6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

Maat: px
Weergave met pagina beginnen:

Download "6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling."

Transcriptie

1 Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen onafhankelijk zijn, de verschillende steekproeven van twee waarnemingen en de bijbehorende kansen door de tabel worden gegeven. a. Bepaal de steekproefverdeling van het steekproefgemiddelde. b. Maak een kanshistogram voor de steekproefverdeling van. c. Wat is de kans dat gelijk is aan of groter is dan 4,5? d. Zou je verwachten een waarde voor waar te nemen die gelijk is aan of groter is dan 4,5? Licht je antwoord toe. 6.2 Beschouw een populatie die waarden van x bevat gelijk aan 00, 01, 02,..., 96, 97, 98, 99. Veronderstel dat deze waarden voor x allemaal dezelfde kans hebben voor te komen. Gebruik de computer om 500 steekproeven met elk n = 25 meetwaarden uit deze populatie te genereren. Bereken het steekproefgemiddelde en de steekproefvariantie s 2 voor elk van de 500 steekproeven. a. Construeer een relatieve-frequentiehistogram voor de 500 waarden van om de steekproefverdeling van te benaderen. b. Herhaal a, maar nu voor de 500 waarden van s Beschouw de kansverdeling die hieronder wordt gegeven. a. Bereken µ b. Bepaal de steekproefverdeling van het steekproefgemiddelde voor een aselecte steekproef van n = 3 waarnemingen uit deze verdeling.

2 c. Bepaal de steekproefverdeling van de mediaan van een steekproef van n = 3 waarnemingen uit deze populatie. d. Laat zien, uitgaande van b en c, dat het gemiddelde en de mediaan beide voor deze populatie een zuivere schatter van µ zijn. e. Bereken de varianties van de steekproefverdelingen van het steekproefgemiddelde en van de steekproefmediaan. f. Welke schatter zou je gebruiken om µ te schatten? Waarom? 6.4 Zie opgave 6.1. a. Laat zien dat een zuivere schatter van s 2 is. b. Bepaal de populatievariantie σ 2. c. Laat zien dat s 2 een zuivere schatter van σ 2 is. d. Bepaal de steekproefverdeling van de steekproefstandaarddeviatie s. e. Laat zien dat s een onzuivere schatter van σ is. 6.5 Een aselecte steekproef van n = 64 waarnemingen wordt genomen uit een populatie met een gemiddelde gelijk aan 20 en een standaarddeviatie gelijk aan 16. a. Geef het gemiddelde en de standaarddeviatie van de (herhaalde) steekproefverdeling van. b. Beschrijf de vorm van de steekproefverdeling van. Hangt je antwoord af van de steekproefomvang? c. Bereken de standaardnormale z-score die correspondeert met een waarde = 15,5. d. Bereken de standaardnormale z-score die correspondeert met een waarde = Beschouw een steekproefgrootheid A. Net als alle andere steekproefgrootheden wordt A berekend door een bepaalde functie (formule) van de meetwaarden in de steekproef te gebruiken. (Bijvoorbeeld als A het steekproefgemiddelde zou zijn, zou de bijbehorende formule zijn: sommeer de meetwaarden en deel door het aantal meetwaarden.) a. Geef een beschrijven van wat we bedoelen met de uitdrukking de steekproefverdeling van de steekproefgrootheid A.

3 b. Stel dat A wordt gebruikt om een populatieparameter α te schatten. Wat wordt bedoeld met de uitspraak dat A een zuivere schatter van α is? c. Beschouw een andere steekproefgrootheid, B. Stel dat B ook een zuivere schatter van de populatieparameter α is. Hoe kunnen we de steekproefverdelingen van A en B gebruiken om vast te stellen welke de beste schatter van α is? d. Als de omvang van de steekproeven waarop A en B zijn gebaseerd groot is, kunnen we dan de centrale limietstelling toepassen en vaststellen dat de steekproefverdelingen van A en B bij benadering normaal zijn? Waarom, of waarom niet? 6.7 Er wordt een aselecte steekproef met omvang n genomen uit een grote populatie met gemiddelde gelijk aan 100 en standaarddeviatie gelijk aan 10, en we berekenen het steekproefgemiddelde. Maak een grafiek van σ / n als functie van n voor n = 1, 5, 10, 20, 30, 40 en 50, om het effect te zien van een verschil in steekproefomvang op de standaarddeviatie van de steekproefverdeling van. II Applying the Concepts 6.8 Aan het einde van de twintigste eeuw was de kans voor werknemers om lange tijd bij dezelfde werkgever bleven veel kleiner dan voor hun ouders in vorige generatie (Georgia Trend, december 1999). Realiseren studenten van vandaag zich dat de werkplek die ze binnenkort zullen betreden sterk verschilt van die van hun ouders? Om deze vraag te helpen beantwoorden hebben onderzoekers van het Terry College of Business van de Universiteit van Georgia een steekproef genomen van 344 studenten handelswetenschappen en hebben hun de volgende vraag gesteld: wat is het maximum aantal jaar dat je bij één en dezelfde werknemer denkt te gaan werken? Deze steekproef gaf een gemiddelde van = 19,1 jaar en s = 6 jaar. Stel dat de steekproef van studenten aselect is gekozen uit de 5800 studenten van het Terry College. a. Beschrijf de steekproefverdeling van. b. Als het populatiegemiddelde 18,5 jaar is, wat is dan P( 19,1 jaar)? c. Als het populatiegemiddelde 19,5 jaar is, wat is dan P( 19,1 jaar)? d. Als P( 19,1 jaar) = 0,5, wat is dan het populatiegemiddelde? e. Als P( 19,1 jaar) = 0,2, is het populatiegemiddelde dan groter of kleiner dan 19,1 jaar? Licht je antwoord toe. 6.9 Een winkelier die wil weten wanneer hij een order moet plaatsen om de voorraad van een product die uitgeput raakt aan te vullen, moet rekening houden met de

4 doorlooptijden voor de producten. De doorlooptijd is de tijd die verloopt tussen het plaatsen van een order en het beschikken over het product zodat aan de vraag van de klant kan worden voldaan. Dit omvat de tijd nodig voor het plaatsen van de order, het ontvangen van de zending van de leverancier, het controleren van de ontvangen artikelen en het opnemen ervan in de voorraad (Clauss, Applied Management Science and Spreadsheet modeling, 1966). De inkoopafdeling van een grote warenhuisketen is geïnteresseerd in de gemiddelde doorlooptijd µ voor een bepaalde leverancier van herenkleding, en neemt daarom een aselecte steekproef van 50 doorlooptijden voor deze leverancier en vindt daarvoor een waarde = 44 dagen. a. Beschrijf de vorm van de steekproefverdeling van. b. Als µ en σ in werkelijkheid 40 respectievelijk 12 zijn, hoe groot is dan de kans dat een tweede aselecte steekproef van 50 doorlooptijden een waarde voor zouden opleveren die groter is dan of gelijk is aan 44? c. Als je de waarden voor µ en σ uit b gebruikt, hoe groot is dan de kans dat een steekproef van 50 doorlooptijden een steekproefgemiddelde geeft dat binnen het interval µ ± 2σ / n ligt? 6.10 In Lee County, Georgia, was de verdeling van het weekloon voor werknemers in de bouw in 1997 scheef naar rechts verdeeld met een gemiddelde gelijk aan $473 (Georgia Department of Labor, Labor Market Information, 1999). Stel dat de standaarddeviatie van de verdeling gelijk was aan $25. Een econoom wil een aselecte steekproef van 40 werknemers in Lee County nemen en hun vragen over hun weekloon, hun leeftijd en de duur van hun betrekking. a. Beschrijf wat er bekend is over de verdeling van x, het weekloon van werknemers in de bouw. b. Beschrijf wat er bekend is over de verdeling van y, de leeftijd van de werknemers in de bouw. c. Beschrijf de verdelingen van en Ў. d. Bepaal P( > $465). e. Welke extra informatie is nog nodig om P( 30) te kunnen berekenen? 6.11 In Statistiek in de praktijk 6.1 wordt iemand beschreven die $1000 wil investeren in elk van n = 5 verschillende aandelen. Het maandelijks rendement van elk aandeel heeft een gemiddelde µ = 10% en een standaarddeviatie σ = 4%. Het maandelijks rendement voor de belegger van de portefeuille van vijf aandelen is ř = Σ r i /5.We hebben gezien dat de variantie van het maandelijks rendement voor de belegger gelijk is aan σ 2 r =σ 2 / n = 3,2 en dat dit getal een maat is voor het risico dat de belegger loopt.

5 a. Als deze persoon nu $1000 in slechts drie van de vijf aandelen belegt, neemt het risico voor de belegger dan toe of af? Licht je antwoord toe. b. Stel dat $1000 wordt belegd in elk van 10 aandelen met een rendementskarakteristiek die gelijk is aan die hierboven werd beschreven.bereken het risico dat de belegger loopt en vergelijk dit met het risico van de belegging in slechts vijf van deze aandelen Om vast te stellen of een draaibank waarmee machinelagers worden geproduceerd goed afgesteld is, wordt een random steekproef van 36 lagers genomen en wordt de diameter van elk lager gemeten. a. Als de standaarddeviatie van de diameters van de lagers over een lange periode gemeten gelijk is aan 0,001 inch, wat is dan bij benadering de kans dat de gemiddelde diameter van de steekproef van 36 lagers binnen 0,0001 inch van het populatiegemiddelde van de lagerdiameters ligt? b. Als de populatie van diameters zeer sterk scheef is verdeeld, wat voor invloed heeft dit dan op je benadering in a? c. De gemiddelde diameter van de lagers die door de machine worden geproduceerd, wordt geacht 0,5 inch te zijn. Het bedrijf besluit het steekproefgemiddelde te nemen om te beslissen of het proces onder controle is, dat wil zeggen of het lagers produceert met een gemiddelde diameter van 0,5 inch. De machine wordt geacht niet meer onder controle te zijn als het gemiddelde kleiner is dan 0,4994 inch of groter dan 0,5006 inch. Als de werkelijke gemiddelde diameter van de lagers die worden geproduceerd gelijk is aan 0,501 inch, hoe groot is dan bij benadering de kans dat de toets zal aangeven dat het proces niet meer onder controle is? 6.13 Een bottelaar van frisdrank koopt glazen flessen in van een verkoper. De flessen moeten een interne druksterkte van ten minste 150 pounds per square inch (psi) hebben. Een potentiële verkoper van flessen claimt dat zijn productieproces flessen produceert met een gemiddelde interne druksterkte van 157 psi en een standaarddeviatie van 3 psi. De bottelaar komt met de verkoper overeen dat de bottelaar een steekproef mag nemen van het productieproces van de verkoper, om de claim van de laatste te toetsen. De bottelaar kiest aselect 40 flessen uit de meest recent geproduceerde flessen, meet de interne druksterkte van elke fles, en vindt een gemiddelde waarde voor de druksterkte die 1,3 psi lager ligt dan het procesgemiddelde dat door de verkoper wordt geclaimd. a. Veronderstel dat de claim van de verkoper juist is; hoe groot is dan de kans dat je een steekproefgemiddelde vindt dat zoveel lager, of nog lager, ligt dan het procesgemiddelde? Wat suggereert je antwoord met betrekking tot de geldigheid van de claim van de verkoper? b. Als de processtandaarddeviatie 3 psi is, zoals door de verkoper wordt geclaimd, maar het gemiddelde zou 156 psi zijn, zou het waargenomen

6 resultaat van de steekproef dan meer of minder waarschijnlijk zijn dan in a? En als in plaats daarvan de standaarddeviatie 6 psi zou zijn?

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

a. α = 0,10 b. α = 0,01 c. α = 0,05 d. α = 0,20

a. α = 0,10 b. α = 0,01 c. α = 0,05 d. α = 0,20 Opgaven hoofdstuk 7 I Learning the Mechanics 7.1 Bepaal z α /2 voor elk van de volgende waarden van α a. α = 0,10 b. α = 0,01 c. α = 0,05 d. α = 0,20 7.2 Een aselecte steekproef van 70 waarnemingen uit

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE DEEL 3 INDUCTIEVE STATISTIEK INHOUD H 10: INLEIDING TOT DE INDUCTIEVE STATISTIEK H 11: PUNTSCHATTING 11.1 ALGEMEEN 11.1.1 Definities 11.1.2 Eigenschappen 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE 11.3

Nadere informatie

Klantonderzoek: statistiek!

Klantonderzoek: statistiek! Klantonderzoek: statistiek! Statistiek bij klantonderzoek Om de resultaten van klantonderzoek juist te interpreteren is het belangrijk de juiste analyses uit te voeren. Vaak worden de mogelijkheden van

Nadere informatie

DEZE PAGINA NIET vóór 8.30u OMSLAAN!

DEZE PAGINA NIET vóór 8.30u OMSLAAN! STTISTIEK 1 VERSIE MT15303 1308 1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 5 augustus 2013, 8.30-10.30 uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER,

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Kruis per vraag slechts één vakje aan op het antwoordformulier.

Kruis per vraag slechts één vakje aan op het antwoordformulier. Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor

Nadere informatie

Hoofdstuk 13. De omvang van een steekproef bepalen

Hoofdstuk 13. De omvang van een steekproef bepalen Hoofdstuk 13 De omvang van een steekproef bepalen Steekproefnauwkeurigheid Steekproefnauwkeurigheid: verwijst naar hoe dicht een steekproefgrootheid (bijvoorbeeld het gemiddelde van de antwoorden op een

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Schatting voor het aantal tanks: is statistiek beter dan de geheime dienst?

Schatting voor het aantal tanks: is statistiek beter dan de geheime dienst? Schatting voor het aantal tanks: is statistiek beter dan de geheime dienst? dr. H.P. Lopuhaä UHD Statistiek Opleiding Technische Wiskunde Faculteit Informatietechnologie & Systemen Technische Universiteit

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

7.2 Een aselecte steekproef van 90 waarnemingen had een gemiddelde van x = 25,9 en een standaardafwijking s = 2,7.

7.2 Een aselecte steekproef van 90 waarnemingen had een gemiddelde van x = 25,9 en een standaardafwijking s = 2,7. Opgaven hoofdstuk 7 I Basistechnieken 7.1 Bepaal z α/2 voor elk van de volgende waarden van α a. α = 0, 10 b. α = 0,01 c. α = 0,05 d. α = 0,20 7.2 Een aselecte steekproef van 90 waarnemingen had een gemiddelde

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1 Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2

Nadere informatie

a. Identificeer de uitkomsten in de gebeurtenissen A, B, A B, A B, en A c.

a. Identificeer de uitkomsten in de gebeurtenissen A, B, A B, A B, en A c. Opgaven hoofdstuk 3 I Learning the Mechanics 3.1 De uitkomstenruimte van een experiment bevat vijf uitkomsten met kansen zoals in de tabel staan gegeven. Bereken de kans op elk van de volgende gebeurtenissen:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) en Tentamen Inleiding Experimentele Fysica voor Combi s (3NA10) d.d. 31 oktober 2011 van 9:00 12:00 uur Vul de

Nadere informatie

a. Het aantal kranten dat elke maand door de New York Times wordt verkocht. c. Het werkelijk aantal gram wasmiddel in een halve-literfles wasmiddel.

a. Het aantal kranten dat elke maand door de New York Times wordt verkocht. c. Het werkelijk aantal gram wasmiddel in een halve-literfles wasmiddel. Opgaven hoofdstuk 4 I Learning the Mechanics 4.1 Geef aan welke van de volgende variabelen continue random variabelen zijn en welke discrete random variabelen zijn: a. Het aantal kranten dat elke maand

Nadere informatie

Statistiek basisbegrippen

Statistiek basisbegrippen MARKETING / 07B HBO Marketing / Marketing management Raymond Reinhardt 3R Business Development raymond.reinhardt@3r-bdc.com 3R 1 M Statistiek: wetenschap die gericht is op waarnemen, bestuderen en analyseren

Nadere informatie

Formules Excel Bedrijfsstatistiek

Formules Excel Bedrijfsstatistiek Formules Excel Bedrijfsstatistiek Hoofdstuk 2 Data en hun voorstelling AANTAL.ALS vb: AANTAL.ALS(A1 :B6,H1) Telt hoeveel keer (frequentie) de waarde die in H1 zit in A1:B6 voorkomt. Vooral bedoeld voor

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

In tabel 1 zie je de eenmaandsrendementen van het aandeel LUXA over 2005, steeds afgerond op twee decimalen.

In tabel 1 zie je de eenmaandsrendementen van het aandeel LUXA over 2005, steeds afgerond op twee decimalen. Beleggen in aandelen De waarde van aandelen kan sterk schommelen. Zo kan een aandeel op dit moment 23,30 euro waard zijn en over een maand gezakt zijn tot 21,10 euro, dat is een daling met ongeveer 9,44%.

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)?

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)? Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs Vraag 2. In een

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Kansrekenen en statistiek. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Kansrekenen en statistiek. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Kansrekenen en statistiek Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 2010-2011 Hoofdstuk 2 Beschrijvende statistiek Meerkeuzevraag 1 Opeenvolgende metingen

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

variantie: achtergronden en berekening

variantie: achtergronden en berekening variantie: achtergronden en berekening Hugo Quené opleiding Taalwetenschap Universiteit Utrecht 8 sept 1995 aangepast 8 mei 007 1 berekening variantie Als je de variantie met de hand moet uitrekenen, is

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

5.1 Stel x is een random variabele die het beste beschreven wordt door een uniforme kansverdeling met c = 20 en d = 45.

5.1 Stel x is een random variabele die het beste beschreven wordt door een uniforme kansverdeling met c = 20 en d = 45. Opgaven hoofdstuk 5 I Learning the Mechanics 5.1 Stel x is een random variabele die het beste beschreven wordt door een uniforme kansverdeling met c = 20 en d = 45. a. Bepaal f(x). b. Bepaal het gemiddelde

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek I voor B (2S410) op woensdag 26 juni 2013, 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek I voor B (2S410) op woensdag 26 juni 2013, 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek I voor B (2S410) op woensdag 26 juni 2013, 9-12 uur. Bij het tentamen mag gebruik worden gemaakt van een (eventueel

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 1 November 1 / 26 2 Statistiek Vandaag: Power Grootte steekproef Filosofie 2 / 26 Power 3 / 26 Power Def. De power (kracht) van een hypothese toets is (1 β),

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

8.3 Een aselecte steekproef van 100 waarnemingen uit een populatie met standaardafwijking 60 geeft een steekproefgemiddelde gelijk aan 110.

8.3 Een aselecte steekproef van 100 waarnemingen uit een populatie met standaardafwijking 60 geeft een steekproefgemiddelde gelijk aan 110. Opgaven hoofdstuk 8 I Basistechnieken 8.1 We verwerpen (in het algemeen) de nulhypothese als de toetsingsgrootheid in het kritieke gebied ligt, maar we accepteren de nulhypothese niet als de toetsingsgrootheid

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Opgaven hoofdstuk 14 Methoden voor kwaliteitsverbetering

Opgaven hoofdstuk 14 Methoden voor kwaliteitsverbetering Opgaven hoofdstuk 14 Methoden voor kwaliteitsverbetering 14.1 Waaraan moet de variatie van een proces voldoen voordat een x -regelkaart wordt gebruikt om de uitvoer van het proces te registreren? Waarom?

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie

Examen VWO. Wiskunde A1,2 (nieuwe stijl)

Examen VWO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A1,2 (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 31 mei 13.30 16.30 uur 20 01 Voor dit examen zijn maximaal 0 punten te behalen; het examen bestaat uit

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur.

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Deze opdracht bestaat uit vier onderdelen; in elk onderdeel wordt gevraagd een Matlabprogramma te schrijven. De vier bijbehore bestanden stuur

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Inhoud Inleiding Inleiding tot de statistiek Tabellen en figuren Het centrum en de spreiding

Inhoud Inleiding Inleiding tot de statistiek Tabellen en figuren Het centrum en de spreiding Inhoud Inleiding 9 1 Inleiding tot de statistiek 11 1.1 Beschrijvende en verklarende statistiek 11 1.2 Populatie en steekproef 14 1.3 Random number generator 17 1.4 Soorten steekproeven 19 1.5 Variabelen

Nadere informatie

Levende Statistiek. Een module voor Wiskunde D VWO. Jacob van Eeghen en Liesbeth de Wreede

Levende Statistiek. Een module voor Wiskunde D VWO. Jacob van Eeghen en Liesbeth de Wreede Levende Statistiek Een module voor Wiskunde D VWO Jacob van Eeghen en Liesbeth de Wreede Jacob van Eeghen en Liesbeth de Wreede, Leiden 2010 ctwo, Utrecht 2010 Dit lesmateriaal kan gebruikt worden voor

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

9.1 Het doel van deze opgave is het vergelijken van de variabiliteit van x 1 en x 2 met de variabiliteit van (x 1 - x 2).

9.1 Het doel van deze opgave is het vergelijken van de variabiliteit van x 1 en x 2 met de variabiliteit van (x 1 - x 2). Opgaven hoofdstuk 9 I Basistechnieken 9.1 Het doel van deze opgave is het vergelijken van de variabiliteit van x 1 en x 2 met de variabiliteit van (x 1 - x 2). a. Stel dat de eerste steekproef wordt genomen

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter

Nadere informatie

Paragraaf 10.1 : Populatie en Steekproef

Paragraaf 10.1 : Populatie en Steekproef Hoofdstuk 10 Statistische Variabelen (H5 Wis A) Pagina 1 van 8 Paragraaf 10.1 : Populatie en Steekproef Les 1 : Herhaling Definitie Betrouwbaarheidsinterval (BI) Betrouwbaarheidsinterval (BI) = { de waarden

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie

Herkansing eindtoets statistiek voor HBO

Herkansing eindtoets statistiek voor HBO Herkansing 1A 1 Herkansing eindtoets statistiek voor HBO Schrijf de antwoorden op de vragen alleen op deze pagina s. Antwoorden geschreven op andere vellen papier worden niet meegenomen in de beoordeling.

Nadere informatie

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages.

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages. MARGES EN SIGNIFICANTIE BIJ STEEKPROEFRESULTATEN. De marges van percentages Metingen via een steekproef leveren een schatting van de werkelijkheid. Het toevalskarakter van de steekproef heeft als consequentie,

Nadere informatie

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2015 tijdvak 2 woensdag 17 juni 13.30-16.30 uur wiskunde C Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

Het gebruik van Excel 2007 voor statistische analyses. Een beknopte handleiding.

Het gebruik van Excel 2007 voor statistische analyses. Een beknopte handleiding. Het gebruik van Excel 2007 voor statistische analyses. Een beknopte handleiding. Bij Excel denken de meesten niet direct aan een statistisch programma. Toch biedt Excel veel mogelijkheden tot statistische

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Sheets K&S voor INF HC 10: Hoofdstuk 12

Sheets K&S voor INF HC 10: Hoofdstuk 12 Sheets K&S voor INF HC 1: Hoofdstuk 12 Statistiek Deel 1: Schatten (hfdst. 1) Deel 2: Betrouwbaarheidsintervallen (11) Deel 3: Toetsen van hypothesen (12) Betrouwbaarheidsintervallen (H11) en toetsen (H12)

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE A HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

Inhoud. Inleiding 15. Deel I Beschrijvende statistiek 17

Inhoud. Inleiding 15. Deel I Beschrijvende statistiek 17 Inhoud Inleiding 15 Deel I Beschrijvende statistiek 17 1 Tabellen, grafieken en kengetallen 19 1.1 Case Game 16 20 1.2 Populatie en steekproef 22 1.3 Meetniveaus 23 1.4 De frequentieverdeling 25 1.5 Grafieken

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

Eindexamen wiskunde A 12 VWO I

Eindexamen wiskunde A 12 VWO I Eindexamen wiskunde A VWO 2001 - I Opgave 1 Contradansen Een Engelse contradans is een muziekstuk dat uit twee delen bestaat. Ieder deel bestaat uit acht maten. In het boekje Musik mit Würfeln staat een

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

HOOFDSTUK 5 TOETSEN VAN HYPOTHESEN

HOOFDSTUK 5 TOETSEN VAN HYPOTHESEN Toetsen van hypothesen 1 HOOFDSTUK 5 TOETSEN VAN HYPOTHESEN 1. Inleiding...2 2. Beslissingsregels...5 2.1. Beslissen op grond van kritische grenzen...5 2.1.1. Het α-risico...6 2.1.2. Het β-risico...7 2.2.

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

voorbeeldexamenopgaven statistiek wiskunde A havo

voorbeeldexamenopgaven statistiek wiskunde A havo voorbeeldexamenopgaven statistiek wiskunde A havo FORMULEBLAD Vuistregels voor de grootte van het verschil van twee groepen 2 2 kruistabel a c b d, met phi = ad bc ( a+ b)( a+ c)( b+ d)( c+ d) als phi

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Wiskunde A. Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur

Wiskunde A. Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur Wiskunde A Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur 20 00 Als bij een vraag een verklaring, uitleg of berekening vereist is, worden aan het antwoord

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Werkbladen 3 Terugzoeken

Werkbladen 3 Terugzoeken Werkbladen Terugzoeken We keren nu de vraag om. Bij een gegeven percentage (oppervlakte zoeken we de bijbehorende grenswaarde(n. Als voorbeeld zoeken we hoe groot een Nederlandse vrouw anno 97 moest zijn

Nadere informatie

Extra Opgaven. 3. Van 10 personen meten we 100 keer de hartslag na het sporten. De gemiddelde hartslag van

Extra Opgaven. 3. Van 10 personen meten we 100 keer de hartslag na het sporten. De gemiddelde hartslag van Extra Opgaven 1. Een persoon doet een HIV-test. Helaas is de uitslag positief. De test is echter niet perfect. De persoon vraagt zich af wat de kans is dat hij nu ook echt HIV heeft. Gegeven is: de kans

Nadere informatie

Oefenopgaven Hoofdstuk 7

Oefenopgaven Hoofdstuk 7 Oefenopgaven Hoofdstuk 7 Opgave 1 Rendement Een beleggingsadviseur heeft de keuze uit de volgende twee beleggingsportefeuilles: Portefeuille a Portefeuille b Verwacht rendement 12% 12% Variantie 8% 10%

Nadere informatie

Statistiek voor A.I. College 12. Dinsdag 23 Oktober

Statistiek voor A.I. College 12. Dinsdag 23 Oktober Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram

Nadere informatie

Normale verdeling. Domein Statistiek en kansrekening havo A

Normale verdeling. Domein Statistiek en kansrekening havo A Domein Statistiek en kansrekening havo A 4 Normale verdeling Inhoud 4.0 Een bijzondere verdeling 4.1 Gemiddelde en standaardafwijking 4.2 Normale verdeling 4.3 Rekenen met normale verdelingen 4.4 Steekproef

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

OEFENINGEN HOOFDSTUK 6

OEFENINGEN HOOFDSTUK 6 OEFENINGEN HOOFDSTUK 6 1 OEFENING 1 EEN INDIVIDU NEEMT EEN BELEGGING IN OVERWEGING MET VOLGENDE MOGELIJKE RENDEMENTEN EN HUN WAARSCHIJNLIJKHEDEN VAN VOORKOMEN: RENDEMENTEN -0,10 0,00 0,10 0,0 0,30 WAARSCHIJNLIJKHEID

Nadere informatie

ECTS-fiche. 1. Identificatie

ECTS-fiche. 1. Identificatie ECTS-fiche Opzet van de ECTS-fiche is om een uitgebreid overzicht te krijgen van de invulling en opbouw van de module. Er bestaat slechts één ECTS-fiche voor elke module. 1. Identificatie Opleiding Graduaat

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

Statistiek 2 deel A 30 minuten over statistisch toetsen

Statistiek 2 deel A 30 minuten over statistisch toetsen Statistiek 2 deel A 30 minuten over statistisch toetsen R.J. Baars, MSc Kruytgebouw N710 r.j.baars@uu.nl februari 2014 Opbouw van statistiek Statistiek 1 (periode 2: vandaag) Dit college + zelfstudie +

Nadere informatie

b. Toets de nulhypothese dat µ = 100 tegen de alternatieve hypothese µ 100, voor α = 0,05.

b. Toets de nulhypothese dat µ = 100 tegen de alternatieve hypothese µ 100, voor α = 0,05. Opgaven hoofdstuk 8 I Learning the Mechanics 8.1 We verwerpen (in het algemeen) de nulhypothese als de toetsingsgrootheid in het verwerpingsgebied ligt, maar we accepteren de nulhypothese niet als de toetsingsgrootheid

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Vraag 1. Welk design bevat geen random assignment:

Vraag 1. Welk design bevat geen random assignment: Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs ch14 p.375 Vraag

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Normale Verdeling Inleiding

Normale Verdeling Inleiding Normale Verdeling Inleiding Wisnet-hbo update maart 2010 1 De Normale verdeling De Normale Verdeling beschrijft het gedrag van een continue kansvariabele x. Om kansen te berekenen, moet de dichtheidsfunctie

Nadere informatie