toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

Maat: px
Weergave met pagina beginnen:

Download "toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden"

Transcriptie

1 toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 7: Inference for Distributions 7.1: Inference for the Mean of a Population 7.2: Comparing Two Means week 5: het toetsen van varianties: de F-toets week 6: het toetsen van tellingen: de χ 2 -toets week 7: verdelingsvrije toetsen Frank Busing, Universiteit Leiden 1/36 deze week: wat hebben we al geleerd? de one-sample z-toets verschillende alternatieve hypothese vormen: 1- (links of rechts) en 2-zijdig de relatie tussen toetsstatistiek en steekproevenverdeling van een statistiek de criterium waarde voor α (α = 0.05) de relatie tussen z en p tegenover z en α kennis en begrip van het betrouwbaarheidsinterval de relatie tussen betrouwbaarheidsinterval en 2-zijdig toetsen 2/36

2 toetsen van gemiddelde een tekortkoming van de z-test is dat we de standaarddeviatie van de populatie σ moeten weten om de standaarddeviatie van de steekproevenverdeling σ/ n uit te rekenen echter, in de praktijk is σ meestal onbekend we kunnen dus geen z = x µ σ/ n uitrekenen, maar wel t = x µ s/ n we schatten de standaarddeviatie van de populatie σ met de standaarddeviatie van de steekproef s dus we schatten de standaarddeviatie van de steekproevenverdeling van x, σ/ n met de standaardfout voor het gemiddelde van de steekproef 1 SE x = s n de standaardfout wordt doorgaans aangeduid met SE, afkorting voor standard error 3/36 t-verdeling familie het schatten van de standaarddeviatie van x met de standaardfout SE x = s/ n gaat beter voor een grotere n (denk aan de wet van de grote getallen) naarmate n groter wordt, wordt s een betrouwbaardere schatter van σ tot die tijd gebruiken we een andere steekproevenverdeling van x: de t-verdeling de t-verdeling is eigenlijk een hele familie van verdelingen elke lid van de familie wordt aangeduid met zijn vrijheidsgraden: df 2 voor elke aantal vrijheidsgraden is er een aparte t-verdeling het aantal vrijheidsgraden hangt af van steekproefgrootte n df = degrees of freedom 4/36

3 t-verdeling versus standaard normaal 1 t-verdeling is afhankelijk van het aantal vrijheidsgraden (df) 2 door de dikkere staart (bij kleine df) is de t-toets convervatiever 3 als df dan t(df) N(0,1) 5/36 t-tabel Table entry for pand C is the critical value t * with probability p lying to its right and probability C lying between t * and t *. t* Probability p TABLE D t distribution critical values Upper-tail probability p df /36

4 t-tabel TABLE D t distribution critical values Upper-tail probability p df z * % 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% Confidence level C 7/36 de one-sample t-toets het toetsen van één gemiddelde met de t-toets andere steekproefgegevens: n = 10, x = 9.45 en s = stappenplan one-sample t-toets: 1 hypothese H 0 : µ = 9 en H a : µ 9 2 steekproevenverdeling t verdeeld met df = n 1 = 10 1 = 9 3 toetsingsgrootheid t = (x µ)/(s/ n) = (9.45 9)/ = verwerpingsgebied α = 0.05,df = 9,t = (kolom α = 0.025) 5 statistische conclusie t = < = t en H 0 wordt niet verworpen 6 inhoudelijke conclusie eekhoorns verzamelen evenveel voedsel na onthouding merk op dat deze tweezijdige toetsing H 0 niet verwerpt maar dat een éénzijdige toetsing dat wel gedaan zou hebben want t = voor α = 0.05 en t = ligt verder van nul 8/36

5 SPSS: one-sample t-test results One-Sample Statistics N Mean Std. Deviation Std. Error Mean grams / 10 One-Sample Test Test Value = 9 95% Confidence Interval Mean of the Difference t df Sig. (2-tailed) Difference Lower Upper grams ( )/ Gemiddeld genomen verzamelen uitgehongerde eekhoorns (M=9.45, SE=.2212) niet meer of minder dan 9 gram voedsel, t(9) = 2.034,p = /36 conclusie one-sample t-toets de one-sample t-toets is gelijk aan de one-sample z-toets behalve dat de standaarddeviatie van de populatie σ geschat wordt met de standaarddeviatie van de steekproef s en de standaarddeviatie van de steekproevenverdeling van x met SE x = s/ n en dat daardoor de standaard normaal verdeling N(0, 1) vervangen wordt door de t-verdeling t(df) 10/36

6 voorbeeld we verzamelen 12 proefpersonen met extreme angst voor spinnen elke proefpersoon krijgt een echte spin te zien en dezelfde spin op een foto we meten de angst van de proefpersoon na elke spin (twee momenten) de onderzoeker verwacht meer angst voor de echte spin dan voor de foto ervan 3 uit: William Wallace Denslow (1902). Denslow s Mother Goose. 11/36 verschilscores twee afhankelijke observaties kunnen worden verkregen 1 per paar, gepaard op bepaalde eigenschappen bijvoorbeeld: medicijn met controle op sexe en leeftijd 2 per persoon, gemeten op verschillende momenten bijvoorbeeld: vooruitgang studenten bij toetsende statistiek in het spinnen-angst-voorbeeld zijn twee gepaarde observaties: de foto- en de echte spinnenangst van één en dezelfde proefpersoon het verschil tussen de twee metingen wordt getoetst er wordt dus eerst een verschilscore bepaald: d i = x i1 x i2 (echt - foto) vervolgens wordt er een one-sample t-toets uitgevoerd op de verschilscores d de µ onder H 0 is (meestal) nul, dus H 0 : µ = µ 1 µ 2 = 0 ofwel H 0 : µ 1 = µ 2 12/36

7 de t-toets voor afhankelijke steekproeven het toetsen van twee gemiddelden uit twee afhankelijk steekproeven steekproefgegevens: n = 12, d = 7.0 en s = stappenplan paired-samples t-toets: 4 1 hypothese H 0 : µ = 0 en H a : µ > 0 2 steekproevenverdeling t verdeeld met df = n 1 = 11 3 toetsingsgrootheid t = d/(s/ n) = 7.0/(9.807/3.464) = verwerpingsgebied α = 0.05,df = 11,t = statistische conclusie t = > = t en H 0 wordt verworpen 6 inhoudelijke conclusie er is een verschil: een echte spin geeft meer angst dan een foto ervan paired-samples t-toets = dependent-samples t-toets 13/36 SPSS: one-sample t-test results One-Sample Statistics N Mean Std. Deviation Std. Error Mean diff One-Sample Test / 12 Test Value = 0 Sig. (2- Mean 95% Confidence Interval of the Difference t df tailed) Difference Lower Upper diff ( )/ merk op dat SPSS de p-waarde geeft voor tweezijdige toetsing: Sig. (2-tailed) voor éénzijdige toetsing deel je deze waarde door 2: 0.031/2 = /36

8 SPSS: paired-samples t-test results Paired Samples Statistics Pair 1 real picture Mean N Std. Deviation Std. Error Mean Paired Samples Test Paired Differences Std. Error Mean 95% Confidence Interval of the Difference Std. Sig. (2- Mean Deviation Lower Upper t df tailed) Pair 1 real - picture / 12 ( )/ Gemiddeld genomen ervaren proefpersonen significant meer angst voor echte spinnen (M = 47.00,SE = 3.18) dan voor foto s van spinnen (M = 40.00,SE = 2.68), t(11) = 2.473,p = /36 twee onafhankelijke steekproeven twee situaties waarin twee onafhankelijke steekproeven ontstaan: 1 vanuit 1 populatie (bijvoorbeeld de studenten populatie): verzamel een aantal proefpersonen verdeel de proefpersonen at random over twee groepen geef elke groep zijn eigen interventie meet het gemiddelde voor elke groep toets het verschil in gemiddelden 2 vanuit 2 populaties (bijvoorbeeld een mannen en vrouwen populatie): trek twee random steekproeven, één uit elke populatie meet het gemiddelde voor elke groep toets het verschil in gemiddelden 16/36

9 two-samples t-toets de toetsstatistiek voor 2 onafhankelijke steekproeven is t-toetsstatistiek t = x 1 x 2 (µ 1 µ 2 ) standaardfout het verschil tussen de steekproefgemiddelden x 1 x 2 wordt vergeleken met het te verwachten verschil tussen de populatiegemiddelden µ 1 µ 2 onder H 0 de nul hypothese is meestal H 0 : µ 1 = µ 2, zodat (µ 1 µ 2 ) wegvalt de standaardfout is een verhaal apart 17/36 standaardfout indien σ 1 σ 2 als σ 1 en σ 2 niet ongeveer gelijk zijn (vuistregel: σ 1 σ 2 als s 1 en s 2 meer dan factor 2 van elkaar verschillen) dan is de standaardfout van de steekproevenverdeling van x 1 x 2 standaardfout indien σ 1 σ 2 s 2 1 SE x1 x 2 = + s2 2 n 1 n 2 begrip: de variantie van het verschil 1 tussen 2 observaties is σ 2 1 plus σ2 2 2 tussen de som van n 1 plus n 2 observaties is n 1 σ 2 1 plus n 2σ tussen de gemiddelden is dan σ 2 1 /n 1 plus σ 2 2 /n 2 het aantal vrijheidsgraden is hier (conservatief) df = min(n 1 1,n 2 1) dus de kleinste waarde van n 1 1 en n SPSS berekent het aantal vrijheidsgraden iets nauwkeuriger (zie MM&C, p.441) 18/36

10 standaardfout indien σ 1 = σ 2 als σ 1 en σ 2 gelijk zijn dan is de t-verdeling exact er is dan een gecombineerde schatter (pooled estimator) voor de variantie pooled variance estimator s 2 p = (n 1 1)s 2 1 +(n 2 1)s 2 2 n 1 +n 2 2 de standaardfout van de steekproevenverdeling van x 1 x 2 is nu standaardfout indien σ 1 = σ 2 s 2 p SE x1 x 2 = + s2 p 1 = s p + 1 n 1 n 2 n 1 n 2 het aantal vrijheidsgraden is hier df = n 1 +n /36 de t-toets voor onafhankelijke steekproeven het toetsen van twee gemiddelden uit twee onafhankelijk steekproeven steekproefgegevens: n 1 = 12,x 1 = 47,s 1 = n 2 = 12,x 2 = 40,s 2 = aanname σ 1 σ 2 geeft SE x1 x 2 = / /12 = stappenplan independent-samples t-toets voor σ 1 σ 2 : 1 hypothese H 0 : µ 1 = µ 2 en H a : µ 1 > µ 2 2 steekproevenverdeling t verdeeld met df = 12 1 = 11 3 toetsingsgrootheid t = (x 1 x 2 )/SE = (47 40)/4.163 = verwerpingsgebied α = 0.05,df = 11,t = statistische conclusie t = < = t en H 0 wordt niet verworpen 6 inhoudelijke conclusie geen verschil tussen echte en foto spinnenangst 20/36

11 de t-toets voor onafhankelijke steekproeven het toetsen van twee gemiddelden uit twee onafhankelijk steekproeven steekproefgegevens: n 1 = 12,x 1 = 47,s 1 = n 2 = 12,x 2 = 40,s 2 = aanname σ 1 = σ 2 geeft s 2 p = ( )/22 = 104 SE x1 x 2 = 104 1/12+1/12 = stappenplan independent-samples t-toets voor σ 1 = σ 2 : 1 hypothese H 0 : µ 1 = µ 2 en H a : µ 1 > µ 2 2 steekproevenverdeling t verdeeld met df = = 22 3 toetsingsgrootheid t = (x 1 x 2 )/SE = (47 40)/4.163 = verwerpingsgebied α = 0.05,df = 22,t = statistische conclusie t = < = t en H 0 wordt niet verworpen 6 inhoudelijke conclusie geen verschil tussen echte en foto spinnenangst 21/36 SPSS: independent-samples t-test results Group Statistics anxiety group N Mean Std. Deviation Std. Error Mean real picture Independent Samples Test ( / /12) anxiety Equal variances assumed Equal variances not assumed Levene's Test for Equality of Variances t-test for Equality of Means Sig. (2- Mean Std. Error 95% Confidence Interval of the Difference F Sig. t df tailed) Difference Difference Lower Upper ( )/4.163 Gemiddeld genomen ervaren proefpersonen meer angst voor echte spinnen (M = 47.00,SE = 3.18) dan voor foto s van spinnen (M = 40.00,SE = 2.68). Dit verschil was niet significant t(22) = 1.681,p = /36

12 between- versus within-subject designs kies voor within-subjects designs (dependent samples of paired-samples) 1 de individuele variabiliteit is verwijderd uit de standaardfout (kleinere s) dus meer power 2 er zijn minder proefpersonen nodig (maar wel wat langer) kies voor between-subjects designs (independent samples) 1 geen order effects (geen counterbalancing nodig) 2 geen carry-over effect (geen tussentijd nodig) 23/36 afhankelijke versus onafhankelijke t-toets vergelijking van de twee two-samples t-toetsen op dezelfde gegevens afhankelijke steekproef (paired-samples t-toets) 1 hypothese H 0 : µ = 0 en H a : µ > 0 2 steekproevenverdeling t verdeeld met df = n 1 = 11 3 toetsingsgrootheid t = d/(s/ n) = 7.0/2.831 = verwerpingsgebied α = 0.05,df = 11,t = statistische conclusie t = > = t en H 0 wordt wel verworpen 6 inhoudelijke conclusie wel verschil tussen echte en foto spinnenangst onafhankelijke steekproef (independent samples t-toets) 1 hypothese H 0 : µ 1 = µ 2 en H a : µ 1 > µ 2 2 steekproevenverdeling t verdeeld met df = = 22 3 toetsingsgrootheid t = (x 1 x 2 )/SE = 7.0/4.163 = verwerpingsgebied α = 0.05,df = 22,t = statistische conclusie t = < = t en H 0 wordt niet verworpen 6 inhoudelijke conclusie geen verschil tussen echte en foto spinnenangst een dependent-samples t-toets heeft meer power door een kleinere standaardfout 24/36

13 samenvatting: de t-toets 1 one-sample t-toets: t = (x µ)/(s/ n) 2 two-samples t-toets: 1 dependent samples t-toets: t = d/(s/ n), waarbij d = x 1 x 2 2 independent samples t-toets: 1 unequal variances: t = (x 1 x 2 )/ s 2 1 /n 1 +s 2 2 /n 2 2 equal variances: t = (x 1 x 2 )/ s 2 p/n 1 +s 2 p/n 2 25/36 vorige week een betrouwbaarheidsinterval zegt iets over de nauwkeurigheid van een schatting we schatten het populatiegemiddelde met het steekproefgemiddelde (natuurlijk) is deze schatting niet altijd precies goed, maar beter wanneer de spreiding in de populatie kleiner is de steekproef groter is het betrouwbaarheidsniveau wordt aangegeven met C een betrouwbaarheidsniveau van C = 0.95 geeft 95% zekerheid dat het gemiddelde van de populatie in het interval ligt een betrouwbaarheidsniveau van C = 0.50 geeft 50% zekerheid dat het gemiddelde van de populatie in het interval ligt: dit zal een veel kleiner interval zijn bij herhaald steekproef trekken ligt µ in 100C% van de gevallen in het interval we zijn bij één interval dus 100C% zeker dat µ in het interval ligt 26/36

14 one-sample betrouwbaarheidsinterval voor µ betrouwbaarheidinterval indien σ bekend betrouwbaarheidsinterval = puntschatting ± foutenmarge = x±z σ/ n x is het gemiddelde van de steekproef, de schatting van µ z wordt bepaald door het betrouwbaarheidsniveau C σ/ n is de spreiding van de steekproevenverdeling echter, in de praktijk is σ meestal onbekend we schatten de standaarddeviatie van de populatie σ met de standaarddeviatie van de steekproef s betrouwbaarheidinterval indien σ onbekend betrouwbaarheidsinterval = puntschatting ± foutenmarge = x±t s/ n er zijn nu een aantal varianten mogelijk... 27/36 overzicht betrouwbaarheidsintervallen betrouwbaarheidsinterval = puntschatting ± foutenmarge puntschatting one sample x two samples x 1 x 2 betrouwbaarheidsniveau one sample two samples σ 1 σ 2 σ 1 = σ 2 σ bekend z z z σ onbekend t (n 1) t (min(n 1 1,n 2 1)) t (n 1 +n 2 2) standaardfout one sample two samples σ 1 σ 2 σ 1 = σ 2 σ bekend σ/ n σ 2 1 /n 1 +σ 2 2 /n 2 σ 2 1 /n 1 +σ 2 2 /n 2 σ onbekend s/ n s 2 1 /n 1 +s 2 2 /n 2 s 2 p/n 1 +s 2 p/n 2 waarbij s 2 p = [ (n 1 1)s 2 1 +(n 2 1)s 2 2] /(n1 +n 2 2) 28/36

15 voorbeeld wat is het 95% betrouwbaarheidsinterval voor µ van onze nieuwe uitgehongerde eekhoorns? steekproefgegevens: n = 10, x = 9.45 en s = er is slechts één steekproef 2 σ is niet bekend 3 betrouwbaarheidsniveau C = 0.95 t = (α/2 = 0.025, df = 9) CI µ = x±t s n = 9.45± = 9.45± het 95% betrouwbaarheidsinterval voor µ is [8.95, 9.95] 29/36 SPSS: voorbeeld het 95% betrouwbaarheidsinterval voor µ is [8.95, 9.95] CI µ = x±t s n = 9.45± = 9.45± SPSS bepaalt in deze gevallen het betrouwbaarheidsinterval voor µ min testwaarde CI µ 9.0 = (x 9.0)±t s n = ( )± = 0.45± het 95% betrouwbaarheidsinterval voor µ 9.0 is [ 0.05, 0.95] 30/36

16 SPSS: one-sample CI results CI µ 9.0 = ( )± = 0.45± [ 0.05,0.95] One-Sample Statistics N Mean Std. Deviation Std. Error Mean grams One-Sample Test Test Value = 9 95% Confidence Interval Mean of the Difference t df Sig. (2-tailed) Difference Lower Upper grams x /36 voorbeeld wat is het 95% betrouwbaarheidsinterval voor µ 1 µ 2 van de foto- en echte angst voor spinnen? steekproefgegevens: n 1 = 12,x 1 = 47,s 1 = n 2 = 12,x 2 = 40,s 2 = er zijn twee steekproeven 2 σ is niet bekend 3 s 1 s 2 s 2 p = [ (n 1 1)s 2 1 +(n 2 1)s 2 2] /(n1 +n 2 2) = betrouwbaarheidsniveau C = 0.95 t = (α/2 = 0.025, df = 22) CI µ1 µ 2 = (x 1 x 2 )±t s 2 p/n 1 +s 2 p/n 2 = (47 40)± / /12 = 7±8.634 het 95% betrouwbaarheidsinterval voor µ 1 µ 2 is [ 1.634,15.634] 32/36

17 SPSS: independent-samples CI results CI µ1 µ 2 = (47 40)± = 7±8.634 [ 1.634,15.634] Group Statistics anxiety group N Mean Std. Deviation Std. Error Mean real picture Independent Samples Test x anxiety Equal variances assumed Equal variances not assumed Levene's Test for Equality of Variances t-test for Equality of Means Sig. (2- Mean Std. Error 95% Confidence Interval of the Difference F Sig. t df tailed) Difference Difference Lower Upper nul ligt in het interval. wat betekent dat? /36 aannamen we schatten de standaarddeviatie van x met de standaardfout SE x = s/ n naarmate n groter wordt, wordt s een betere schatter van σ (ongeacht verdeling) maar hoe groot is groot genoeg? 1 de steekproef komt uit een populatie met een normale verdeling t is t -verdeeld met df = n 1 bij gelijke n is 2 keer 5 observaties al voldoende 2 de steekproef komt uit een populatie zonder normale verdeling n < 15: probleem n 15: symmetrisch en geen uitbijters: t bij benadering t -verdeeld n 40: t bij benadering t -verdeeld n groot: t bij benadering normaal verdeeld conclusie: controleer n en de verdeling van de (verschil)scores (per groep) 34/36

18 deze week: wat hebben we geleerd? de one-sample t-toets de two-samples t-toets voor on- en afhankelijke steekproeven het verschil tussen een t-toets voor on- en afhankelijke steekproeven het begrip gepoolde variantie de verschillende standaardfouten voor de independent samples t-toets betrouwbaarheidsinterval voor one- en two-samples z- en t-toets aannamen voor de t-toets 35/36 deze week: wat moeten we nog leren? het uitvoeren en beoordelen van een one-sample t-toets het uitvoeren en beoordelen van een two-samples t-toets voor zowel afhankelijke als onafhankelijke steekproeven het uitvoeren en beoordelen van een two-samples z-toets het bepalen en beoordelen van een one-sample betrouwbaarheidsinterval en een two-samples betrouwbaarheidsinterval voor bekende en onbekende σ 36/36

toetskeuze schema verschillen in gemiddelden

toetskeuze schema verschillen in gemiddelden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets week 5: het toetsen van

Nadere informatie

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte

introductie toetsen power pauze hypothesen schatten ten slotte introductie toetsen power pauze hypothesen schatten ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing M, M & C, Chapter 6, Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Use and Abuse

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

Kruis per vraag slechts één vakje aan op het antwoordformulier.

Kruis per vraag slechts één vakje aan op het antwoordformulier. Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor

Nadere informatie

S0A17D: Examen Sociale Statistiek (deel 2)

S0A17D: Examen Sociale Statistiek (deel 2) S0A17D: Examen Sociale Statistiek (deel 2) 21 juni 2011 Naam : Jaar en studierichting : Lees volgende aanwijzingen eerst voor het examen te beginnen : Wie de vragen aanneemt en bekijkt, moet minstens 1

Nadere informatie

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN Interim Toegepaste Biostatistiek deel december 2009 Versie A ANTWOORDEN C 2 B C A 5 C 6 B 7 B 8 B 9 D 0 D C 2 A B A 5 C Lever zowel het antwoordformulier als de interim toets in Versie A 2. Dit tentamen

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets

Vandaag. Onderzoeksmethoden: Statistiek 4. Recap: Hypothese toetsen. Recap: One-sample t-toets Vandaag Onderzoeksmethoden: Statistiek 4 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap: Hypothese toetsen t-toets

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking

Hierbij is het steekproefgemiddelde x_gemiddeld= en de steekproefstandaardafwijking Opdracht 9a ----------- t-procedures voor een enkelvoudige steekproef Voor de meting van de leesvaardigheid van kinderen wordt als toets de Degree of Reading Power (DRP) gebruikt. In een onderzoek onder

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling

Aanpassingen takenboek! Statistische toetsen. Deze persoon in een verdeling. Iedereen in een verdeling Kwantitatieve Data Analyse (KDA) Onderzoekspracticum Sessie 2 11 Aanpassingen takenboek! Check studienet om eventuele verbeteringen te downloaden! Huidige versie takenboek: 09 Gjalt-Jorn Peters gjp@ou.nl

Nadere informatie

Cursus Statistiek 2. Fellowonderwijs Opleiding Intensive Care. UMC St Radboud, Nijmegen

Cursus Statistiek 2. Fellowonderwijs Opleiding Intensive Care. UMC St Radboud, Nijmegen Cursus Statistiek 2 Fellowonderwijs Opleiding Intensive Care UMC St Radboud, Nijmegen Cursus Statistiek 2 Steekproefgrootte en power berekening Vergelijken van gemiddelden (T-testen) Niet-parametrische

Nadere informatie

SPSS Opstarten & gegevens inlezen Gegevens verkennen Beschrijvende statistiek

SPSS Opstarten & gegevens inlezen Gegevens verkennen Beschrijvende statistiek Opstarten & gegevens inlezen *Inlezen gegevens Via eerste scherm bij opening SPSS of via File; Open; Data. Opletten of namen van variabelen op de eerste rij staan ( Staat ) Opm.: Bij.TXT bestand altijd

Nadere informatie

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren:

We berekenen nog de effectgrootte aan de hand van formule 4.2 en rapporteren: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 4 1. Toets met behulp van SPSS de hypothese van Evelien in verband met de baardlengte van metalfans. Ga na of je dezelfde conclusies

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Beschrijvende statistiek Beschrijvende en toetsende statistiek Beschrijvend Samenvatting van gegevens in de steekproef van onderzochte personen (gemiddelde, de standaarddeviatie, tabel, grafiek) Toetsend

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

introductie kansen pauze meer kansen random variabelen transformaties ten slotte

introductie kansen pauze meer kansen random variabelen transformaties ten slotte toetsende statistiek week 1: kansen en random variabelen Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 4: Probability: The Study of Randomness 4.1: Randomness 4.2: Probability

Nadere informatie

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 Bjorn Winkens Methodologie en Statistiek Universiteit Maastricht 21 maart

Nadere informatie

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen M, M & C 7.3 Optional Topics in Comparing Distributions: F-toets 6.4 Power & Inference as a Decision 7.1 The power of the t-test 7.3 The power of the sample t- Toetsende Statistiek Week 5. De F-toets &

Nadere informatie

Nominaal Ordinaal Interval (ratio) Nominaal - Kwalitatief - Laagste niveau - Categorieën niet ordenen - Geslacht

Nominaal Ordinaal Interval (ratio) Nominaal - Kwalitatief - Laagste niveau - Categorieën niet ordenen - Geslacht Nominaal - Kwalitatief - Laagste niveau - Categorieën niet ordenen - Geslacht Ordinaal - Kwalitatief - Middelste niveau - Categorieën wel ordenen - Opleidingsniveau Interval / ratio - Kwantitatief - Hoogste

Nadere informatie

De data worden ingevoerd in twee variabelen, omdat we te maken hebben met herhaalde metingen:

De data worden ingevoerd in twee variabelen, omdat we te maken hebben met herhaalde metingen: INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 6 1. De 15 leden van een kleine mountainbikeclub vragen zich af in welk mate de omgevingstemperatuur een invloed heeft op hun

Nadere informatie

werkcollege 7 - D&P10: Hypothesis testing using a single sample

werkcollege 7 - D&P10: Hypothesis testing using a single sample cursus 11 mei 2012 werkcollege 7 - D&P10: Hypothesis testing using a single sample huiswerk opgaven Ch.9: 1, 8, 11, 12, 20, 26, 36, 37, 71 Activities 9.3 en 9.4 experimenten zelf deelnemen als proefpersoon

Nadere informatie

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)?

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)? Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs Vraag 2. In een

Nadere informatie

Opgave 1: (zowel 2DM40 als 2S390)

Opgave 1: (zowel 2DM40 als 2S390) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

College 6 Eenweg Variantie-Analyse

College 6 Eenweg Variantie-Analyse College 6 Eenweg Variantie-Analyse - Leary: Hoofdstuk 11, 1 (t/m p. 55) - MM&C: Hoofdstuk 1 (t/m p. 617), p. 63 t/m p. 66 - Aanvullende tekst 6, 7 en 8 Jolien Pas ECO 01-013 Het Experiment: een voorbeeld

Nadere informatie

Extra Opgaven. 3. Van 10 personen meten we 100 keer de hartslag na het sporten. De gemiddelde hartslag van

Extra Opgaven. 3. Van 10 personen meten we 100 keer de hartslag na het sporten. De gemiddelde hartslag van Extra Opgaven 1. Een persoon doet een HIV-test. Helaas is de uitslag positief. De test is echter niet perfect. De persoon vraagt zich af wat de kans is dat hij nu ook echt HIV heeft. Gegeven is: de kans

Nadere informatie

Vertaling van enkele termen uit de kansrekening en statistiek alternative hypothesis alternatieve hypothese approximate methods benaderende methoden asymptotic variance asymptotische variantie asymptotically

Nadere informatie

Twee en een half jaar Kwaliteitsmeting in de Fysiotherapie

Twee en een half jaar Kwaliteitsmeting in de Fysiotherapie Twee en een half jaar Kwaliteitsmeting in de Fysiotherapie Feiten en cijfers tot nu toe Managementsamenvatting Na twee en een half jaar kwaliteitsmetingen in de fysiotherapie is het een geschikt moment

Nadere informatie

χ 2 -toets voor homogeniteit χ 2 -toets voor goodness-of-fit ten slotte

χ 2 -toets voor homogeniteit χ 2 -toets voor goodness-of-fit ten slotte toetsede statistiek week 1: kase e radom variabele week 2: de steekproeveverdelig week 3: schatte e toetse: de z-toets week 4: het toetse va gemiddelde: de t-toets week 5: het toetse va variaties: de F-toets

Nadere informatie

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt A. Effect & het onderscheidingsvermogen Effectgrootte (ES) De effectgrootte (effect size) vertelt ons iets over hoe relevant de relatie tussen twee variabelen is in de praktijk. Er zijn twee soorten effectgrootten:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Statistiek in HBO scripties

Statistiek in HBO scripties Statistiek in HBO scripties Wim Krijnen Lector Analyse Technieken voor Praktijkonderzoek Lectoraat Transparante Zorgverlening Hanze University of Applied Sciences January 29, 2015 Wim Krijnen Lector Analyse

Nadere informatie

Inductieve statistiek voor informatiewetenschappers

Inductieve statistiek voor informatiewetenschappers INDUCTIEVE STATISTIEK VOOR INFORMATIEWETENSCHAPPERS I 570 1 Inductieve statistiek voor informatiewetenschappers HENK VOORBIJ 1. Inleiding Er zijn twee soorten statistiek: beschrijvende en inductieve (ook

Nadere informatie

mlw stroom 2.1: Statistisch modelleren

mlw stroom 2.1: Statistisch modelleren mlw stroom 2.1: Statistisch modelleren College 5: Regressie en correlatie (2) Rosner 11.5-11.8 Arnold Kester Capaciteitsgroep Methodologie en Statistiek Universiteit Maastricht Postbus 616, 6200 MD Maastricht

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Verdelingsvrije statistiek

Verdelingsvrije statistiek Verdelingsvrije statistiek Inleiding In hoofdstuk II-5 (deel ) worden een aantal verdelingsvrije toetsen (ook wel niet-parametrische toetsen) besproken, die gebruikt worden als de te onderzoeken variabele

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4 en 2S39) op maandag 2--27, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

M M M M M M M M M M M M M M La La La La La La La Mid Mid Mid Mid Mid Mid Mid 65 56 83 68 64 47 59 63 93 65 75 68 68 51

M M M M M M M M M M M M M M La La La La La La La Mid Mid Mid Mid Mid Mid Mid 65 56 83 68 64 47 59 63 93 65 75 68 68 51 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 7 1. Een onderzoeker wil nagaan of de fitheid van jongeren tussen 14 en 18 jaar (laag, matig, hoog) en het geslacht (M, V) een

Nadere informatie

a. Wanneer kan men in plaats van de Pearson correlatie coefficient beter de Spearman rangcorrelatie coefficient berekenen?

a. Wanneer kan men in plaats van de Pearson correlatie coefficient beter de Spearman rangcorrelatie coefficient berekenen? Opdracht 15a ------------ Spearman rangcorrelatie coefficient (non-parametrische tegenhanger van de Pearson correlatie coefficient) Wilcoxon symmetrie-toets (non-parametrische tegenhanger van de t-procedure

Nadere informatie

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages.

Figuur 1: Voorbeelden van 95%-betrouwbaarheidsmarges van gemeten percentages. MARGES EN SIGNIFICANTIE BIJ STEEKPROEFRESULTATEN. De marges van percentages Metingen via een steekproef leveren een schatting van de werkelijkheid. Het toevalskarakter van de steekproef heeft als consequentie,

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

STATISTIEK 2 VERSIE A MAT Tentamen Statistiek 2 (MAT-15403) Donderdag 13 maart 2014, uur

STATISTIEK 2 VERSIE A MAT Tentamen Statistiek 2 (MAT-15403) Donderdag 13 maart 2014, uur STTISTIEK 2 VERSIE MT15403 1403-1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 2 (MT-15403) onderdag 13 maart 2014, 8.30-10.30 uur EZE PGIN NIET vóór 8.30 uur OMSLN! STRT MET INVULLEN VN

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Ook voor Hersenen & Gedrag zijn er samenvattingen beschikbaar. Kijk op onze site voor meer informatie en om ze te bestellen.

Ook voor Hersenen & Gedrag zijn er samenvattingen beschikbaar. Kijk op onze site voor meer informatie en om ze te bestellen. Voorwoord Dit is het overzicht van de hoorcollegestof Methoden, technieken en statistiek 1 voor psychologen. De stof die tijdens de hoorcolleges is behandeld, wordt samengevat in dit verslag. Ook voor

Nadere informatie

Toetsende Statistiek Week 7. Verdelingsvrije toetsen

Toetsende Statistiek Week 7. Verdelingsvrije toetsen Toetsende Statistiek eek 7. Verdelingsvrije toetsen MM&C, 15 Nonparametric Tests 15.1 2 Independent Samples Chemicus Ontwikkelde de Rank-Sum test en Signed-Rank test (1945) 15.2 2 Dependent Samples NB

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4) woensdag 8 oktober 9, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven Statistisch

Nadere informatie

Meervoudige variantieanalyse

Meervoudige variantieanalyse Meervoudige variantieanalyse Inleiding In dit hoofdstuk, dat aansluit op hoofdstuk II-12 (deel2) van het statistiekboek, wordt besproken hoe met SPSS gemiddelden van verschillende groepen met elkaar vergeleken

Nadere informatie

Statistiek 2 deel A 30 minuten over statistisch toetsen

Statistiek 2 deel A 30 minuten over statistisch toetsen Statistiek 2 deel A 30 minuten over statistisch toetsen R.J. Baars, MSc Kruytgebouw N710 r.j.baars@uu.nl februari 2014 Opbouw van statistiek Statistiek 1 (periode 2: vandaag) Dit college + zelfstudie +

Nadere informatie

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet? Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

variantie: achtergronden en berekening

variantie: achtergronden en berekening variantie: achtergronden en berekening Hugo Quené opleiding Taalwetenschap Universiteit Utrecht 8 sept 1995 aangepast 8 mei 007 1 berekening variantie Als je de variantie met de hand moet uitrekenen, is

Nadere informatie

STATISTIEK 2 VERSIE A MAT15403 1308-1. Tentamen Statistiek 2 (MAT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur

STATISTIEK 2 VERSIE A MAT15403 1308-1. Tentamen Statistiek 2 (MAT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur STTISTIEK 2 VERSIE MT15403 1308-1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 2 (MT-15403) Maandag 5 augustus 2013, 11.00-13.00 uur EZE PGIN NIET vóór 11.00 uur OMSLN! STRT MET INVULLEN

Nadere informatie

Pilot vragenlijst communicatieve redzaamheid

Pilot vragenlijst communicatieve redzaamheid Pilot vragenlijst communicatieve redzaamheid Het instrument Communicatieve redzaamheid kan worden opgevat als een vermogen om wederkerig te communiceren met behulp van woorden, gebaren of symbolen. Communicatief

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Onderzoek. B-cluster BBB-OND2B.2

Onderzoek. B-cluster BBB-OND2B.2 Onderzoek B-cluster BBB-OND2B.2 Succes met leren Leuk dat je onze bundels hebt gedownload. Met deze bundels hopen we dat het leren een stuk makkelijker wordt. We proberen de beste samenvattingen voor jou

Nadere informatie

Enkelvoudige lineaire regressie

Enkelvoudige lineaire regressie Enkelvoudige lineaire regressie Inleiding Dit hoofdstuk sluit aan op hoofdstuk I-9 van het statistiekboek. Er wordt hier steeds gesproken over het verband tussen één afhankelijke variabele Y en één onafhankelijke

Nadere informatie

Rapport Lectoraat elearning

Rapport Lectoraat elearning Rapport Lectoraat elearning INHOLLAND Hogeschool Rotterdam, 24 mei 05 Door: In opdracht: Chablis Platenburg Lectoraat elearning, Lector Dr. G. Wijngaards, INHOLLAND Hogeschool 1. ICT gebruik van INHOLLAND

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse.

1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Oefentoets 1 1. De volgende gemiddelden zijn gevonden in een experiment met de factor Conditie en de factor Sekse. Conditie = experimenteel Conditie = controle Sekse = Vrouw 23 33 Sekse = Man 20 36 Van

Nadere informatie

Moleculaire LevensWetenschappen stroom 1.2

Moleculaire LevensWetenschappen stroom 1.2 MLW Moleculaire LevensWetenschappen stroom 1.2 Methoden en Statistiek werkboek 2005-2006 Inhoudsopgave Blz. Rooster 1 Studiemateriaal 2 Werkvormen 2 Toetsing 2 Planningsgroep 2 Hoorcolleges 3 Werkcolleges

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) dinsdag 2-08-2003, 4.00-7.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30

2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Faculteit der Wiskunde en Informatica 2DM71: Eindtoets Biostatistiek, op dinsdag 20 Januari 2015, 13.30-16.30 Opgave 1: (5 x 6 = 30 punten) (Bij deze opgave is gebruik van resultaten uit bijlage 1 noodzakelijk)

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 17-11-2003 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een zakrekenmachine.

Nadere informatie

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE DEEL 3 INDUCTIEVE STATISTIEK INHOUD H 10: INLEIDING TOT DE INDUCTIEVE STATISTIEK H 11: PUNTSCHATTING 11.1 ALGEMEEN 11.1.1 Definities 11.1.2 Eigenschappen 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE 11.3

Nadere informatie

Beknopte handleiding SPSS versie 18.0 1 van 28

Beknopte handleiding SPSS versie 18.0 1 van 28 Beknopte handleiding SPSS versie 18.0 1 van 28 Beknopte handleiding SPSS versie 18.0 2 van 28 Inhoudsopgave Inleiding...3 SPSS- tips...4 Kopiëren van datakenmerken...6 Van SPSS naar Excel...7 Opsturen

Nadere informatie

statistiek voor de psychologie deel 2: toetsen voor twee gemiddelden en toetsingstheorie

statistiek voor de psychologie deel 2: toetsen voor twee gemiddelden en toetsingstheorie statistiek voor de psychologie deel 2: toetsen voor twee gemiddelden en toetsingstheorie Statistiek voor de psychologie Deel 2: Toetsen voor twee gemiddelden en toetsingstheorie Jules L. Ellis Derde druk

Nadere informatie

7.1 Toets voor het gemiddelde van een normale verdeling

7.1 Toets voor het gemiddelde van een normale verdeling Hoofdstuk 7 Toetsen van hypothesen Toetsen van hypothesen is, o.a. in de medische en chemische wereld, een veel gebruikte statistische techniek. Het wordt vaak gebruikt om een gevestigde norm eventueel

Nadere informatie

INDUCTIEVE STATISTIEK

INDUCTIEVE STATISTIEK INDUCTIEVE STATISTIEK Toegepaste hypothesetoetsing met SPSS Tim Vanhoomissen 1 Workshop Inductieve Statistiek INHOUD Hypothesetoetsing Principe van hypothesetoetsing Steekproevenverdeling Centrale limiet

Nadere informatie

Residual Plot for Strength. predicted Strength

Residual Plot for Strength. predicted Strength Uitwerking tentamen DS mei 4 Opgave Een uitwerking geven is hier niet mogelijk. Het is van belang het iteratieve optimaliseringsproces goed uit te voeren (zie ook de PowerPoint sheets): screening design

Nadere informatie

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

antwoorden bij tentamen Statistiek

antwoorden bij tentamen Statistiek antwoorden bij tentamen Statistiek cursuscode 200300427, cursusjaar 2003-2004, blok 2 woensdag 28 januari 2004, 9:00-12:00 uur, Kromme Nieuwegracht 80, zaal 0.06 Schrijf je naam en student-nummer op elk

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende

Nadere informatie

Voorbeeld regressie-analyse

Voorbeeld regressie-analyse Voorbeeld regressie-analyse In dit voorbeeld wordt gebruik gemaakt van het SPSS data-bestand vb_regr.sav (dit bestand kan gedownload worden via de on-line helpdesk). We schatten een model waarin de afhankelijke

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Gebruik van Correlatiecoëfficiënt in onderzoek

Gebruik van Correlatiecoëfficiënt in onderzoek Gebruik van Correlatiecoëfficiënt in onderzoek Wim Krijnen Lector Analyse Technieken voor Praktijkonderzoek Lectoraat Healthy Ageing, Allied Health Care and Nursing Hanze University of Applied Sciences

Nadere informatie

herkansing Methoden van Onderzoek en Statistiek, 6 juli 2012 versie 1

herkansing Methoden van Onderzoek en Statistiek, 6 juli 2012 versie 1 herkansing Methoden van Onderzoek en Statistiek, 6 juli 2012 versie 1 Vraag 1 Een onderzoeker gebruikt een experimenteel design om een hypothese te toetsen over het gemiddelde in de populatie. Hiertoe

Nadere informatie

Vraag 1. Welk design bevat geen random assignment:

Vraag 1. Welk design bevat geen random assignment: Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs ch14 p.375 Vraag

Nadere informatie

College 7 Tweeweg Variantie-Analyse

College 7 Tweeweg Variantie-Analyse College 7 Tweeweg Variantie-Analyse - Leary: Hoofdstuk 12 (p. 255 t/m p. 262) - MM&C: Hoofdstuk 12 (p. 618 t/m p. 623 ), Hoofdstuk 13 - Aanvullende tekst 9, 10, 11 Jolien Pas ECO 2012-2013 Het Experiment

Nadere informatie

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen SPSS Introductiecursus Sanne Hoeks Mattie Lenzen Statistiek, waarom? Doel van het onderzoek om nieuwe feiten van de werkelijkheid vast te stellen door middel van systematisch onderzoek en empirische verzamelen

Nadere informatie

Statistiek Hoorcollege 4

Statistiek Hoorcollege 4 9/30/009 e Collegereek Statitiek Informatiekunde Univeriteit Utrecht r. H. Prüt Statitiek Hoorcollege 4 t toet, homogeniteit & betrouwbaarheid (37): ecriptieve tatitiek (H,,3) (HP) 3(38): Score & Kan verdelingen

Nadere informatie

Introductie tot de statistiek

Introductie tot de statistiek Introductie tot de statistiek Hogeschool Gent 04/05/2010 Inhoudsopgave 1 Basisbegrippen en beschrijvende statistiek 8 1.1 Onderzoek............................ 8 1.1.1 Data........................... 8

Nadere informatie

SPSS 15.0 in praktische stappen voor AGW-bachelors Uitwerkingen Stap 7: Oefenen I

SPSS 15.0 in praktische stappen voor AGW-bachelors Uitwerkingen Stap 7: Oefenen I SPSS 15.0 in praktische stappen voor AGW-bachelors Uitwerkingen Stap 7: Oefenen I Hieronder volgen de SPSS uitvoer en de antwoorden van de opgaven van Stap 7: Oefenen I. Daarnaast wordt bij elke opgave

Nadere informatie

Technische uitwerkingen voor het SPSS practicum Toetsende Statistiek

Technische uitwerkingen voor het SPSS practicum Toetsende Statistiek Technische uitwerkingen voor het SPSS practicum Toetsende Statistiek NB Voor de SPSS opgaven wordt alleen aangegeven hoe het door de opgave gevraagde resultaat kan worden bereikt. C. J. Verduin 11 december

Nadere informatie

Schriftelijk tentamen - UITWERKINGEN

Schriftelijk tentamen - UITWERKINGEN Business Administration / Bedrijfskunde Schriftelijk tentamen - UITWERKINGEN Algemeen Vak : Statistische Methoden Groep : niet van toepassing en Technieken Vakcode : BKB0019t Soort tentamen : gesloten

Nadere informatie

Fasen in het onderzoeksproces

Fasen in het onderzoeksproces Fasen in het onderzoeksproces Gegevensbestand Controleren gegevens Bewerken gegevens Analyseren gegevens Interpreteren resultaten Nieuwe vragen? ja Onderzoeksverslag 1 Bestand opmaken Variabelen definiëren:

Nadere informatie