mlw stroom 2.1: Statistisch modelleren

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "mlw stroom 2.1: Statistisch modelleren"

Transcriptie

1 mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht 2 nov 2005 Methodologie en Statistiek Universiteit Maastricht

2 Inhoud 1. (11.5) Intervalschatting van regressiecoëfficiënten 2. Voorspellingsinterval 3. (11.6) Modelvoorwaarden en controle 4. (11.7) Correlatie, berekening 5. (11.8) Toetsen v.d. correlatiecoëfficiënt 6. Betrouwbaarheidsinterval voor de correlatiecoëfficiënt 7. Vergelijken van twee onafhankelijke correlaties Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 1 Arnold Kester 25 oktober 2005

3 Estriol voorbeeld: SPSS uitvoer Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1.610(a) a) Predictors: (Constant), ESTRIOL ANOVA(b) Model Sum of Squares df Mean Square F Sig. 1 Regression (a) Residual Total a) Predictors: (Constant), ESTRIOL b) Dependent Variable: BIRTHWGT Coefficients(a) Unstand. Coefs Stand. Coefs t Sig. Model B Std. Error Beta 1 (Constant) ESTRIOL a) Dependent Variable: BIRTHWGT Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 2 Arnold Kester 25 oktober 2005

4 SPSS uitvoer, commentaar Eerste tabel: Correlatie tussen X en Y ; kwadraat van de correlatie; idem gecorrigeerd voor aantal verklarende variabelen; schatting van modelparameter σ Tweede tabel: Variantie-analyse met kwadratensommen, vrijheidsgraden, gemiddelde kwadraten en F -toets Derde tabel: Geschatte regressiecoëfficiënten, standaardfouten en t-toetsen. De kolom genaamd Beta geeft de z.g. gestandaardiseerde coëfficiënten, dat zijn de regressiecoëfficiënten die verkregen worden na standaardisatie van de variabelen X en Y : X Z = (X X)/ SD(X), Y Z = (Y Ȳ )/ SD(Y ) Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 3 Arnold Kester 25 oktober 2005

5 Recapitulatie: voorbeeld estriol. birthweight a=21.5 b=0.608 is stijging per eenheid estriol estriol Beschrijf verband met regressielijn: y = x x = 10 geeft ŷ = = x = 20 geeft ŷ = = verschil = 6.08 = b 10 Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 4 Arnold Kester 25 oktober 2005

6 Recapitulatie: residuen. birthweight voorspelling bij x = 24: y^ = residu y i y^i punt i: (x i = 24, y i = 28) Residu: d i = y i ŷ i lijn gedefinieerd door min a,b (yi ŷ i ) 2 minimum d 2 i is SS Res = estriol Voorspelde waarde ŷ i = a + bx i Geschatte σ 2 is s 2 y x = MS Res = SS Res/(n 2) = Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 5 Arnold Kester 25 oktober 2005

7 Recapitulatie: Standaardfouten van coëfficiënten s.e.(b) = s 2 y x L xx = s y x Lxx = s y x s x n 1 s.e.(a) = s 2 y x ( ) 1 n + x2 L xx = s y x 1 n + x2 L xx Estriol: s.e.(b) = / = = s.e.(a) = (1/ /677.42) = = Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 6 Arnold Kester 25 oktober 2005

8 Intervalschatting van regressieparameters (11.5) Betrouwbaarheidsinterval voor helling. Uitgaande van (b β)/ s.e.(b) t n 2 : betrouwbaarheidsinterval voor β wordt gegeven door (b t n 2, 1 α/2 s.e.(b); b t n 2, 1 α/2 s.e.(b)). Vb.: Estriol; betrouwbaarheidsinterval voor helling is 0.608±t 29,0.975 (0.147) = 0.608±2.045(0.147) = (0.308, 0.908) helling zou ook zowat half zo groot of 50% groter kunnen zijn! Betrouwbaarheidsinterval voor intercept. betrouwbaarheidsinterval voor α wordt gegeven door a ± t n 2, 1 α/2 s.e.(a). = 21.5 ± 2.045(2.62) = (16.14; 26.86) Maarrrr... Wat betekent dit eigenlijk? Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 7 Arnold Kester 25 oktober 2005

9 Vb. Estriol en Geboortegewicht birthweight Grenzen b.i. voor intercept estriol Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 8 Arnold Kester 25 oktober 2005

10 Geldigheid betrouwbaarheidsinterval v.h. intercept Estriol = 0 komt niet voor, dus wat betekent α eigenlijk? Is de relatie wel lineair buiten het data-gebied? Extreem voorbeeld: X is lichaamstemperatuur bij binnenkomst op intensive care, Y is verblijfsduur op intensive care... Wél zinnig: s.e. voor a + bx als x binnen de data-range ligt. Eigenlijk is het doel van het onderzoek: Hoe groot is het geboortegewicht bij gegeven waarde van estriol? Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 9 Arnold Kester 25 oktober 2005

11 Betr. int. voor gemiddelde y bij gegeven x s.e. 2 (ŷ) = s.e. 2 (a + bx) = s 2 y x ( 1 n + (x x)2 L xx betrouwbaarheidsinterval: ŷ ± t 29,0.975 s.e. 2 (ŷ) Vb. estriol = 25, wat is gemiddelde y (geboortegewicht)? ŷ = = 36.73, s.e. 2 (ŷ) = ( 1/31 + ( ) 2 / ) = 1.33 interval: ŷ ± t 29,0.975 s.e. 2 = ± 2.045(1.33) = (34.01; 39.45) Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 10 Arnold Kester 25 oktober 2005 )

12 Betrouwbaarheidsinterval voor gemiddelde birthweight estriol Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 11 Arnold Kester 25 oktober 2005

13 Voorspellingsinterval voor nieuwe data Veronderstel nieuwe zwangere heeft estriol x = 25. Wat kunnen we voorspellen over het geboortegewicht y van haar baby? y = α + βx + e = (α + βx ) + e Schat α + βx met ŷ = a + bx, ( 1 s.e. 2 (ŷ ) = s 2 y x n + (x x) 2 ) L xx e N(0, σ 2 ), schat σ 2 met s 2 y x, dus samen: s.e. 1 (y ) = s.e. 2 (ŷ ) 2 + s 2 y x = s 2 y x ( 1 n + (x x) 2 ) + 1 L xx Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 12 Arnold Kester 25 oktober 2005

14 Voorbeeld: geboortegewicht bij estriol=25 Predictie-interval: ŷ ± t n 2,1 α/2 s.e. 1 (y ) In estriol voorbeeld: a + b 25 = (3673 gram) s.e. 1 = /31 + ( ) 2 / = 4.05 Interval is dus (28.48, 44.98). Opm. Interval alleen correct als residuen zeer goed normaal verdeeld zijn. Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 13 Arnold Kester 25 oktober 2005

15 Voorspellingsinterval voor nieuwe data birthweight estriol Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 14 Arnold Kester 25 oktober 2005

16 Conclusies voorspellingsinterval Als aan de voorwaarden voldaan is, dan: Bij estriol groter dan ongeveer 19 weet je vrij zeker dat birthweight groter is dan 2500 gram. Bij alle andere waarden kan het geboortegewicht zowel groter als kleiner zijn dan 2500 gram. De waarde van de estriol bepaling is dus vrij beperkt. Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 15 Arnold Kester 25 oktober 2005

17 Fout voorbeeld in Rosner (example 11.18) Voorspellingsinterval gebaseerd op FEV data (table 11.4): 655 jongens jaar oud FEV John H., FEV=2.5 s y x = = 0.12, predictie-interval voor individu met x = 160 is (2.62, 3.18) Waarom is dit fout? height Model? (zie een v.d. volgende sheets) Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 16 Arnold Kester 25 oktober 2005

18 Modelvoorwaarden (11.6) 1. (Lineariteit) De verdeling van y heeft gemiddelde α + βx 2. (Normale verdeling) y N(α + βx, σ 2 ); waarbij σ 2 niet afhankelijk is van x 3. (Onafhankelijkheid) Voor elk paar (x 1, y 1 ), (x 2, y 2 ) zijn de fouttermen e 1 en e 2 onafhankelijk Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 17 Arnold Kester 25 oktober 2005

19 Residuenplot, opbouw birthweight estriol residual estriol residual predicted studentized residual standardized prediction Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 18 Arnold Kester 25 oktober 2005

20 Modelvoorwaarden, controleren residual predicted Lineariteit Constante variantie Normale verdeling Als je niets ziet is het goed Wat is hier het geval? Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 19 Arnold Kester 25 oktober 2005

21 Modelvoorwaarden, voorbeelden (a) (b) a) Alles OK (normaliteit?) b) Lineariteit? c) Constante variantie? (c) residual (d) height d) Wat zie je hier? En wat zie je nu in het estriol voorbeeld? Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 20 Arnold Kester 25 oktober 2005

22 Modelvoorwaarden, remedies Kwaal Remedies Opmerking Niet Andere methode komt in stroom 2.2 onafhankelijk Niet constante Transformeer y, variantie bijv. Dit beïnvloedt ook de y of log(y). verdeling en de Niet normaal Niet lineair Gewogen regressie Transformeer y Andere methode Transformeer x of y lineariteit bijv. als punten gemiddelden van verschillende aantallen subjecten zijn bijv. rangcorrelatie Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 21 Arnold Kester 25 oktober 2005

23 Correlatie, definitie en berekening (11.7) r(x, y) = = L xy Lxx L yy (xi x)(y i ȳ) (xi x) 2 (y i ȳ) 2 1 r 1 Dimensieloos Schaal-invariant Plaats-invariant r is positief: stijgend verband r is negatief: dalend verband r is nul: geen verband voorbeelden p 137 Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 22 Arnold Kester 25 oktober 2005

24 Voorbeeld: Estriol: Vervolg correlatie r = L xy / L xx L yy = 412/ = 0.61 r = s xy s x s y (covariantie s xy = L xy /(n 1)) b = r s y s x (verband met regressie) Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 23 Arnold Kester 25 oktober 2005

25 Voorbeeld: FEV versus lengte (table 11.4) 655 jongens jaar oud FEV data in plaatje: r = Zéér sterk verband Waarom is dit misleidend? height Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 24 Arnold Kester 25 oktober 2005

26 Correlatie, toets H 0 : ρ = 0 (11.8) Verband tussen cholesterol v. echtgenoten: x = cholesterol (man), y = cholesterol (vrouw). H 0 : ρ = 0, alternatief H 1 : ρ 0. Waargenomen: r = 0.25 in n = 100 paren. n 2 Toets: t = r 1 r 2 heeft onder H 0 een Student verdeling met n 2 vrijheidsgraden. Bereken t = /( ) = Conclusie? Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 25 Arnold Kester 25 oktober 2005

27 Toets voor H 0 : ρ = ρ 0 met ρ 0 0, Fisher s z-transformatie Probleem: 1 r 1 Vb. H 0 : ρ = 0.5, meer ruimte voor afwijking naar onder dan naar boven, dus r is niet symmetrisch (dus niet N en niet t) Oplossing: definieer z = 1 ( ) 1 + r 2 ln, dan is < z < 1 r Let op: Natuurlijke logaritme! Wiskundige statistiek: z is ongeveer normaal met gemiddelde z 0 = 1 ( ) ln ρ0 en variantie 1/(n 3). 1 ρ 0 Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 26 Arnold Kester 25 oktober 2005

28 dus z z 0 1/(n 3) N(0, 1). (Voorbeeld 11.31) H 0 : ρ = 0.5, waargenomen r = 0.38 (n = 100). De waargenomen z = 1 2 ln(1.38/0.62) = 0.400, de nulhypothese-waarde z 0 = 1 2 ln(1.5/0.5) = (Gebruik tabel 13 of rekenmachine) z is normaal verdeeld met variantie 1/(100 3), dus λ = ( )/ 1/97 = 1.47 is standaard normaal. p = 2(1 Φ(1.47)) = Conclusie? Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 27 Arnold Kester 25 oktober 2005

29 Correlatie, betrouwbaarheidsinterval voor ρ z = 1 ( ) 1 + r 2 ln, en laat z 0 = 1 ( ) 1 + ρ 1 r 2 ln 1 ρ Dan is z N(z 0, 1/(n 3)), dus betrouwbaarheidsinterval voor z 0 is (z 1, z 2 ) = z ± z 1 α/2 / n 3 betrouwbaarheidsinterval voor ρ = (ρ 1, ρ 2 ): terugtransformeren ρ 1 = e2z 1 1 e 2z 1 + 1, ρ 2 = e2z2 1 e 2z Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 28 Arnold Kester 25 oktober 2005

30 Opbouw betrouwbaarheidsinterval, r = 0.718, n = betrouwbaarheidsinterval voor Z Z waarde 3 b.i. voor ρ Correlatie, r 1 r=0.718 Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 29 Arnold Kester 25 oktober 2005

31 Hoe groot moet het onderzoek zijn voor H 0 : ρ = 0 Nóg een toepassing van de z-transformatie! Tweezijdige toets, onbetrouwbaarheid α. Bij het alternatief H 1 : ρ = ρ 1 is een power 1 β gewenst. Bereken z 1 = 1 ( ) ln ρ1. Let op de notatie! 1 ρ 1 n = (z 1 α/2 + z 1 β ) 2 z Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 30 Arnold Kester 25 oktober 2005

32 Vergelijken van twee onafhankelijke correlatiecoëfficiënten Dit is een z-toets op z-getransformeerde correlaties: Toetsingsgrootheid: λ = z 1 z 2 1 n n 2 3 N(0, 1) De nulhypothese wordt verworpen als λ > z 1 α/2. De p-waarde is 2Φ( λ ). Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 31 Arnold Kester 25 oktober 2005

33 Samenvatting Regressie Intervalschatting voor helling en intercept Interval voor α + βx als x gegeven is Predictie-interval voor y als x gegeven is Modelvoorwaarden en controle Correlatie Definitie en berekening Toetsen voor ρ = 0 en voor ρ = ρ 0 0 Intervalschatting voor ρ Toets voor ρ 1 = ρ 2 uit twee steekproeven Methodologie en Statistiek Universiteit Maastricht College 5: Regressie en correlatie (2): 32 Arnold Kester 25 oktober 2005

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

Enkelvoudige lineaire regressie

Enkelvoudige lineaire regressie Enkelvoudige lineaire regressie Inleiding Dit hoofdstuk sluit aan op hoofdstuk I-9 van het statistiekboek. Er wordt hier steeds gesproken over het verband tussen één afhankelijke variabele Y en één onafhankelijke

Nadere informatie

Oplossingen hoofdstuk XI

Oplossingen hoofdstuk XI Oplossingen hoofdstuk XI. Hierbij vind je de resultaten van het onderzoek naar de relatie tussen een leestest en een schoolrapport voor lezen. Deze gegevens hebben betrekking op een regressieanalyse bij

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit

College 7. Regressie-analyse en Variantie verklaren. Inleiding M&T Hemmo Smit College 7 Regressie-analyse en Variantie verklaren Inleiding M&T 2012 2013 Hemmo Smit Neem mee naar tentamen Geslepen potlood + gum Collegekaart (alternatief: rijbewijs, ID-kaart, paspoort) (Grafische)

Nadere informatie

Verband tussen twee variabelen

Verband tussen twee variabelen Verband tussen twee variabelen Inleiding Dit practicum sluit aan op hoofdstuk I-3 van het statistiekboek en geeft uitleg over het maken van kruistabellen, het berekenen van de correlatiecoëfficiënt en

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Opgave 1: (zowel 2DM40 als 2S390)

Opgave 1: (zowel 2DM40 als 2S390) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 Bjorn Winkens Methodologie en Statistiek Universiteit Maastricht 21 maart

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4) woensdag 8 oktober 9, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven Statistisch

Nadere informatie

1 vorig = omzet voorgaande jaar. Forward (Criterion: Probability-of-F-to-enter <=,050) 2 bezoek = aantal bezoeken vertegenwoordiger

1 vorig = omzet voorgaande jaar. Forward (Criterion: Probability-of-F-to-enter <=,050) 2 bezoek = aantal bezoeken vertegenwoordiger De groothandel Onderwerp: regressieanalyse met SPSS Bij: hoofdstuk 10 Een groothandel heeft onderzoek gedaan onder de klanten en daarbij geprobeerd met regressieanalyse vast te stellen wat de bepalende

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling Kwantitatieve Data Analyse (KDA) Onderzoekspracticum Sessie 2 11 Aanpassingen takenboek! Check studienet om eventuele verbeteringen te downloaden! Huidige versie takenboek: 09 Gjalt-Jorn Peters gjp@ou.nl

Nadere informatie

Meervoudige lineaire regressie

Meervoudige lineaire regressie Meervoudige lineaire regressie Inleiding In dit hoofdstuk dat aansluit op hoofdstuk II- (deel 2) wordt uitgelegd hoe een meervoudige regressieanalyse uitgevoerd kan worden met behulp van SPSS. Aan de hand

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op woensdag 12 november 2008 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op woensdag 12 november 2008 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op woensdag 2 november 28 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Regressie-analyse doel menu hulp globale werkwijze aandachtspunten Doel: Voor de uitvoering in SPSS: Missing Values Globale werkwijze

Regressie-analyse doel menu hulp globale werkwijze aandachtspunten Doel: Voor de uitvoering in SPSS: Missing Values Globale werkwijze Regressie-analyse Regressie-analyse is gericht op het voorspellen van één (numerieke) afhankelijke variabele met behulp van een of meerdere onafhankelijke variabelen (numerieke en/of dummy-variabelen).

Nadere informatie

tul Moleculaire Levenswetenschappen Stroom 2.1 2005-2006 Statistisch modelleren Werkboek

tul Moleculaire Levenswetenschappen Stroom 2.1 2005-2006 Statistisch modelleren Werkboek tul Moleculaire Levenswetenschappen Stroom 2.1 2005-2006 Statistisch modelleren Werkboek Inhoudsopgave Rooster 2 Studiemateriaal 2 Werkvormen 2 Toetsing 3 Planningsgroep 3 Traject 4 1 Rooster Dag Datum

Nadere informatie

Classification - Prediction

Classification - Prediction Classification - Prediction Tot hiertoe: vooral classification Naive Bayes k-nearest Neighbours... Op basis van predictor variabelen X 1, X 2,..., X p klasse Y (= discreet) proberen te bepalen. Training

Nadere informatie

STATISTIEK 2 VERSIE A MAT15403 1308-1. Tentamen Statistiek 2 (MAT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur

STATISTIEK 2 VERSIE A MAT15403 1308-1. Tentamen Statistiek 2 (MAT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur STTISTIEK 2 VERSIE MT15403 1308-1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 2 (MT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur EZE PGIN NIET vóór 11.00 uur OMSLN! STRT MET INVULLEN

Nadere informatie

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek

werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen scattergram cursus Statistiek cursus 23 mei 2012 werkcollege 8 correlatie, regressie - D&P5: Summarizing Bivariate Data relatie tussen variabelen onderzoek streeft naar inzicht in relatie tussen variabelen bv. tussen onafhankelijke

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4 en 2S39) op maandag 2--27, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 3 februari 2012

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 3 februari 2012 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 3 februari 2012 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 27 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN Interim Toegepaste Biostatistiek deel december 2009 Versie A ANTWOORDEN C 2 B C A 5 C 6 B 7 B 8 B 9 D 0 D C 2 A B A 5 C Lever zowel het antwoordformulier als de interim toets in Versie A 2. Dit tentamen

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

Bijlage 3: Multiple regressie analyse

Bijlage 3: Multiple regressie analyse Bijlage 3: Multiple regressie analyse REGRESSION /DESCRIPTIVES MEAN STDDEV CORR SIG N /MISSING PAIRWISE /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Kruis per vraag slechts één vakje aan op het antwoordformulier.

Kruis per vraag slechts één vakje aan op het antwoordformulier. Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

Toegepaste data-analyse: oefensessie 2

Toegepaste data-analyse: oefensessie 2 Toegepaste data-analyse: oefensessie 2 Depressie 1. Beschrijf de clustering van de dataset en geef aan op welk niveau de verschillende variabelen behoren Je moet weten hoe de data geclusterd zijn om uit

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

College 3 Meervoudige Lineaire Regressie

College 3 Meervoudige Lineaire Regressie College 3 Meervoudige Lineaire Regressie - Leary: Hoofdstuk 8 p. 165-169 - MM&C: Hoofdstuk 11 - Aanvullende tekst 3 (alinea 2) Jolien Pas ECO 2012-2013 'Computerprogramma voorspelt Top 40-hits Bron: http://www.nu.nl/internet/2696133/computerprogramma-voorspelt-top-40-hits.html

Nadere informatie

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008

Examen Statistische Modellen en Data-analyse. Derde Bachelor Wiskunde. 14 januari 2008 Examen Statistische Modellen en Data-analyse Derde Bachelor Wiskunde 14 januari 2008 Vraag 1 1. Stel dat ɛ N 3 (0, σ 2 I 3 ) en dat Y 0 N(0, σ 2 0) onafhankelijk is van ɛ = (ɛ 1, ɛ 2, ɛ 3 ). Definieer

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op maandag 2 juli uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op maandag 2 juli uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op maandag 2 juli 2012 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het gebruik

Nadere informatie

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA)

HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) HOOFDSTUK VIII VARIANTIE ANALYSE (ANOVA) DATA STRUKTUUR Afhankelijke variabele: Eén kontinue variabele Onafhankelijke variabele(n): - één discrete variabele: één gecontroleerde factor - twee discrete variabelen:

Nadere informatie

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2 Vraag 1. Voor welk van de onderstaande variabelen zal een placebo effect waarschijnlijk het grootst zijn? 1. Haarlengte. 2. Lichaamstemperatuur. 3. Mate van tevredenheid met de behandeling. 4. Hemoglobinegehalte

Nadere informatie

SPSS. Statistiek : SPSS

SPSS. Statistiek : SPSS SPSS - hoofdstuk 1 : 1.4. fase 4 : verrichten van metingen en / of verzamelen van gegevens Gegevens gevonden bij een onderzoek worden systematisch weergegeven in een datamatrix bij SPSS De datamatrix Gebruik

Nadere informatie

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 12 : Regressie en correlatie Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Regressie en correlatie p 1/26 Regressielijn Vraag : vind het

Nadere informatie

STATISTIEK 2 VERSIE A MAT Tentamen Statistiek 2 (MAT-15403) Donderdag 13 maart 2014, uur

STATISTIEK 2 VERSIE A MAT Tentamen Statistiek 2 (MAT-15403) Donderdag 13 maart 2014, uur STTISTIEK 2 VERSIE MT15403 1403-1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 2 (MT-15403) onderdag 13 maart 2014, 8.30-10.30 uur EZE PGIN NIET vóór 8.30 uur OMSLN! STRT MET INVULLEN VN

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op dinsdag 5 april 2011 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het gebruik

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag , TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op maandag 08-03-2004, 9.00-2.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

mlw stroom 2.2: Biostatistiek en Epidemiologie

mlw stroom 2.2: Biostatistiek en Epidemiologie mlw stroom 2.2: Biostatistiek en Epidemiologie Hoorcollege 1: Onderzoeksopzet en risikomaten Rosner 13.1-13.4 Capaciteitsgroep Methodologie en Statistiek tul / UM 10 januari 2006 Methodologie en Statistiek

Nadere informatie

Deze opdracht lossen we eenvoudig op door in de vergelijking X1 en X2 te vervangen door de geobserveerde waarden van deze variabelen:

Deze opdracht lossen we eenvoudig op door in de vergelijking X1 en X2 te vervangen door de geobserveerde waarden van deze variabelen: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 10 1. Volgende regressievergelijking werd opgesteld na onderzoek: YY ii = 6 + 2.5 XX ii1 + 3 XX ii2 + εε ii Bereken de voorspelde

Nadere informatie

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Faculteit der Wiskunde en Informatica 2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Opgave 1: (5 x 6 = 30 punten) (Bij deze opgave is gebruik van resultaten uit bijlage 1 noodzakelijk)

Nadere informatie

Regressie-analyse. Cursus Bachelor Project 2 B&O College 2 Harry B.G. Ganzeboom. Regressie-model en mediatie-analyse 1

Regressie-analyse. Cursus Bachelor Project 2 B&O College 2 Harry B.G. Ganzeboom. Regressie-model en mediatie-analyse 1 Regressie-analyse Cursus Bachelor Project 2 B&O College 2 Harry B.G. Ganzeboom Regressie-model en mediatie-analyse 1 Agenda Lineaire regressie-model (herhaling) Enkelvoudig (simple) Meervoudig (multiple)

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 22 april 2009 9.00-12.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het

Nadere informatie

Introductie tot de statistiek

Introductie tot de statistiek Introductie tot de statistiek Hogeschool Gent 04/05/2010 Inhoudsopgave 1 Basisbegrippen en beschrijvende statistiek 8 1.1 Onderzoek............................ 8 1.1.1 Data........................... 8

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016:

Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: Toets deel 2 Data-analyse en retrieval Vrijdag 1 Juli 2016: 11.00-13.00 Algemene aanwijzingen 1. Het is toegestaan een aan beide zijden beschreven A4 met aantekeningen te raadplegen. 2. Het is toegestaan

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) dinsdag 2-08-2003, 4.00-7.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

Gebruik van Correlatiecoëfficiënt in onderzoek

Gebruik van Correlatiecoëfficiënt in onderzoek Gebruik van Correlatiecoëfficiënt in onderzoek Wim Krijnen Lector Analyse Technieken voor Praktijkonderzoek Lectoraat Healthy Ageing, Allied Health Care and Nursing Hanze University of Applied Sciences

Nadere informatie

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur

Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 2 voor BMT (2DM50), op woensdag 10 april 2013 14.00-17.00 uur Bij het tentamen mag alleen gebruik worden gemaakt van een zakrekenmachine. Het

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

2.9 Het adolescentieonderzoek 69 2.10 Opgaven 72

2.9 Het adolescentieonderzoek 69 2.10 Opgaven 72 Inhoud Hoofdstuk 1 Design en analyse 11 1.1 Specificatie van designs 13 1.2 Definities 14 1.3 Het verschil tussen een afhankelijke variabele en een niveau van een within-subjectfactor 19 1.4 Kiezen van

Nadere informatie

College 6 Eenweg Variantie-Analyse

College 6 Eenweg Variantie-Analyse College 6 Eenweg Variantie-Analyse - Leary: Hoofdstuk 11, 1 (t/m p. 55) - MM&C: Hoofdstuk 1 (t/m p. 617), p. 63 t/m p. 66 - Aanvullende tekst 6, 7 en 8 Jolien Pas ECO 01-013 Het Experiment: een voorbeeld

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

Vragen: 1 Is de relatie tussen X en Y significant (bij alpha = 0,05)?

Vragen: 1 Is de relatie tussen X en Y significant (bij alpha = 0,05)? Vraag 1 Running-for-health In een running -for- health programma worden bij 17 mannelijke deelnemers na verloop van één jaar de volgende metingen verricht: X: aantal sprongen dat de persoon kan maken voordat

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

Reconstructie Bedrijfsstatistiek 2016

Reconstructie Bedrijfsstatistiek 2016 Reconstructie Bedrijfsstatistiek 2016 Open vragen Vraag 1 1. Bewijs dat σ^² een onvertekende schatter is voor σ²=σi 1/n * Xi² 2. Bereken de variantie van o^² 3. Is de schatter consistent? 4. Teken chi-kwadraat

Nadere informatie

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient

Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient Opdracht 4a ----------- Spreidingsdiagram, kleinste-kwadraten regressielijn, correlatiecoefficient In 1738 werd in de haven van Stockholm voor een aantal landen voor elk land geregistreerd hoeveel schepen

Nadere informatie

laboratory for industrial mathematics eindhoven Endinet Regressie-analyse Energiekamer

laboratory for industrial mathematics eindhoven Endinet Regressie-analyse Energiekamer Endinet Regressie-analyse Energiekamer Laboratory for Industrial Mathematics Eindhoven Postbus 513 5600 MB Eindhoven tel.: 040 247 4875 fax: 040 244 2489 e-mail: lime@tue.nl WWW: http://www.lime.tue.nl

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

HOOFDSTUK. Logistische regressie

HOOFDSTUK. Logistische regressie HOOFDSTUK 15 Logistische regressie I N L E I D I N G De enkelvoudige en meervoudige of multipele lineaire regressiemethoden die we in de hoofdstukken 10 en 11 bestudeerden, worden als model gebruikt voor

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

E Y = ln(β 1 x) ln β 1 + β 2

E Y = ln(β 1 x) ln β 1 + β 2 Tentamen Statistische Methoden MST STM 1 april 2009, 9.00 12.00 uur Toelichting. Een antwoord alleen is niet voldoende: er dient een motivatie, toelichting of berekening aanwezig te zijn. Gebruik, tenzij

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Inleveren: uiterlijk maandag 6 februari 16.00 bij Marianne Jonker (Kamer: R3.46) Afspraken De opdrachten maak je in tweetallen. Schrijf duidelijk

Nadere informatie

Analyse van kruistabellen

Analyse van kruistabellen Analyse van kruistabellen Inleiding In dit hoofdstuk, dat aansluit op hoofdstuk II-13 (deel2) van het statistiekboek wordt ingegaan op het analyseren van kruistabellen met behulp van SPSS. Met een kruistabel

Nadere informatie

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)?

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)? Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs Vraag 2. In een

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Studentnaam: Studentnummer: Voorblad bij tentamen (in te vullen door de examinator) Vaknaam:Biostatistiek en Lineaire Algebra Vakcode: 2DM81 Datum: Begintijd:13.30 Eindtijd: 16.30 Aantal pagina s:2 voor

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Vraag 1. Welk design bevat geen random assignment:

Vraag 1. Welk design bevat geen random assignment: Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs ch14 p.375 Vraag

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

toetskeuze schema verschillen in gemiddelden

toetskeuze schema verschillen in gemiddelden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets week 5: het toetsen van

Nadere informatie

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid

Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Robuustheid regressiemodel voor kapitaalkosten gebaseerd op aansluitdichtheid Dr.ir. P.W. Heijnen Faculteit Techniek, Bestuur en Management Technische Universiteit Delft 22 april 2010 1 1 Introductie De

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

4 Meervoudige lineaire regressie

4 Meervoudige lineaire regressie 4 Meervoudige lineaire regressie In het vorige hoofdstuk is enkelvoudige lineaire regressie besproken. Hierbij was er slechts één onafhankelijke variabele. In de praktijk zijn er echter gevallen waarin

Nadere informatie

4 Domein STATISTIEK - versie 1.2

4 Domein STATISTIEK - versie 1.2 USolv-IT - Boomstructuur DOMEIN STATISTIEK - versie 1.2 - c Copyrighted 42 4 Domein STATISTIEK - versie 1.2 (Op initiatief van USolv-IT werd deze boomstructuur mede in overleg met het Universitair Centrum

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Wat gaan we doen? Help! Statistiek! Wat is een lineaire relatie? De rechte-lijn-vergelijking: Y = a + b X. Relatie tussen gewicht en lengte

Wat gaan we doen? Help! Statistiek! Wat is een lineaire relatie? De rechte-lijn-vergelijking: Y = a + b X. Relatie tussen gewicht en lengte Help! Statistiek! Wat gaan we doen? Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Derde woensdag in de maand,

Nadere informatie

Examenvragen KBM/EMS 09-15

Examenvragen KBM/EMS 09-15 THEORIE Examenvragen KBM/EMS 09-15 Je krijgt een logistisch model met lineaire predictor = beta 0. Leid via de maximum likelihoodfunctie een schatter af voor beta 0. Bewijs met principale componenten Vraag

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Studentnaam: Studentnummer: Voorblad bij tentamen (in te vullen door de examinator) Vaknaam:Biostatistiek & Lineaire Algebra Vakcode: DM80 Datum: 14-4-015 Begintijd:13.30 Eindtijd: 16.30 Aantal pagina

Nadere informatie

Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009

Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009 Statistiek 1 Blok 6, Werkgroepopdrachten 11-6-2009 Opdracht 1 Onderstaande tabel bevat metingen aan de opbrengst van rozen bij verschillende mate van stikstofen fosfortoevoer. rozen/snijvak/dag fosfaatniveau

Nadere informatie

Residual Plot for Strength. predicted Strength

Residual Plot for Strength. predicted Strength Uitwerking tentamen DS mei 4 Opgave Een uitwerking geven is hier niet mogelijk. Het is van belang het iteratieve optimaliseringsproces goed uit te voeren (zie ook de PowerPoint sheets): screening design

Nadere informatie

Schriftelijk tentamen - UITWERKINGEN

Schriftelijk tentamen - UITWERKINGEN Business Administration / Bedrijfskunde Schriftelijk tentamen - UITWERKINGEN Algemeen Vak : Statistische Methoden Groep : niet van toepassing en Technieken Vakcode : BKB009t Soort tentamen : gesloten boek

Nadere informatie

Lineaire regressie - het toetsen van samenhang tussen twee variabelen -

Lineaire regressie - het toetsen van samenhang tussen twee variabelen - - Lesbrief - Lineaire regressie - het toetsen van samenhang tussen twee variabelen- - Doelgroep Klas 5 t/m 6 havo en vwo, docent liefst in samenspraak met leerlingen Vakken en domeinen Biologie VWO Algemene

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

Statistiek. Statistiek in het laboratorium van de ziekenhuisapotheek; deel 1.

Statistiek. Statistiek in het laboratorium van de ziekenhuisapotheek; deel 1. Statistiek Statistiek in het laboratorium van de ziekenhuisapotheek; deel 1. M.C. de Brouwer M.C.J. Langen Laboratorium van de ziekenhuisapotheek Midden-Brabant Maria ziekenhuis Dr. Deelenlaan 5 5042 AD

Nadere informatie