Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing"

Transcriptie

1 Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing M, M & C, Chapter 6, Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Use and Abuse of Tests Francis Ysidro Edgeworth ( ) Law of Diminishing Returns schreef Mathematical Psychics (1881) onwikkelde de significantie toets 1

2 Statistische Inferentie: Hoe trekken we conclusies uit data rekening houdend met toevalseffecten? zonder hypothese:schatten Inferentie met hypothese: toetsen Inferentie begint met schatten. De steekproef statistiek als indicatie voor de parameter in de populatie (het model). estimator (schatter): estimate (schatting): estimation (schatting): procedure om parameter te schatten resultaat van de procedure in bepaald geval het schatten (bezigheid, niet het resultaat) Een schatting zonder indicatie van de nauwkeurigheid heeft weinig waarde. Bepalen van statistische betrouwbaarheid (confidence). NB Verschil met psychometrische betrouwbaarheid (reliability). 2

3 Steekproevenverdeling is het Basisinstrument Stel we hebben testscores verzameld (σ = 90) in een steekproef met n = 400. De Centrale Limiet Stelling zegt dat x bij benadering normaal verdeeld is: x N(µ, σ/ n) σ x = = = 4.5 kans van 95% dat x niet meer dan 9 punten van µ af ligt. (Waarom?) dus ook kans van 95% dat µ niet verder dan 9 punten van x af ligt 3

4 Betrouwbaarheidsintervallen: Algemene Redenering Elk betrouwbaarheidsinterval bestaat uit 2 stukken: puntschatting ± foutenmarge Het interval heeft de vorm (a, b) waarbij a en b uit de data worden berekend. Kansuitspraak zegt wat er zou kunnen gebeuren bij herhaald sampelen: in 95% (of 99%) van de gevallen zal µ inderdaad binnen de marges vallen Dit is betrouwbaarheidsnivo C. 4

5 Betrouwbaarheidsinterval voor Populatiegemiddelde met σ bekend x ± z * σ n Voorbeeld: Testscores hebben een verdeling N(3, 0.8). In nieuwe studie met n = 50 vinden we x = Wat is het 95% CI of 95% betrouwbaarheidsinterval? standaard normale verdeling De oppervlakte C onder normale verdeling ligt in het interval [ z*, z*]. Opzoeken in Tabel A (of Tabel D, onderste rij, gelabeld ). 5

6 Het 95% CI of 95% betrouwbaarheidsinterval? σ x ± z * n ± ± [2.14, 2.58] 6

7 Eigenschappen van Betrouwbaarheidsintervallen Het interval is gebaseerd op de steekproevenverdeling van x en is exact wanneer de populatieverdeling normaal is. Anders is het interval bij benadering correct voor grote steekproeven. De steekproef moet een SRS zijn x is gevoelig voor uitbijters, dus interval ook checken! foutenmarge houdt alleen rekening met random trekkingsfouten Als data niet normaalverdeeld zijn en de steekproef klein is, kunnen we toch een betrouwbaarheids-interval bepalen door een steekproevenverdeling te simuleren. 7

8 Bootstrappen (optrekken aan straps, MM&C: 368) We gaan er dan van uit dat populatieverdeling gelijk is aan verdeling in steekproef. a) We trekken een groot aantal nieuwe steekproeven en doen dit met teruglegging. b) We bepalen steeds x en sorteren deze waarden van x Het 95% bootstrap CI omvat alle waarden van x behalve de 2.5% grootste en de 2.5% kleinste waarden. 8

9 Wat te doen als het Interval te breed is? Gebruik lager betrouwbaarheidsnivo (kleinere C kleinere z*) Vergroot de steekproef (grotere n) Verklein σ (Hoe?) Omgekeerde toepassing: Hoe kiezen we de Steekproefgrootte? Voor de foutenmarge m geldt: m = σ z * σ z * σ z * n = n = n m m 2 Voorbeeld: Hoeveel observaties hebben we nodig om iemands gemiddelde reactietijd schatten met marge van 10ms en C = 95%? [σ reactietijd = 25ms] 9

10 Hoeveel observaties hebben we nodig? m = z * σ n n = = n = n = 25 2 n z * σ = m

11 Let op de interpretatie van een CI Een random steekproef van 85 studenten aan de Chicago City High School neemt deel aan een cursus om hun SAT scores te verbeteren. Gebaseerd op resultaten van deze studenten wordt het 90% CI voor de gemiddelde verbetering in SAT scores berekend: [72.3; 91.4]. De correcte interpretatie van dit interval is... dat de kans 90% is dat de ware gemiddelde verbetering tussen de 72.3 en 91.4 punten ligt. dat 90% van de studenten in de steekproef hun scores tussen de 72.3 en 91.4 punten verbeterden dat 90% van de studenten in de populatie hun scores tussen de 72.3 en 91.4 punten zouden verbeteren Geen van bovenstaande alternatieven is correct 11

12 Statistisch Toetsen: Weerleggen van Toevalsfluctuatie als Oorzaak Het resultaat dat in een steekproef gevonden wordt moet bestand zijn tegen de tegenwerping: "Dit resultaat is het gevolg van toeval!". De tegenwerping heet nul-hypothese. In de statistiek is een hypothese een uitspraak over parameters in populatie of model. Ingrediënten Statistische toets A. Van onderzoekshypothese naar H 0 en H a (of H 1 ) B. Toetsingsgrootheid & steekproevenverdeling C. Verwerpingsgebied & acceptatiegebied D. P-waarde & statistische significantie 12

13 Ingrediënt A: H 0 en H a (of H 1) H 0 : Nul Hypothese Betreft gespecificeerde parameterwaarde Uitspraak waarvan we de juistheid willen weerleggen. "geen effect of "geen verschil hypothese. H a : Alternatieve Hypothese Kan 1-zijdig of 2-zijdig zijn. Uitspraak waarop we terugvallen als H 0 niet houdbaar blijkt. De interessante hypothese, onderzoeksvraag. Voorbeelden groep waarvan we bijzondere verbale begaafdheid verwachten twee groepen die random aan treatment/control zijn toegewezen twee variabelen waartussen men een verband veronderstelt 13

14 1-zijdige of 2-zijdige Alternatieve Hypothese? De kennis en verwachting vooraf over het steekproefresultaat bepaalt de keuze voor 1- of 2-zijdige Alternatieve hypothese. Stel een test met µ = 10. Dit wordt nu opnieuw onderzocht. De kennis / verwachting vooraf is beperkt tot: steekproefresultaat wijst op afwijkende populatiewaarde gebruik 2-zijdige hypothese. H 0 : µ = 10 H a : µ 10 De kennis / verwachting vooraf bevat een richting bijv.: steekproefresultaat wijst op grotere populatiewaarde gebruik 1-zijdige hypothese. H 0 : µ = 10 H a : µ > 10 14

15 Ingrediënt B: Toetsingsgrootheid met Steekproevenverdeling Een toetsingsgrootheid (test statistic) meet de verenigbaarheid tussen de steekproefstatistiek en de populatieparameter. Bijv.: Om het verschil tussen x en µ te toetsen gebruiken we als toetsingsgrootheid het gestandaardiseerde verschil: z = x µ σ n Als H 0 waar is, dan ligt x dicht bij gespecificeerde µ. Als H a waar is, dan ligt x ver van gespecificeerde µ af. Om H 0 te kunnen verwerpen moeten we van de toetsstatistiek de steekproevenverdeling kennen als H 0 waar is. Bijv. Als H 0 : µ = 100 en X is normaal verdeeld, dan volgt z de standaard normale verdeling N(0, 1) (waarom?). 15

16 Ingrediënt C: Verwerpingsgebied en Handhavingsgebied In de eenvoudigste vorm bestaat een significantie toets uit het verifiëren waar de steekproefwaarde van de toetsingsgrootheid (test statistic) valt, met een vooraf gekozen verwerpingskans α (alfa). 1-zijdige toets, α = 5% 2-zijdige toets, α = 5% z HHandhaaf H 0 Verwerp H 0 Verwerp H 0 Handhaaf H 0 Verwerp H 0 Voor gegeven α is 1-zijdig toetsen altijd te prefereren (indien mogelijk) boven 2-zijdig toetsen (waarom?). z 16

17 Ingrediënt C: Verwerpingsgebied en Handhavingsgebied Handhaaf H 0 Verwerp H 0 Handhavingsgebied: die waarden op de x-as uit een steekproevenverdeling, waarvoor men H 0 handhaaft. Verwerpingsgebied: die waarden op de x-as uit een steekproevenverdeling, waarvoor men H 0 verwerpt. De grens tussen beide gebieden wordt bepaald door α en de * bijbehorende waarde op de x-as (bijv. x, te bepalen via z*). Hoe groot eenzijdig tweezijdig kies je α? α = 5% z* = z* = en dus z*? α = 1% z* = z* =

18 Ingrediënt D : P-waarde en Statistische Significantie De P-waarde is de waarschijnlijkheid onder de H 0 verdeling dat de toetsingsgrootheid (Z) een waarde zou aannemen, even extreem als of extremer dan de uit de steekproef berekende waarde (bijv z=1.4). 1-zijdig toetsen 2-zijdig toetsen z=1.4, P=0.08 z=-1.4, P=0.08 z=1.4, P= z z NB Hoe kleiner de P-waarde, des te sterker de evidentie tegen H 0. Als P-waarde < α, dan spreken we van significantie op nivo α. Met kennis van de P-waarde is toetsen op ieder niveau mogelijk. 18

19 Het Toetsen van een Gemiddelde: de z-toets Deze toets is in voorafgaande als voorbeeld gebruikt. De toets is van toepassing op alle kwantitatieve variabelen met bekende σ. Bij een service-afdeling was de tijd om te reageren op een klacht normaal verdeeld met een gemiddelde van 2 uur en een standaarddeviatie van 0.25 uur. Men meent dat de tijd tegenwoordig gemiddeld wat langer is. Een random sample van 25 gevallen geeft een gemiddelde tijd van 2.10 uur. Is dit wel of niet in tegenspraak met de eerdere situatie (2 uur)? Wat is de P-waarde van de toets. Hypothesen? Waarde toetsingsgrootheid, α, verwerpingsgebied? P-waarde? Conclusie 19

20 Hypothesen? H 0 : µ = 2 H a : µ > 2 Waarde toetsingsgrootheid, verwerpingsgebied? x µ z = = σ 0.25 n 25 P-waarde? P(Z > 2)= = = met α = 5% Conclusie Verwerp H 0 20

21 Relatie tussen Significantie Toets en Betrouwbaarheidsinterval Een 2-zijdige significantie toets op nivo α verwerpt de nulhypothese precies wanneer µ 0 buiten het betrouwbaarheidsinterval 1-α valt. Voorbeeld: zie sheet 5. Gegeven: populatie N(3, 0.8). steekproef n = 50, x = % CI = [2.14, 2.58]. Hoe hangen het 95%CI en de 2-zijdige significantie toets met elkaar samen? 21

22 a) b) H 0 : µ = 3 H a : µ 3 95% CI = [2.14, 2.58] en µ = 3. Conclusie? α=5% z*=1.960 in één figuur: z = x σ µ = n = = %CI x 22

23 Gebruik & Misbruik van Toetsen: Gedragsregels voor Evaluatie 1. Kiezen van het significantie nivo: er is geen scherpe grens tussen significant en niet significant, alleen maar sterkere evidentie tegen H 0 naarmate de P-waarde kleiner is. Dus is P- waarde informatiever. 2. Significante effecten kunnen heel klein zijn. Denk aan de rol van n. Bijvoorbeeld een significant verschil in IQ van 1 punt. 3. Gebrek aan significantie betekent niet dat H 0 waar is of H a fout. 4. Zonder een vorm van randomisatie in het onderzoeksontwerp is een significant resultaat niet te interpreteren. 5. Een heleboel toetsen doen op dezelfde steekproef geeft altijd wel enig significant verschil. Hier zijn speciale maatregelen nodig (zie volgende sheet). 6. Geen exploratie en confirmatie op dezelfde data. 23

24 Voorbeeld: Verifiëren of een Steekproef Representatief is Vaak moet men aannemelijk maken dat getrokken steekproef inderdaad representatief is. Dit kan men doen door op een aantal belangrijke eigenschappen (leeftijd, opleidingsniveau, en diverse testscores) de gemiddelden te toetsen. De Bonferroni procedure beschermt tegen te veel significante resultaten: als k toetsen gezamenlijk α moeten hebben, wordt bij elke afzondelijke toets α/k gebruikt. Hoe valt dit bij volgende 6 uit? α = 0.05 α/6 = toets-1 toets-2 toets-3 toets-4 toets-5 toets-6 P-waarde α = 5% apart SIG SIG SIG SIG Bonferroni SIG SIG 25

25 Tot Besluit SCHATTEN EN TOETSEN: Er zijn twee typen inferentie: o voeg een foutenmarge toe aan een steekproefstatistiek, o kijk of een toetsingsgrootheid in een staart van de steekproevenverdeling van H 0 ligt (of niet) Bij toetsing gaat het om kwantificatie van de evidentie vóór of tegen de H 0 Met een betrouwbaarheidsinterval zijn alle mogelijke H 0 s (tweezijdig) te toetsen Stof Volgende Week: Moore, McCabe & Craig, hoofdstuk 7 Inference for Distributions 7.1 Inference for the Mean of a Population 7.2 Comparing Two Means 26

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen M, M & C 7.3 Optional Topics in Comparing Distributions: F-toets 6.4 Power & Inference as a Decision 7.1 The power of the t-test 7.3 The power of the sample t- Toetsende Statistiek Week 5. De F-toets &

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

toetskeuze schema verschillen in gemiddelden

toetskeuze schema verschillen in gemiddelden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets week 5: het toetsen van

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Sheets K&S voor INF HC 10: Hoofdstuk 12

Sheets K&S voor INF HC 10: Hoofdstuk 12 Sheets K&S voor INF HC 1: Hoofdstuk 12 Statistiek Deel 1: Schatten (hfdst. 1) Deel 2: Betrouwbaarheidsintervallen (11) Deel 3: Toetsen van hypothesen (12) Betrouwbaarheidsintervallen (H11) en toetsen (H12)

Nadere informatie

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet? Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid

Nadere informatie

werkcollege 7 - D&P10: Hypothesis testing using a single sample

werkcollege 7 - D&P10: Hypothesis testing using a single sample cursus 11 mei 2012 werkcollege 7 - D&P10: Hypothesis testing using a single sample huiswerk opgaven Ch.9: 1, 8, 11, 12, 20, 26, 36, 37, 71 Activities 9.3 en 9.4 experimenten zelf deelnemen als proefpersoon

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

College 2 Enkelvoudige Lineaire Regressie

College 2 Enkelvoudige Lineaire Regressie College Enkelvoudige Lineaire Regressie - Leary: Hoofdstuk 7 tot p. 170 (Advanced Correlational Strategies) - MM&C: Hoofdstuk 10 (Inference for Regression) - Aanvullende tekst 3 Jolien Pas ECO 011-01 Correlatie:

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

Sheets hoorcollege 1 (over paragraaf 7.1) Uitgewerkte opgaven week 6 Antwoorden uitgewerkte opgaven week 6

Sheets hoorcollege 1 (over paragraaf 7.1) Uitgewerkte opgaven week 6 Antwoorden uitgewerkte opgaven week 6 MATERIALEN BIJ STATISTIEK (1991) JANUARI 010 Sheets hoorcollege 1 (over paragraaf 7.1) Uitgewerkte opgaven week 1 Antwoorden uitgewerkte opgaven week 1 11 15 Power-point sheets hoorcollege (over paragraaf

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Beschrijvende statistiek Beschrijvende en toetsende statistiek Beschrijvend Samenvatting van gegevens in de steekproef van onderzochte personen (gemiddelde, de standaarddeviatie, tabel, grafiek) Toetsend

Nadere informatie

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages.

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages. MARGES EN SIGNIFICANTIE BIJ STEEKPROEFRESULTATEN. De marges van percentages Metingen via een steekproef leveren een schatting van de werkelijkheid. Het toevalskarakter van de steekproef heeft als consequentie,

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling Kwantitatieve Data Analyse (KDA) Onderzoekspracticum Sessie 2 11 Aanpassingen takenboek! Check studienet om eventuele verbeteringen te downloaden! Huidige versie takenboek: 09 Gjalt-Jorn Peters gjp@ou.nl

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

3de bach HI. Econometrie. Volledige samenvatting. uickprinter Koningstraat Antwerpen A 11,00

3de bach HI. Econometrie. Volledige samenvatting. uickprinter Koningstraat Antwerpen A 11,00 3de bach HI Econometrie Volledige samenvatting Q www.quickprinter.be uickprinter Koningstraat 13 2000 Antwerpen 170 A 11,00 Practicum 0: Herhaling statistiek Hier vindt u een kort overzicht van enkele

Nadere informatie

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking Opdracht 9a ----------- t-procedures voor een enkelvoudige steekproef Voor de meting van de leesvaardigheid van kinderen wordt als toets de Degree of Reading Power (DRP) gebruikt. In een onderzoek onder

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur Kansrekening en statistiek wi2105in deel 2 27 januari 2010, 14.00 16.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na

Nadere informatie

Toetsende Statistiek Week 7. Verdelingsvrije toetsen

Toetsende Statistiek Week 7. Verdelingsvrije toetsen Toetsende Statistiek eek 7. Verdelingsvrije toetsen MM&C, 15 Nonparametric Tests 15.1 2 Independent Samples Chemicus Ontwikkelde de Rank-Sum test en Signed-Rank test (1945) 15.2 2 Dependent Samples NB

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt A. Effect & het onderscheidingsvermogen Effectgrootte (ES) De effectgrootte (effect size) vertelt ons iets over hoe relevant de relatie tussen twee variabelen is in de praktijk. Er zijn twee soorten effectgrootten:

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Statistiek voor A.I. College 14. Dinsdag 30 Oktober

Statistiek voor A.I. College 14. Dinsdag 30 Oktober Statistiek voor A.I. College 14 Dinsdag 30 Oktober 1 / 16 2 Deductieve statistiek Orthodoxe statistiek 2 / 16 Grootte steekproef Voorbeeld NU.nl 26 Oktober 2012: Helft broodjes döner kebab vol bacteriën.

Nadere informatie

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies

Nadere informatie

Inhoud. Woord vooraf 13. Hoofdstuk 1. Inductieve statistiek in onderzoek 17. Hoofdstuk 2. Kansverdelingen en kansberekening 28

Inhoud. Woord vooraf 13. Hoofdstuk 1. Inductieve statistiek in onderzoek 17. Hoofdstuk 2. Kansverdelingen en kansberekening 28 Inhoud Woord vooraf 13 Hoofdstuk 1. Inductieve statistiek in onderzoek 17 1.1 Wat is de bedoeling van statistiek? 18 1.2 De empirische cyclus 19 1.3 Het probleem van de inductieve statistiek 20 1.4 Statistische

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

College 6 Eenweg Variantie-Analyse

College 6 Eenweg Variantie-Analyse College 6 Eenweg Variantie-Analyse - Leary: Hoofdstuk 11, 1 (t/m p. 55) - MM&C: Hoofdstuk 1 (t/m p. 617), p. 63 t/m p. 66 - Aanvullende tekst 6, 7 en 8 Jolien Pas ECO 01-013 Het Experiment: een voorbeeld

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Kruis per vraag slechts één vakje aan op het antwoordformulier.

Kruis per vraag slechts één vakje aan op het antwoordformulier. Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor

Nadere informatie

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE DEEL 3 INDUCTIEVE STATISTIEK INHOUD H 10: INLEIDING TOT DE INDUCTIEVE STATISTIEK H 11: PUNTSCHATTING 11.1 ALGEMEEN 11.1.1 Definities 11.1.2 Eigenschappen 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE 11.3

Nadere informatie

Kansverdelingen Inductieve statistiek met Geogebra 4.2

Kansverdelingen Inductieve statistiek met Geogebra 4.2 Kansverdelingen Inductieve statistiek met Geogebra 4.2 Brecht Dekeyser Pedic 20 november 2013 Gent 1 Inhoud Nieuw in Geogebra 4.2 Kansverdelingen: Berekeningen en grafische voorstellingen Manueel in rekenblad

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen.

Tentamen Inleiding Intelligente Data Analyse Datum: Tijd: , BBL 420 Dit is geen open boek tentamen. Tentamen Inleiding Intelligente Data Analyse Datum: 19-12-2002 Tijd: 9.00-12.00, BBL 420 Dit is geen open boek tentamen. Algemene aanwijzingen 1. U mag ten hoogste één A4 met aantekeningen raadplegen.

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op dinsdag , uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek voor TeMa (S95) op dinsdag 3-03-00, 9- uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en

Nadere informatie

7.1 Toets voor het gemiddelde van een normale verdeling

7.1 Toets voor het gemiddelde van een normale verdeling Hoofdstuk 7 Toetsen van hypothesen Toetsen van hypothesen is, o.a. in de medische en chemische wereld, een veel gebruikte statistische techniek. Het wordt vaak gebruikt om een gevestigde norm eventueel

Nadere informatie

SOCIALE STATISTIEK (deel 2)

SOCIALE STATISTIEK (deel 2) SOCIALE STATISTIEK (deel 2) D. Vanpaemel KU Leuven D. Vanpaemel (KU Leuven) SOCIALE STATISTIEK (deel 2) 1 / 57 Hoofdstuk 5: Schatters en hun verdeling 5.1 Steekproefgemiddelde als toevalsvariabele D. Vanpaemel

Nadere informatie

Inhoudsopgave. Deel I Schatters en toetsen 1

Inhoudsopgave. Deel I Schatters en toetsen 1 Inhoudsopgave Deel I Schatters en toetsen 1 1 Hetschattenvanpopulatieparameters.................. 3 1.1 Inleiding:schatterversusschatting................. 3 1.2 Hetschattenvaneengemiddelde..................

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

variantie: achtergronden en berekening

variantie: achtergronden en berekening variantie: achtergronden en berekening Hugo Quené opleiding Taalwetenschap Universiteit Utrecht 8 sept 1995 aangepast 8 mei 007 1 berekening variantie Als je de variantie met de hand moet uitrekenen, is

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 10 Donderdag 20 Oktober 1 / 1 2 Statistiek Vandaag: Hypothese toetsen 2 / 1 3 / 1 Terzijde NU.nl 19 oktober 2011: Veel Facebookvrienden wijst op grotere hersenen. (http://www.nu.nl/wetenschap/2645008/veel-facebookvrienden-wijst-groterehersenen-.html)

Nadere informatie

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen SPSS Introductiecursus Sanne Hoeks Mattie Lenzen Statistiek, waarom? Doel van het onderzoek om nieuwe feiten van de werkelijkheid vast te stellen door middel van systematisch onderzoek en empirische verzamelen

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Open en Gepersonaliseerd Statistiekonderwijs (OGS) Deliverable 1.1 Requirements

Open en Gepersonaliseerd Statistiekonderwijs (OGS) Deliverable 1.1 Requirements Open en Gepersonaliseerd Statistiekonderwijs (OGS) Deliverable 1.1 Requirements Sietske Tacoma, Susanne Tak, Henk Hietbrink en Wouter van Joolingen Inleiding Het doel van dit project is om een aantal vrij

Nadere informatie

Experimenteel en Correlationeel Onderzoek (ECO)

Experimenteel en Correlationeel Onderzoek (ECO) Experimenteel en Correlationeel Onderzoek (ECO) In veel onderzoek is het ultieme doel: Het vaststellen van oorzaak-gevolg (causale) relaties Rode draad ECO: Met behulp van onderzoek zo goed mogelijk uitspraken

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Hoofdstuk 13. De omvang van een steekproef bepalen

Hoofdstuk 13. De omvang van een steekproef bepalen Hoofdstuk 13 De omvang van een steekproef bepalen Steekproefnauwkeurigheid Steekproefnauwkeurigheid: verwijst naar hoe dicht een steekproefgrootheid (bijvoorbeeld het gemiddelde van de antwoorden op een

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse 10.1 Eenwegs-variantieanalyse: Als we gegevens hebben verzameld van verschillende groepen en we willen nagaan of de populatiegemiddelden van elkaar verscihllen,

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

Klantonderzoek: statistiek!

Klantonderzoek: statistiek! Klantonderzoek: statistiek! Statistiek bij klantonderzoek Om de resultaten van klantonderzoek juist te interpreteren is het belangrijk de juiste analyses uit te voeren. Vaak worden de mogelijkheden van

Nadere informatie

Cursus Statistiek 2. Fellowonderwijs Opleiding Intensive Care. UMC St Radboud, Nijmegen

Cursus Statistiek 2. Fellowonderwijs Opleiding Intensive Care. UMC St Radboud, Nijmegen Cursus Statistiek 2 Fellowonderwijs Opleiding Intensive Care UMC St Radboud, Nijmegen Cursus Statistiek 2 Steekproefgrootte en power berekening Vergelijken van gemiddelden (T-testen) Niet-parametrische

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

Statistiek = leuk + zinvol

Statistiek = leuk + zinvol Statistiek = leuk + zinvol Doel 1: Doel : Doel 3: zie titel een statistisch onderzoek kunnen beoordelen een statistisch onderzoek kunnen opzetten een probleem vertalen in standaardmethoden gegevens verzamelen,

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Statistiek voor A.I. College 12. Dinsdag 23 Oktober

Statistiek voor A.I. College 12. Dinsdag 23 Oktober Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets Vandaag Onderzoeksmethoden: Statistiek 4 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap: Hypothese toetsen t-toets

Nadere informatie

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009

EIND TOETS TOEGEPASTE BIOSTATISTIEK I. 30 januari 2009 EIND TOETS TOEGEPASTE BIOSTATISTIEK I 30 januari 2009 - Dit tentamen bestaat uit vier opgaven onderverdeeld in totaal 2 subvragen. - Geef bij het beantwoorden van de vragen een zo volledig mogelijk antwoord.

Nadere informatie

DEZE PAGINA NIET vóór 8.30u OMSLAAN!

DEZE PAGINA NIET vóór 8.30u OMSLAAN! STTISTIEK 1 VERSIE MT15303 1308 1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 5 augustus 2013, 8.30-10.30 uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER,

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

Hoofdstuk 4 Hypothese toetsen

Hoofdstuk 4 Hypothese toetsen a b Hoofdstuk 4 Hypothese toetsen 4. Werken met steekproeven bladzijde 84 (a) de onderzoeker ondervraagt alleen mannen (b) hij ondervraagt slechts mensen die een winkelwagen hebben gepakt (c) hij doet

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 18 t-toetsen 2 / 18 Steekproefgemiddelde en -variantie van normale observaties Stelling. Laat X 1,..., X n o.o. zijn en N(µ, σ 2 )-verdeeld. Dan:

Nadere informatie

Ook voor Hersenen & Gedrag zijn er samenvattingen beschikbaar. Kijk op onze site voor meer informatie en om ze te bestellen.

Ook voor Hersenen & Gedrag zijn er samenvattingen beschikbaar. Kijk op onze site voor meer informatie en om ze te bestellen. Voorwoord Dit is het overzicht van de hoorcollegestof Methoden, technieken en statistiek 1 voor psychologen. De stof die tijdens de hoorcolleges is behandeld, wordt samengevat in dit verslag. Ook voor

Nadere informatie

Inductieve statistiek voor informatiewetenschappers

Inductieve statistiek voor informatiewetenschappers INDUCTIEVE STATISTIEK VOOR INFORMATIEWETENSCHAPPERS I 570 1 Inductieve statistiek voor informatiewetenschappers HENK VOORBIJ 1. Inleiding Er zijn twee soorten statistiek: beschrijvende en inductieve (ook

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

a. Wanneer kan men in plaats van de Pearson correlatie coefficient beter de Spearman rangcorrelatie coefficient berekenen?

a. Wanneer kan men in plaats van de Pearson correlatie coefficient beter de Spearman rangcorrelatie coefficient berekenen? Opdracht 15a ------------ Spearman rangcorrelatie coefficient (non-parametrische tegenhanger van de Pearson correlatie coefficient) Wilcoxon symmetrie-toets (non-parametrische tegenhanger van de t-procedure

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Experimenteel en Correlationeel Onderzoek

Experimenteel en Correlationeel Onderzoek Experimenteel en Correlationeel Onderzoek In veel onderzoek is het doel: Het vaststellen van oorzaak-gevolg (causale) relaties Criteria voor causaliteit 1. Samenhang (correlatie, covariantie) 2. Opeenvolging

Nadere informatie

introductie kansen pauze meer kansen random variabelen transformaties ten slotte

introductie kansen pauze meer kansen random variabelen transformaties ten slotte toetsende statistiek week 1: kansen en random variabelen Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 4: Probability: The Study of Randomness 4.1: Randomness 4.2: Probability

Nadere informatie

Faculteit Economie en Bedrijfskunde studiejaar

Faculteit Economie en Bedrijfskunde studiejaar Faculteit Economie en Bedrijfskunde studiejaar 03-04 VOORBLAD Op deze eerste pagina vindt u belangrijke informatie met betrekking tot dit tentamen. Lees de hierna volgende informatie aandachtig door voordat

Nadere informatie

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN Interim Toegepaste Biostatistiek deel december 2009 Versie A ANTWOORDEN C 2 B C A 5 C 6 B 7 B 8 B 9 D 0 D C 2 A B A 5 C Lever zowel het antwoordformulier als de interim toets in Versie A 2. Dit tentamen

Nadere informatie

Toegepaste Statistiek, Week 6 1

Toegepaste Statistiek, Week 6 1 Toegepaste Statistiek, Week 6 1 Eén ordinale en één nominale variabele Nominale variabele met TWEE categorieën, 1 en 2 Ordinale variabele normaal verdeeld binnen iedere categorie? Variantie in beide categorieën

Nadere informatie

Statistiek is zo saai nog niet! Een integratie van theorie en praktijk Manfred te Grotenhuis

Statistiek is zo saai nog niet! Een integratie van theorie en praktijk Manfred te Grotenhuis Docentendag Arnhem, 19 maart 2013 Statistiek is zo saai nog niet! Een integratie van theorie en praktijk Manfred te Grotenhuis Statistiek is zo saai nog niet: de boeken 2 Basiscursus SPSS Hoe is het ontstaan?

Nadere informatie

EXAMEN : Basisbegrippen statistiek. Examen 16 januari 2015

EXAMEN : Basisbegrippen statistiek. Examen 16 januari 2015 EXAMEN : Basisbegrippen statistiek Examen 16 januari 2015 Oplossingen 1 Vraag 1 a) Leg in max. 3 lijnen uit wat een dichtheidsfunctie is en illustreer met 3 duidelijk verschillende voorbeelden. Een (kans)

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

KWANTITATIEF TESTEN. experimenteel ontwerp (MIT 14) statistische analyse (MIT 15)

KWANTITATIEF TESTEN. experimenteel ontwerp (MIT 14) statistische analyse (MIT 15) KWANTITATIEF TESTEN experimenteel ontwerp (MIT 14) statistische analyse (MIT 15) tips Google Wikipedia MIT 14, 15 stats.stackexhchange.com ander onderzoek dat lijkt op het jouwe experimenteel ontwerp kwantitatieve

Nadere informatie

Beschrijvend statistiek

Beschrijvend statistiek 1 Beschrijvend statistiek 1. In een school werd het intelligentiequotiënt gemeten van de leerlingen van het zesde jaar (zie tabel). De getallen werden afgerond tot op de eenheid. De berekeningen mogen

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen.

Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. Het gebruik van een grafische rekenmachine is toegestaan tijdens dit tentamen, alsmede één A4-tje met aantekeningen. 1. (a) In de appendix van deze vraag, is een dataset gegeven met de corresponderende

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 17-11-2003 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een zakrekenmachine.

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie