 Wiskunde B voor CiT vrijdag januari 5 van 9. tot. uur Dit tentamen bestaat uit 6 opgaven, formulebladen en tabellen. Vermeld ook uw studentnummer op uw werk en tentamenbriefje.

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

1. De afstand van onweer in kilometer bereken je door de tijd tussen bliksemflits en donder te delen door 3.

1. De afstand van onweer in kilometer bereken je door de tijd tussen bliksemflits en donder te delen door 3. Uitwerkingen practicum ontluikende algebra Vuistregels Geef de vuistregels weer met wiskundige symbolen.. De afstand van onweer in kilometer bereken je door de tijd tussen bliksemflits en donder te delen

Nadere informatie

Aanwijzingen bij vraagstukken distributies

Aanwijzingen bij vraagstukken distributies Aanwijzingen bij vraagstukken distributies Vraagstuk 9.7 Voor het eerste deel, test x x + iε 1 met een testfunctie. Voor het laatste deel: vind eerst bijzondere oplosssingen door de gesuggereerde procedure

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 1 November 1 / 26 2 Statistiek Vandaag: Power Grootte steekproef Filosofie 2 / 26 Power 3 / 26 Power Def. De power (kracht) van een hypothese toets is (1 β),

Nadere informatie

Sheets K&S voor INF HC 10: Hoofdstuk 12

Sheets K&S voor INF HC 10: Hoofdstuk 12 Sheets K&S voor INF HC 1: Hoofdstuk 12 Statistiek Deel 1: Schatten (hfdst. 1) Deel 2: Betrouwbaarheidsintervallen (11) Deel 3: Toetsen van hypothesen (12) Betrouwbaarheidsintervallen (H11) en toetsen (H12)

Nadere informatie

Reconstructie Bedrijfsstatistiek 2016

Reconstructie Bedrijfsstatistiek 2016 Reconstructie Bedrijfsstatistiek 2016 Open vragen Vraag 1 1. Bewijs dat σ^² een onvertekende schatter is voor σ²=σi 1/n * Xi² 2. Bereken de variantie van o^² 3. Is de schatter consistent? 4. Teken chi-kwadraat

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het

Nadere informatie

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A.

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A. Grootheden en eenheden Kwalitatieve en kwantitatieve waarnemingen Een kwalitatieve waarneming is wanneer je meet zonder bijvoorbeeld een meetlat. Je ziet dat een paard hoger is dan een muis. Een kwantitatieve

Nadere informatie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Inleveren: uiterlijk maandag 6 februari 16.00 bij Marianne Jonker (Kamer: R3.46) Afspraken De opdrachten maak je in tweetallen. Schrijf duidelijk

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse 10.1 Eenwegs-variantieanalyse: Als we gegevens hebben verzameld van verschillende groepen en we willen nagaan of de populatiegemiddelden van elkaar verscihllen,

Nadere informatie

1. Inleiding. 2. De analyses. 2.1 Afspraken over kinderopvang versus m/v-verdeling

1. Inleiding. 2. De analyses. 2.1 Afspraken over kinderopvang versus m/v-verdeling Bijlage II Aanvullende analyses 1 Inleiding In aanvulling op de kwantitatieve informatie over de diverse arbeid-en-zorg thema s, is een aantal analyses verricht Aan deze analyses lagen de volgende onderzoeksvragen

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 18 t-toetsen 2 / 18 Steekproefgemiddelde en -variantie van normale observaties Stelling. Laat X 1,..., X n o.o. zijn en N(µ, σ 2 )-verdeeld. Dan:

Nadere informatie

Examen HAVO. wiskunde B1

Examen HAVO. wiskunde B1 wiskunde B Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak Donderdag 3 juni 3.30 6.30 uur 20 04 Voor dit examen zijn maximaal 8 punten te behalen; het examen bestaat uit 2 vragen. Voor elk vraagnummer

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

E Y = ln(β 1 x) ln β 1 + β 2

E Y = ln(β 1 x) ln β 1 + β 2 Tentamen Statistische Methoden MST STM 1 april 2009, 9.00 12.00 uur Toelichting. Een antwoord alleen is niet voldoende: er dient een motivatie, toelichting of berekening aanwezig te zijn. Gebruik, tenzij

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

Hoe goed is een test?

Hoe goed is een test? Hoe goed is een test? 1.0 het ideale plaatje Als we een test uitvoeren om te ontdekken of iemand ziek is hebben we het liefst een test waarbij de gezonde en de zieke groepen duidelijk gescheiden zijn.

Nadere informatie

Extra Opgaven. 3. Van 10 personen meten we 100 keer de hartslag na het sporten. De gemiddelde hartslag van

Extra Opgaven. 3. Van 10 personen meten we 100 keer de hartslag na het sporten. De gemiddelde hartslag van Extra Opgaven 1. Een persoon doet een HIV-test. Helaas is de uitslag positief. De test is echter niet perfect. De persoon vraagt zich af wat de kans is dat hij nu ook echt HIV heeft. Gegeven is: de kans

Nadere informatie