Toegepaste data-analyse: sessie 3

Maat: px
Weergave met pagina beginnen:

Download "Toegepaste data-analyse: sessie 3"

Transcriptie

1 Toegepaste data-analyse: sessie 3 Mixed Models II: Actor-partner model Corr (Yij, Yik) = σσ 2 kkkkkkkkkkkk σσ 2 kkkkkkkkkkkk+ σσ 2 rrrrrr Je kan deze data niet modelleren a.d.h.v. lineaire regressie. Er zijn 2 manieren om dit op te lossen, nl. door op te delen in een random effecten model ofwel gebruik te maken van een marginaal model. Bij een random effecten model, ga je het intercept random nemen. Bij het marginaal model ga je dat niet doen, maar ga je de variantie-covariantiestructuur gaan fixeren. In SPSS is er een groot verschil tussen deze beide mogelijkheden. Bij random effecten ga je in het 1 ste kadertje Repeated leeg laten en wel random effecten toevoegen bij Random. Bij het marginaal model ga je de kader Repeated invullen en een variantiecovariantiestructuur kiezen. Het kadertje Random ga je hier niet invullen. Bij een hiërarchisch model ga je een onderscheid kunnen maken tussen binnen-groep en tussen-groep variantie en ga je dus duidelijk kunnen zeggen waar de variantie vandaan komt. Bij een marginaal model kan je dit niet Je kan random effecten gebruiken bij ongebalanceerde data en marginale modellen niet (enkel gebalanceerde data!). Bij een actor-partner model ga je kijken naar de dynamieken in een koppel. Wat is het effect van aantrekkelijkheid man op relatietevredenheid man? Wat is het effect van aantrekkelijkheid vrouw op relatietevredenheid vrouw? Maar ook: wat is het effect van aantrekkelijkheid man op relatietevredenheid vrouw? En wat is het effect van de aantrekkelijkheid van de vrouw op de relatietevredenheid van de man. Actoreffecten vs. Partnereffecten. Two-intercept approach - Mogelijkheid om effecten apart te schatten - Intercept maken voor mannen en één voor vrouwen - Twee intercepten maken het mogelijk om de effecten apart te beschouwen Interaction approach - Mogelijkheid om te zien of er een verschil is tussen de effecten - 1 intercept zegt wat de gemiddelde relatietevredenheid is

2 1. Maak een nieuwe dataset aan in SPSS volgens de gegevens in de tabel. Let er op dat je per lijn 1 subject weergeeft. Je kunt je baseren op het voorbeeld in de cursus. Hoeveel subjecten zijn er in het totaal? Hoe zijn deze subjecten geclusterd? Wat zijn de variabelen? Sla de dataset op op je H-schijf als TDA relatietevredenheid.sav. Gaan we nu niet doen. Interessant om te bekijken als je zelf voor je thesis nieuwe datasets moet invoeren. Data zien er een beetje vreemd uit: twee keer dezelfde data op een ander lijntje. 2. Maak een figuur waarbij je het verband onderzoekt van respectievelijk de eigen en de ander zijn/haar aantrekkelijkheid op de relatietevredenheid. Doe dit zo wel voor mannen en vrouwen. Is er indicatie voor actor of partner effecten bij mannen en vrouwen? Of interacties? Respondent = geslacht 1 zijn mannen en 2 zijn vrouwen

3 Bijna geen actor effect voor de vrouwen. Een klein negatief actor effect voor de mannen. Voor beide geslachten een positief partner-effect van aantrekkelijkheid. Het gaat om een interactie-effect: voor een man is het belangrijker voor de relatietevredenheid dat zijn partner (vrouw) aantrekkelijk is. [De lijn stijgt stijler]

4 3. Is er een significant actor effect bij mannen en bij vrouwen? Is er een partnereffect? Toets dit met de Two-intercept approach. Maak gebruik van een random intercept om de correlatie tussen metingen binnen koppels te modelleren. Dit moet je eigenlijk zelf weten dat je dit met deze aanpak moet doen! Immers: je wil apart het effect weten van mannen en van vrouwen. Met één intercept kan je hier niet tussen differentiëren! Subjects = koppel (want dat is het hoogste niveau) Random effecten model Repeated wordt leeg gelaten

5 Geen Include Intercept want we willen geen globaal intercept. Wel apart intercept voor mannen en vrouwen, door Respondent op te nemen in het model. Bovendien willen we ook het actor- en het partner-effect opnemen, zowel voor mannen als voor vrouwen. Dit is dus een interactie-effect met het geslachtspecifiek intercept. We hebben wél een random intercept (Include Intercept aanvinken)!

6 Interpretatie van de Fixed Effects: - Marginaal significant actor-effect bij mannen (p=0.06). - Geen significant actor-effect bij vrouwen. - Significant partner-effect bij mannen - Marginaal significant partner-effect bij vrouwen. Hoe rapporteren? - Actor-effect mannen: t(29.257)=-1.936, p= Partner-effect mannen: t(26.257)=2.426, p<.05 Als niet significant, exacte p-waarde vermelden. Als wel significant, gewoon vermelden dat p< Wat is de correlatie tussen observaties binnen hetzelfde koppel? Corr (Yij, Yik) = σσ 2 kkkkkkkkkkkk σσ 2 kkkkkkkkkkkk+ σσ 2 rrrrrr = / ( ) 5. Zijn de actor en partner effecten significant verschillend tussen mannen en vrouwen. Toets dit met de Interaction Approach. Hoofdeffecten en intercept toevoegen in fixed gedeelte. Bij random laten we alles staan. Nog steeds een random intercept per koppel.

7 We zijn op zoek naar een interactie-effect met geslacht. Met betrekking tot het actoreffect, zien we dat er geen significante interactie is met geslacht. Het effect van aantrekkelijkheid van de actor is dus niet afhankelijk van het geslacht en verschilt dus niet tussen mannen en vrouwen. Met betrekking tot het partner effect zien we hetzelfde: de invloed van aantrekkelijkheid van de partner op de relatietevredenheid verschilt niet tussen mannen of vrouwen. 6. Toets nu dezelfde hypothese, maar met de marginale aanpak. Hierbij veronderstellen we geen random effecten maar gaan we de residuele covariantie binnen koppels modelleren. Gebruik hiervoor de meest algemene unstructured vorm. Je wil de variantie covariantiematrix tussen mannen en vrouwen gaan modelleren, dus bij Repeated ga je ook het geslacht opgeven.

8 Meestal is het gegeven of je een hiërarchisch model of een marginaal model moet toepassen. Het is wel zo dat je bij ongebalanceerde en/of onvolledige data enkel het random effecten model kan gebruiken (flexibeler). De output is min of meer hetzelfde. 7. Welke extra assumpties worden gemaakt bij de Random Intercept approach? Je gaat veronderstellen dat de residuele variantie hetzelfde is bij mannen als bij vrouwen. Door het invoeren van het random intercept hou je rekening met de clustering en net hierdoor zal je variantie ook hetzelfde zijn. Structurele vergelijkingsmodellen (SEM) Taal SES inkomen IQ economische status Rekenen QoL depressie Stress Meetgedeelte* Structuurgedeelte Meetgedeelte * Tekening proberen maken = het belangrijkste op het examen!! Daarmee begin je altijd! Daarna parameters aanduiden/opschrijven. Daarna pas model fitten in R. Latente variabelen omcirkeld. Geobserveerde variabelen (alles wat in je dataset zit) is omkaderd. Enkel in het structuurgedeelte wordt er een onderscheid gemaakt tussen endogene (er komen pijlen toe) en exogene (er vertrekken pijlen) variabelen. *Meetgedeelte = hoe de latente variabelen gemeten worden

9 Soorten structurele vergelijkingsmodellen: - Padanalyse houdt zich enkel bezig met het structuurgedeelte, maar dan enkel met geobserveerde variabelen en niet met latente variabelen. - CFA houdt zich enkel bezig met meetgedeelte. - SEM houdt zich bezig met beide. Predictiefouten: we weten dat SES en QoL bijvoorbeeld door allerlei andere zaken worden verklaard, die niet in het model opgenomen zijn. Predictiefouten kunnen bij latente of geobserveerde variabelen voorkomen. Meetfouten: latente variabelen kunnen we niet rechtstreeks gaan meten, maar d.m.v. observeerbare variabelen. Daardoor zal er een bepaalde fout zijn in de mate dat we latente variabelen kunnen gaan meten. (Meetfouten dus enkel bij latente variabelen). 1. Beschouw een model waarbij de vier onafhankelijke variabelen (Intelligence, Siblings, FatherEd en FatherOcc) allen een effect hebben op de drie afhankelijke variabelen (Grades, EducExp en OccupAsp). Stel het model grafisch voor, duid alle te schatten parameters aan en geeft het aantal vrijheidsgraden. Fit het model en bestudeer de output. Is het model adequaat? Zo niet, hoe zou je het model eventueel aanpassen? Intelligence Siblings Grades 1 FatherEd EducExp 2 Father Occ OccupAsp 3 Correlaties in lavaan automatisch toegevoegd, voor de zuiver endogene variabelen! Elke pijl heeft de naam γγ11, γγ21, enzovoort. Deze parameters gaan de effecten aanduiden. is de predictiefout, ofwel de onverklaarde variantie in Grades, op EductExp en OccupAsp. Bovendien zijn er ook correlaties tussen de predictiefouten onderling. De parameters bij deze pijlen kunnen we bijvoorbeeld φφ11, φφ12, gebruiken. # datapunten - # parameters = = 0 [p(p+1)]/2 = 18 datapunten

10 Tussen de aanhalingstekens staat het model gespecifieerd. Je gaat aangeven welke pijlen er allemaal toekomen in de variabelen Grades, EducExp en OccupAsp.

11 Als je een fout hebt gemaakt staat er een + i.p.v. een >. Op dat moment kan je beter stoppen en terug naar je script gaan om te kijken waar je fout zit. Dit doe je door in de console op Stop te duwen. Zo vermijd je verdere verwarring. Door head(data.kerckhoff) als commando te geven kan je checken of je wel de juiste data hebt. Handig voor op het examen om te garanderen dat je geen vergissingen maakt. Er is altijd een foutmelding bij lavaan. Niets van aantrekken. We gaan de fit van het model nagaan. Tussen haakjes moet je het model specifiëren (dat we in dit geval gewoon model hebben genoemd) en de data. Commando s echt zo, stap voor stap en eerst in script en dan in console uitvoeren!! Helpt om fouten te voorkomen!!

12 Voor fit naar de verschillende fitmaten gaan kijken en kijken waar het grootste deel naar wijst (goede of slechte fit). Output zie feedback 2. Beschouw een alternatief model waarbij er op OccupAsp enkel nog een direct effect is van FatherOcc (niet van de andere exogene variabelen). Laat nu ook de volgende effecten toe: (1) van Grades naar EducExp, (2) van Grades naar OccupAsp, en (3) van OccupAsp naar EducExp. Stel het model grafisch voor. Vergelijk de fit van dit model met het vorige model. Intelligence Siblings Grades 1 FatherEd EducExp 2 Father Occ OccupAsp 3 Enkel correlaties tussen zuiver endogene variabelen. De enige zuivere endogene variabele is hier EducExp en voor een correlatie heb je minstens 2 variabelen nodig; dus de correlaties tussen de predictiefouten vallen weg. # datapunten - # parameters = = 3 vrijheidsgraden Voor fit naar de verschillende fitmaten gaan kijken en kijken waar het grootste deel naar wijst (goede of slechte fit). Output zie feedback

Toegepaste data-analyse: oefensessie 2

Toegepaste data-analyse: oefensessie 2 Toegepaste data-analyse: oefensessie 2 Depressie 1. Beschrijf de clustering van de dataset en geef aan op welk niveau de verschillende variabelen behoren Je moet weten hoe de data geclusterd zijn om uit

Nadere informatie

Oefeningenreeks 4: SEM mediatie en moderatie

Oefeningenreeks 4: SEM mediatie en moderatie Oefeningenreeks 4: SEM mediatie en moderatie 3 soorten structurele vergelijkingsmodellen. Met structurele vergelijkingsmodellen kan je een uitspraak gaan doen over latente variabelen en we kunnen deze

Nadere informatie

Dit jaar gaan we MULTIVARIAAT TOETSEN. Bijvoorbeeld: We willen zien of de scores op taal en rekenen van kinderen afwijken in de populatie.

Dit jaar gaan we MULTIVARIAAT TOETSEN. Bijvoorbeeld: We willen zien of de scores op taal en rekenen van kinderen afwijken in de populatie. Toetsen van hypothesen Bijvoorbeeld: nagaan of het gemiddeld IQ bij een bepaalde steekproef groter/kleiner is als in de populatie. µ = 100 Normaalverdeling, waarbij we de score van de steekproef gaan vergelijken

Nadere informatie

Structural Equation Modeling

Structural Equation Modeling Workshop Structural Equation Modeling Eva Van den Bussche 2007 Overzicht Deel I: Theoretische kadering SEM Deel II: Introductie AMOS: Demonstratie Deel III: Practicum op basis van real-life datasets 2

Nadere informatie

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008 Examen Statistische Modellen en Data-analyse Derde Bachelor Wiskunde 14 januari 2008 Vraag 1 1. Stel dat ɛ N 3 (0, σ 2 I 3 ) en dat Y 0 N(0, σ 2 0) onafhankelijk is van ɛ = (ɛ 1, ɛ 2, ɛ 3 ). Definieer

Nadere informatie

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA)

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) DATA STRUKTUUR Afhankelijke variabele: Eén kontinue variabele Onafhankelijke variabele(n): - één discrete variabele: één gecontroleerde factor - twee discrete variabelen:

Nadere informatie

Onderzoeksmethoden II: structurele vergelijkingsmodellen deel 1

Onderzoeksmethoden II: structurele vergelijkingsmodellen deel 1 Onderzoeksmethoden II: structurele vergelijkingsmodellen deel 1 1. Overzicht Padanalyse, CFA & SEM o Padanalyse Onderscheid tussen exogene en endogene variabelen. Indirecte effecten (mediatie)! o Geobserveerde

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Praktijkbundel Amos 6.0 in de praktijk

Praktijkbundel Amos 6.0 in de praktijk Praktijkbundel Amos 6.0 in de praktijk Van den Bussche Eva 1 1. Woord vooraf In deze praktijkbundel vind je 2 oefeningen terug die stap voor stap worden uitgewerkt en geïllustreerd met screenshots. De

Nadere informatie

College 7 Tweeweg Variantie-Analyse

College 7 Tweeweg Variantie-Analyse College 7 Tweeweg Variantie-Analyse - Leary: Hoofdstuk 12 (p. 255 t/m p. 262) - MM&C: Hoofdstuk 12 (p. 618 t/m p. 623 ), Hoofdstuk 13 - Aanvullende tekst 9, 10, 11 Jolien Pas ECO 2012-2013 Het Experiment

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling Kwantitatieve Data Analyse (KDA) Onderzoekspracticum Sessie 2 11 Aanpassingen takenboek! Check studienet om eventuele verbeteringen te downloaden! Huidige versie takenboek: 09 Gjalt-Jorn Peters gjp@ou.nl

Nadere informatie

Onderzoeksmethoden II: structurele vergelijkingsmodellen deel 3

Onderzoeksmethoden II: structurele vergelijkingsmodellen deel 3 Onderzeksmethden II: structurele vergelijkingsmdellen deel 3 1. Structurele vergelijkingsmdellen 1.1. SEM in vgelvlucht SEM is een algemene techniek m de (lineaire) samenhang tussen variabelen te mdelleren.

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek cursus 23 mei 2012 werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen onderzoek streeft naar inzicht in relatie tussen variabelen bv. tussen onafhankelijke

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

Classification - Prediction

Classification - Prediction Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training

Nadere informatie

Waar waren we? Onderzoekspracticum BCO ANALYSEPLAN. Soorten gegevens. Documentatie. Kwalitatieve gegevens. Coderen kwalitatieve gegevens

Waar waren we? Onderzoekspracticum BCO ANALYSEPLAN. Soorten gegevens. Documentatie. Kwalitatieve gegevens. Coderen kwalitatieve gegevens Waar waren we? BCO ANALYSEPLAN Harry Ganzeboom 14 april 2005 Probleemstelling, deelvragen, theorie Definities, conceptueel model Hypothesen Onderzoekzoeksopzet, operationalisatie Dataverzameling Data-analyse

Nadere informatie

1. Gegeven zijn de itemsores van 8 personen op een test van 3 items

1. Gegeven zijn de itemsores van 8 personen op een test van 3 items 1. Gegeven zijn de itemsores van 8 personen op een test van 3 items item Persoon 1 2 3 1 1 0 0 2 1 1 0 3 1 0 0 4 0 1 1 5 1 0 1 6 1 1 1 7 0 0 0 8 1 1 0 Er geldt: (a) de p-waarden van item 1 en item 2 zijn

Nadere informatie

College 6 Eenweg Variantie-Analyse

College 6 Eenweg Variantie-Analyse College 6 Eenweg Variantie-Analyse - Leary: Hoofdstuk 11, 1 (t/m p. 55) - MM&C: Hoofdstuk 1 (t/m p. 617), p. 63 t/m p. 66 - Aanvullende tekst 6, 7 en 8 Jolien Pas ECO 01-013 Het Experiment: een voorbeeld

Nadere informatie

DATA-ANALYSE I OEFENINGEN ACADEMIEJAAR 2000 2001. Feedback Praktische Proef

DATA-ANALYSE I OEFENINGEN ACADEMIEJAAR 2000 2001. Feedback Praktische Proef DATA-ANALYSE I OEFENINGEN ACADEMIEJAAR 2000 2001 Feedback Praktische Proef 1 Vooraf Het is onbegonnen werk om voor elke versie van de praktische proef een volledig uitgeschreven rapport te presenteren.

Nadere informatie

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit College 7 Regressie-analyse en Variantie verklaren Inleiding M&T 2012 2013 Hemmo Smit Neem mee naar tentamen Geslepen potlood + gum Collegekaart (alternatief: rijbewijs, ID-kaart, paspoort) (Grafische)

Nadere informatie

Zomerschool Vakdidactisch Onderzoek Leuven, 8-10 september 2010 Sessie 8: Analyse van kwantitatieve data

Zomerschool Vakdidactisch Onderzoek Leuven, 8-10 september 2010 Sessie 8: Analyse van kwantitatieve data Zomerschool Vakdidactisch Onderzoek Leuven, 8-10 september 2010 Sessie 8: Analyse van kwantitatieve data An Carbonez Leuven Statistics Research Centre Katholieke Universiteit Leuven Voorstelling van de

Nadere informatie

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 Bjorn Winkens Methodologie en Statistiek Universiteit Maastricht 21 maart

Nadere informatie

duidelijk. Welke groepen verschillen wel/niet van elkaar?wat zijn je hypothesen?

duidelijk. Welke groepen verschillen wel/niet van elkaar?wat zijn je hypothesen? Opdracht 3 t-test ANOVA one way ANOVA two way 33038 discussie post-hoc is niet duidelijk. Welke groepen verschillen wel/niet van elkaar?wat zijn je hypothesen? je behandeling van de two-way anova is niet

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies

Nadere informatie

De correlatie kan opgevraagd worden via Analyze Correlate Bivariate en vervolgens maken we een keuze voor de variabelen. Dit levert als output op:

De correlatie kan opgevraagd worden via Analyze Correlate Bivariate en vervolgens maken we een keuze voor de variabelen. Dit levert als output op: Opdrachten en vragen hoofdstuk X 1. Voer de gegevens van figuur 9.1 en 9.2 in SPSS en controleer de correlaties zoals die aangegeven werden. Maak tevens een scatterplot. Tabel 9.1. Lineaire transformatie

Nadere informatie

2.9 Het adolescentieonderzoek 69 2.10 Opgaven 72

2.9 Het adolescentieonderzoek 69 2.10 Opgaven 72 Inhoud Hoofdstuk 1 Design en analyse 11 1.1 Specificatie van designs 13 1.2 Definities 14 1.3 Het verschil tussen een afhankelijke variabele en een niveau van een within-subjectfactor 19 1.4 Kiezen van

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

College 6. Samenhang tussen variabelen. Inleiding M&T Hemmo Smit

College 6. Samenhang tussen variabelen. Inleiding M&T Hemmo Smit College 6 Samenhang tussen variabelen Inleiding M&T 2012 2013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap 2. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek

Nadere informatie

Meten: algemene beginselen. Harry B.G. Ganzeboom ADEK UvS College 1 28 februari 2011

Meten: algemene beginselen. Harry B.G. Ganzeboom ADEK UvS College 1 28 februari 2011 Meten: algemene Harry B.G. Ganzeboom ADEK UvS College 1 28 februari 2011 OPZET College 1: Algemene College 2: Meting van attitudes (ISSP) College 3: Meting van achtergrondvariabelen via MTMM College 4:

Nadere informatie

Labo IDP. In dit labo gaan we IDP gebruiken voor het analyseren van logische circuits. XOR Q AND. Figuur 1: Een logisch circuit.

Labo IDP. In dit labo gaan we IDP gebruiken voor het analyseren van logische circuits. XOR Q AND. Figuur 1: Een logisch circuit. Labo IDP In dit labo gaan we IDP gebruiken voor het analyseren van logische circuits. K L A XOR N B XOR P M D AND Q AND C O OR E R R Tuesday 15 December 2009 Figuur 1: Een logisch circuit. Veronderstel

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Hoofdstuk 8. Toetsende statistiek. 8.1 Associatie van categoriale data: CROSSTABS [dv 32.2]

Hoofdstuk 8. Toetsende statistiek. 8.1 Associatie van categoriale data: CROSSTABS [dv 32.2] Hoofdstuk 8 Toetsende statistiek Meestal zijn we niet alleen geïnteresseerd in beschrijvende statistiek (over de steekproef), maar ook in toetsende statistiek. Het doel hiervan is om hypothesen te toetsen,

Nadere informatie

De interpretatie van interactieeffecten in regressiemodellen. Jan Pickery

De interpretatie van interactieeffecten in regressiemodellen. Jan Pickery De interpretatie van interactieeffecten in regressiemodellen Jan Pickery Samenstelling Diensten voor het Algemeen Regeringsbeleid Studiedienst van de Vlaamse Regering Jan Pickery Verantwoordelijke uitgever

Nadere informatie

A c. Dutch Summary 257

A c. Dutch Summary 257 Samenvatting 256 Samenvatting Dit proefschrift beschrijft de resultaten van twee longitudinale en een cross-sectioneel onderzoek. Het eerste longitudinale onderzoek betrof de ontwikkeling van probleemgedrag

Nadere informatie

SPSS. Statistiek : SPSS

SPSS. Statistiek : SPSS SPSS - hoofdstuk 1 : 1.4. fase 4 : verrichten van metingen en / of verzamelen van gegevens Gegevens gevonden bij een onderzoek worden systematisch weergegeven in een datamatrix bij SPSS De datamatrix Gebruik

Nadere informatie

Experimenteel Onderzoek en Experimentele Controle

Experimenteel Onderzoek en Experimentele Controle Experimenteel Onderzoek en Experimentele Controle ECO 2011-2012 Hemmo Smit Wilhelm Wundt en William James 3 criteria voor Causaliteit (herhaling) 1. Covariantie: samenhang tussen variabelen aantonen 2.

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

1. CTRL- en SHIFT-knop gebruiken om meerdere variabelen te selecteren

1. CTRL- en SHIFT-knop gebruiken om meerdere variabelen te selecteren SPSS: Wist je dat (1) je bij het invoeren van de variabelen in het menu door de CTRL-knop ingedrukt te houden, meerdere variabelen kunt selecteren die niet precies onder elkaar staan? Met de SHIFT-knop

Nadere informatie

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen.

Herkansing Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 508 Dit is geen open boek tentamen. Herkansing Inleiding Intelligente Data Analyse Datum: 3-3-2003 Tijd: 14.00-17.00, BBL 508 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

College 6: Responsiecollege (wijzigingen in rood) Cursus Bachelor Project 2 B&O College 6 Harry B.G. Ganzeboom

College 6: Responsiecollege (wijzigingen in rood) Cursus Bachelor Project 2 B&O College 6 Harry B.G. Ganzeboom College 6: Responsiecollege (wijzigingen in rood) Cursus Bachelor Project 2 B&O College 6 Harry B.G. Ganzeboom AGENDA Omgang met SPSS (tijdens het tentamen). Gebruik van Excel. Factoranalyse en betrouwbaarheidsanalyse

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

De invloed van Vertrouwen, Relatietevredenheid en Commitment op Customer retention

De invloed van Vertrouwen, Relatietevredenheid en Commitment op Customer retention De invloed van Vertrouwen, Relatietevredenheid en Commitment op Customer retention Samenvatting Wesley Brandes MSc Introductie Het succes van CRM is volgens Bauer, Grether en Leach (2002) afhankelijk van

Nadere informatie

Gedragsanalyse Experiment Verzekeren per Kilometer

Gedragsanalyse Experiment Verzekeren per Kilometer Gedragsanalyse Experiment Verzekeren per Kilometer Jasper Knockaert mailto:jknockaert@feweb.vu.nl 11 oktober 29 1 Inleiding Het Transumo project Verzekeren per Kilometer onderzoekt de mogelijkheden van

Nadere informatie

Bijlage 1: Gezondheidsdoelstellingen Vlaamse Overheid

Bijlage 1: Gezondheidsdoelstellingen Vlaamse Overheid Bijlage 1: Gezondheidsdoelstellingen Vlaamse Overheid Concreet werden (voor volwassenen) volgende aanbevelingen geformuleerd: 1. met betrekking tot beweging: ofwel dagelijks minstens 30 minuten per dag

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

Onderzoeksmethoden II: overzicht en herhaling interpretatie output

Onderzoeksmethoden II: overzicht en herhaling interpretatie output Onderzeksmethden II: verzicht en herhaling interpretatie utput 1. Overzicht methdes 1.1. Onderzeksmethden I en nderzeksmethden II Statistiek II en Onderzeksmethden I: Het univariaat lineair mdel is het

Nadere informatie

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages.

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages. MARGES EN SIGNIFICANTIE BIJ STEEKPROEFRESULTATEN. De marges van percentages Metingen via een steekproef leveren een schatting van de werkelijkheid. Het toevalskarakter van de steekproef heeft als consequentie,

Nadere informatie

Samenvatting. J. Nachtegaal, S.E. Kramer, J.M. Festen (Amsterdam)

Samenvatting. J. Nachtegaal, S.E. Kramer, J.M. Festen (Amsterdam) Samenvatting Associatie tussen gehoorverlies en psychosociale gezondheid bij 18 tot 70 jarigen: eerste resultaten van de Nationale Longitudinale Studie naar Horen (NL-SH). J. Nachtegaal, S.E. Kramer, J.M.

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Verschillen tussen Vrije scholen en reguliere scholen in niet-cognitieve opbrengsten

Verschillen tussen Vrije scholen en reguliere scholen in niet-cognitieve opbrengsten Hoofdstuk zeven Verschillen tussen Vrije scholen en reguliere scholen in niet-cognitieve opbrengsten 7.1 Inleiding In hoofdstuk zes is ingegaan op de verschillen in effectiviteit tussen Vrije scholen en

Nadere informatie

College Week 3 Kwaliteit meetinstrumenten; Inleiding SPSS

College Week 3 Kwaliteit meetinstrumenten; Inleiding SPSS College Week 3 Kwaliteit meetinstrumenten; Inleiding SPSS Inleiding in de Methoden & Technieken 2013 2014 Hemmo Smit Overzicht van dit college Kwaliteit van een meetinstrument Inleiding SPSS Hiervoor lezen:

Nadere informatie

College Week 1 Grondprincipes van de Wetenschap

College Week 1 Grondprincipes van de Wetenschap College Week 1 Grondprincipes van de Wetenschap Inleiding in de Methoden & Technieken 013 014 Hemmo Smit Overzicht van dit college Korte inleiding in het vakgebied Praktische informatie over het vak Wat

Nadere informatie

TYPE EXAMENVRAGEN VOOR TOEGEPASTE STATISTIEK

TYPE EXAMENVRAGEN VOOR TOEGEPASTE STATISTIEK TYPE EXAMENVRAGEN VOOR TOEGEPASTE STATISTIEK Prof. Dr. M. Vandebroek 1. Een aantal proefpersonen werd gevraagd een frisdrank te beoordelen door aan te geven in hoeverre ze het eens zijn met de volgende

Nadere informatie

Correlatie = statistische samenhang Meest gebruikt = Spearman s rang correlatie Ordinaal geschaalde variabelen -1 <= r s <= +1 waarbij:

Correlatie = statistische samenhang Meest gebruikt = Spearman s rang correlatie Ordinaal geschaalde variabelen -1 <= r s <= +1 waarbij: Correlatie analyse Correlatie = statistische samenhang Meest gebruikt = Spearman s rang correlatie Ordinaal geschaalde variabelen -1

Nadere informatie

4 Domein STATISTIEK - versie 1.2

4 Domein STATISTIEK - versie 1.2 USolv-IT - Boomstructuur DOMEIN STATISTIEK - versie 1.2 - c Copyrighted 42 4 Domein STATISTIEK - versie 1.2 (Op initiatief van USolv-IT werd deze boomstructuur mede in overleg met het Universitair Centrum

Nadere informatie

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 12 : Regressie en correlatie Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Regressie en correlatie p 1/26 Regressielijn Vraag : vind het

Nadere informatie

Hoofdstuk 7 De veranderingen na drie verschillende levensgebeurtenissen

Hoofdstuk 7 De veranderingen na drie verschillende levensgebeurtenissen De veranderingen na drie verschillende levensgebeurtenissen 7.1. Onderzoeksvraag en aanpak Is er een onderscheid tussen veranderingen binnen relaties in het algemeen en veranderingen die optreden na bepaalde

Nadere informatie

gegevens analyseren Welk onderzoekmodel gebruik je? Quasiexperiment ( 5.5) zonder controle achtergronden

gegevens analyseren Welk onderzoekmodel gebruik je? Quasiexperiment ( 5.5) zonder controle achtergronden een handreiking 71 hoofdstuk 8 gegevens analyseren Door middel van analyse vat je de verzamelde gegevens samen, zodat een overzichtelijk beeld van het geheel ontstaat. Richt de analyse in de eerste plaats

Nadere informatie

TECHNISCHE HANDLEIDING IQ TEST

TECHNISCHE HANDLEIDING IQ TEST TECHNISCHE HANDLEIDING IQ TEST 12 December 2011 INHOUDSOPGAVE TESTOVERZICHT Meetpretentie Theoretische achtergrond Kenmerken Samenstelling Toepassingsgebied Voorbeelditems TESTKENMERKEN Vraag die voor

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Tentamen Data Mining

Tentamen Data Mining Tentamen Data Mining Algemene Opmerkingen Dit is geen open boek tentamen, noch mogen er aantekeningen gebruikt worden. Laat bij het uitvoeren van berekeningen zien hoe je aan een antwoord gekomen bent.

Nadere informatie

College 3 Interne consistentie; Beschrijvend onderzoek

College 3 Interne consistentie; Beschrijvend onderzoek College 3 Interne consistentie; Beschrijvend onderzoek Inleiding M&T 2012 2013 Hemmo Smit Overzicht van dit college Kwaliteit van een meetinstrument (herhaling) Interne consistentie: Cronbach s alpha Voorbeeld:

Nadere informatie

Resultaten voor Brussels Gewest Gezondheidsklachten Gezondheidsenquête, België, 1997

Resultaten voor Brussels Gewest Gezondheidsklachten Gezondheidsenquête, België, 1997 5.4.1. Inleiding De meerwaarde van een gezondheidsenquête in vergelijking met de traditioneel verzamelde gezondheidsinformatie bestaat er o.a. uit dat ook gepeild wordt naar klachten waarvoor niet persé

Nadere informatie

MASTERCLASS De datateam methode Examenresultaten Nederlands

MASTERCLASS De datateam methode Examenresultaten Nederlands MASTERCLASS De datateam methode Examenresultaten Nederlands Taal op koers 29 oktober 2014 Cindy Poortman en Kim Schildkamp Uitdagingen in de onderwijspraktijk Voortijdige schooluitval Gebrek aan praktische

Nadere informatie

Handleiding SPSS. 1) Maak je bestand

Handleiding SPSS. 1) Maak je bestand Handleiding SPSS 1) Maak je bestand In de file die op Minerva staat, zijn de data opgenomen van alle groepjes. Het is de bedoeling dat je je eindverslag schrijft over de data van jouw groepje. Om dit te

Nadere informatie

In deze les. Het experiment. Hoe bereid je het voor? Een beetje wetenschapsfilosofie. Literatuuronderzoek (1) Het onderwerp.

In deze les. Het experiment. Hoe bereid je het voor? Een beetje wetenschapsfilosofie. Literatuuronderzoek (1) Het onderwerp. In deze les Het experiment Bart de Boer Hoe doe je een experiment? Hoe bereid je het voor? De probleemstelling Literatuuronderzoek Bedenken/kiezen experimentele opstelling Bedenken/kiezen analysevorm Hoe

Nadere informatie

Conclusies. Martijn de Ruyter de Wildt en Henk Eskes. KNMI, afdeling Chemie en Klimaat Telefoon +31-30-2206431 e-mail mruijterd@knmi.

Conclusies. Martijn de Ruyter de Wildt en Henk Eskes. KNMI, afdeling Chemie en Klimaat Telefoon +31-30-2206431 e-mail mruijterd@knmi. Lotos-Euros v1.7: validatierapport voor 10 en bias-correctie Martijn de Ruyter de Wildt en Henk Eskes KNMI, afdeling Chemie en Klimaat Telefoon +31-30-2206431 e-mail mruijterd@knmi.nl Conclusies Bias-correctie:

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

EEN STAPSGEWIJZE HANDLEIDING

EEN STAPSGEWIJZE HANDLEIDING F5 LISREL VOOR DUMMIES EEN STAPSGEWIJZE HANDLEIDING Versie 0.1 Harry B.G. Ganzeboom Vrije Universiteit Amsterdam 23 maart 2009 LISREL VOOR DUMMIES: STAPJE VOOR STAPJE Stap 1: Schrijf het conceptueel (causaal)

Nadere informatie

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen M, M & C 7.3 Optional Topics in Comparing Distributions: F-toets 6.4 Power & Inference as a Decision 7.1 The power of the t-test 7.3 The power of the sample t- Toetsende Statistiek Week 5. De F-toets &

Nadere informatie

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient Opdracht 4a ----------- Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient In 1738 werd in de haven van Stockholm voor een aantal landen voor elk land geregistreerd hoeveel schepen

Nadere informatie

Rentezoekend Gedrag en Transfers bij Echtscheiding

Rentezoekend Gedrag en Transfers bij Echtscheiding 0 Density.002.004.006.008 Rentezoekend Gedrag en Transfers bij Echtscheiding Auteur: Sietse Bracke i.s.m. Prof. K. Schoors en Prof. G. Verschelden Onderzoeksvraag Wordt rentezoekend gedrag gecompenseerd

Nadere informatie

Graphical modelling voor Mediastudies Data

Graphical modelling voor Mediastudies Data Graphical modelling voor Mediastudies Data De analyse Alle analyses zijn gedaan met MIM, een analyseprogramma ontworpen voor graphical modelling (Versie 3.2.07, Edwards,1990,1995). Modellen zijn verkregen

Nadere informatie

Nieuwe modellen voor het schatten van genotype-milieu interactie

Nieuwe modellen voor het schatten van genotype-milieu interactie Nieuwe modellen voor het schatten van genotype-milieu interactie Mario Calus Roel Veerkamp Divisie Dier en Omgeving Animal Sciences Group (ASG) - Lelystad Wageningen UR Wat is genotype-milieu interactie?

Nadere informatie

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995

Schriftelijk examen statistiek, data-analyse en informatica. Maandag 29 mei 1995 Schriftelijk examen statistiek, data-analyse en informatica Maandag 29 mei 1995 Tweede jaar kandidaat arts + Tweede jaar kandidaat in de biomedische wetenschappen Naam: Voornaam: Vraa Kengetal g Blad 1

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het

Nadere informatie

E Y = ln(β 1 x) ln β 1 + β 2

E Y = ln(β 1 x) ln β 1 + β 2 Tentamen Statistische Methoden MST STM 1 april 2009, 9.00 12.00 uur Toelichting. Een antwoord alleen is niet voldoende: er dient een motivatie, toelichting of berekening aanwezig te zijn. Gebruik, tenzij

Nadere informatie

Implementations of Tests on the Exogeneity of Selected Variables and Their Performance in Practice M. Pleus

Implementations of Tests on the Exogeneity of Selected Variables and Their Performance in Practice M. Pleus Implementations of Tests on the Exogeneity of Selected Variables and Their Performance in Practice M. Pleus Dat economie in essentie geen experimentele wetenschap is maakt de econometrie tot een onmisbaar

Nadere informatie

Bestaat er een betekenisvol verband tussen het geslacht en het voorkomen van dyslexie? Gebruik de Chi-kwadraattoets voor kruistabellen.

Bestaat er een betekenisvol verband tussen het geslacht en het voorkomen van dyslexie? Gebruik de Chi-kwadraattoets voor kruistabellen. Oplossingen hoofdstuk IX 1. Bestaat er een verband tussen het geslacht en het voorkomen van dyslexie? Uit een aselecte steekproef van 00 leerlingen (waarvan 50% jongens en 50% meisjes) uit het basisonderwijs

Nadere informatie