variantie: achtergronden en berekening

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "variantie: achtergronden en berekening"

Transcriptie

1 variantie: achtergronden en berekening Hugo Quené opleiding Taalwetenschap Universiteit Utrecht 8 sept 1995 aangepast 8 mei berekening variantie Als je de variantie met de hand moet uitrekenen, is er ook een snellere formule (Hays 1973: 38). De formule is gebaseerd op de populatie-variantie (d.w.z. delen door ). Het gebruik van de hoofdletter S komt ter sprake in de volgende paragraaf. S (Xi X) X X (1) Er is ook een snellere formule om de steekproef -variantie uit te rekenen (d.w.z. delen door 1). Deze formule is gegeven bij (16) hieronder, na uitleg van de verschillen tussen beide varianties. variantie van steekproef en van populatie Statistische grootheden (zoals gemiddelde en variantie) worden op twee manieren gebruikt in de statistiek. 1. Om eigenschappen van een steekproef samen te vatten, dus om de steekproef te beschrijven ( descriptive ). 1

2 . Om uit de steekproef iets af te leiden over de populatie waaruit de steekproef afkomstig is ( inferential ). De statistische grootheden worden dan gebruikt als schatters ( estimators ) van eigenschappen van de populatie. Hiervoor is het essentieel dat de steekproef willekeurig (at random) getrokken is uit de populatie. De verwarring bij de twee formules voor het berekenen van de variantie (met danwel met 1) komt voort uit het verschillend gebruik van de variantie. Om de steekproef te beschrijven kunnen we volstaan met het berekenen van S (hoofdletter, ongecorrigeerd, delen door ). Als je de steekproef-variantie wilt gebruiken als schatting voor de populatie-variantie, dan moet er een correctie worden toegepast op S. Die correctie komt erop neer dat je niet moet delen door, maar door 1. Het resultaat wordt aangeduid met s (kleine letter, gecorrigeerd, delen door 1). Hieronder in. wordt dat gemotiveerd en toegelicht. Voor de duidelijkheid bespreek ik eerst in.1 een statistische grootheid die niet gecorrigeerd hoeft te worden..1 voorbeeld van unbiased schatting: gemiddelde De geschatte waarde voor het steekproef-gemiddelde (X) wordt gevormd door het populatie-gemiddelde (µ), zoals blijkt uit de volgende afleiding. Hierbij duidt E(Q) de schatting ( estimate of expected ) aan voor Q. Merk op dat de redenering eigenlijk andersom verloopt: we proberen aan te tonen dat het geschatte steekproef-gemiddelde gelijk is aan het populatie-gemiddelde. ( ) X1 + X X i X E(X) E Per definitie geldt dat E(X i) () E(X i ) µ (3) want de steekproef is immers willekeurig (random) getrokken uit de populatie. Dus E(X) µ µ (4) Zo zien we dat de verwachte waarde van (X) gevormd wordt door het populatie-gemiddelde µ. Bij een voldoende grote steekproef, of bij herhaalde steekproeven, zal het steekproef-gemiddelde X gelijk zijn aan het populatiegemiddelde µ. Omgekeerd vormt X dus een goede schatting voor de waarde van het populatie-gemiddelde µ. Er hoeft dus geen correctie op toegepast te worden.

3 . voorbeeld van biased schatting: variantie Bij het gebruik van de steekproef-variantie als schatter ligt het ingewikkelder. We doen alsof onze neus bloedt, en beginnen het verhaal met de ongecorrigeerde steekproef-variantie, aangeduid met hoofdletter S (d.w.z. delen door ). Je zou willen dat de verwachte steekproef-variantie E(S ) gelijk is aan de populatie-variantie σ. Uit de afleiding hieronder blijkt dat echter niet het geval te zijn. ( ) X E(S ) E X (5) volgens formule (1) hierboven. ( ) X E(S ) E E (X ) }{{}}{{} (6) volgens afleiding bij Hays (1973, p.74). E(S ) (σ + µ ) (σ X + µ ) (7) E(S ) σ σ X (8) De verwachte steekproef-variantie S is dus niet gelijk aan de populatievariantie σ. Omgekeerd vormt de S dus een biased estimate voor de σ, d.w.z. géén goede schatting maar een schatting-met-afwijking. De afwijking heeft de omvang van de standard variance of the (population) mean, σ. Deze grootheid is gedefinieerd (volgens Ferguson & Takane, formule 9., X p.154) als ormaliter geldt dat deze Daaruit volgt dus dat σ X σ (9) σ X > 0 (10) E(σ X ) < σ (11) m.a.w. de steekproef-variantie S is kleiner dan de populatie-variantie σ. De omvang van het verschil is onbekend, omdat de grootheid σ een eigenschap X is van de populatie. We weten dus nog niet hoeveel onze schatting naast de waarheid σ zit. 3

4 Ben je nog bij de les? Goedzo! Dan kunnen we nu gaan bepalen hoeveel kleiner de steekproef-variantie S is. Als we dat weten, kunnen we immers S gaan corrigeren zodat we een goede (unbiased) schatting verkrijgen van de populatie-variantie σ. Deze afleiding (ontleend aan Hays, 1973, 7.14) begint met het combineren van formules (8) en (9): E(S ) σ σ (1) u volgt er een belangrijke stap, die toegelicht wordt in de Appendix om de afleiding hier niet te compliceren: E(S ) 1 σ (13) Op grond van (13) weten we dus dat de steekproef-variantie kleiner is dan de populatie-variantie, en dat de verhouding tussen beide grootheden 1 is. De oplossing voor het bepalen van een unbiased schatting ligt daarmee voor de hand: corrigeer de schatting met deze gevonden verhouding. Het resultaat is een gecorrigeerde steekproef-variantie, aangeduid met kleine letter s. E(s ) 1 E(S ) 1 1 σ σ (14) Deze gecorrigeerde steekproef-variantie s vormt dus wèl een goede schatting van de populatie-variantie σ. Bij een voldoende grote steekproef, of bij herhaalde steekproeven, zal de steekproef-variantie s bij benadering gelijk zijn aan de populatie-variantie σ. u we dit allemaal weten, kunnen we de gecorrigeerde steekproef-variantie s ook rechtstreeks uitrekenen, dus niet via S. Dat uitrekenen doen we met de bekende formule (15). Daaronder staat een snellere formule (16) voor als je met de hand rekent, zie ook (1) hierboven. s (Xi X) 1 (15) s X 1 ( X) ( 1) (16) 4

5 Appendix Referenties E(S ) σ E(S ) σ σ σ σ σ ( 1) σ ((1) herhaald) (17) E(S ) 1 σ ((13) herhaald) [1] Ferguson, G.A., & Takane, Y. (1989). Statistical Analysis in Psychology and Education (6th ed.). ew York: McGraw-Hill. [] Hays, W.L. (1973). Statistics for the Social Sciences. ew York: Holt, Rinehart and Winston. 5

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Vertaling van enkele termen uit de kansrekening en statistiek alternative hypothesis alternatieve hypothese approximate methods benaderende methoden asymptotic variance asymptotische variantie asymptotically

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt

Berekenen en gebruik van Cohen s d Cohen s d is een veelgebruikte manier om de effectgrootte te berekenen en wordt A. Effect & het onderscheidingsvermogen Effectgrootte (ES) De effectgrootte (effect size) vertelt ons iets over hoe relevant de relatie tussen twee variabelen is in de praktijk. Er zijn twee soorten effectgrootten:

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

SOCIALE STATISTIEK (deel 2)

SOCIALE STATISTIEK (deel 2) SOCIALE STATISTIEK (deel 2) D. Vanpaemel KU Leuven D. Vanpaemel (KU Leuven) SOCIALE STATISTIEK (deel 2) 1 / 57 Hoofdstuk 5: Schatters en hun verdeling 5.1 Steekproefgemiddelde als toevalsvariabele D. Vanpaemel

Nadere informatie

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6 HOOFDSTUK III SCHATTEN VAN PARAMETERS Schatters e Betrouwbaarheidsitervalle 3. HET GEMIDDELDE VAN EEN NV Steekproef uit ee ormaal verdeelde populatie De kasveraderlijke X, X, X 3,..., X zij N(µ, σ) verdeeld

Nadere informatie

Statistiek: Vorm van de verdeling 1/4/2014. dr. Brenda Casteleyn

Statistiek: Vorm van de verdeling 1/4/2014. dr. Brenda Casteleyn Statistiek: Vorm van de verdeling /4/204 . Theorie Enkel de theorie die nodig is voor de oefeningen is hierin opgenomen. Scheefheid of asymmetrie Indien de meetwaarden links van de mediaan meer spreiding

Nadere informatie

Statistiek voor A.I. College 14. Dinsdag 30 Oktober

Statistiek voor A.I. College 14. Dinsdag 30 Oktober Statistiek voor A.I. College 14 Dinsdag 30 Oktober 1 / 16 2 Deductieve statistiek Orthodoxe statistiek 2 / 16 Grootte steekproef Voorbeeld NU.nl 26 Oktober 2012: Helft broodjes döner kebab vol bacteriën.

Nadere informatie

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale

Nadere informatie

College 2 Enkelvoudige Lineaire Regressie

College 2 Enkelvoudige Lineaire Regressie College Enkelvoudige Lineaire Regressie - Leary: Hoofdstuk 7 tot p. 170 (Advanced Correlational Strategies) - MM&C: Hoofdstuk 10 (Inference for Regression) - Aanvullende tekst 3 Jolien Pas ECO 011-01 Correlatie:

Nadere informatie

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE DEEL 3 INDUCTIEVE STATISTIEK INHOUD H 10: INLEIDING TOT DE INDUCTIEVE STATISTIEK H 11: PUNTSCHATTING 11.1 ALGEMEEN 11.1.1 Definities 11.1.2 Eigenschappen 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE 11.3

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

Schatting voor het aantal tanks: is statistiek beter dan de geheime dienst?

Schatting voor het aantal tanks: is statistiek beter dan de geheime dienst? Schatting voor het aantal tanks: is statistiek beter dan de geheime dienst? dr. H.P. Lopuhaä UHD Statistiek Opleiding Technische Wiskunde Faculteit Informatietechnologie & Systemen Technische Universiteit

Nadere informatie

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing

Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing Toetsende Statistiek Week 3. Statistische Betrouwbaarheid & Significantie Toetsing M, M & C, Chapter 6, Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Use and Abuse

Nadere informatie

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen

Toetsende Statistiek Week 5. De F-toets & Onderscheidend Vermogen M, M & C 7.3 Optional Topics in Comparing Distributions: F-toets 6.4 Power & Inference as a Decision 7.1 The power of the t-test 7.3 The power of the sample t- Toetsende Statistiek Week 5. De F-toets &

Nadere informatie

Nederlandse samenvatting

Nederlandse samenvatting Kort samengevat is het doel van dit proefschrift het verbeteren van de kwaliteit van officiële statistieken. Kwaliteit van statistische informatie heeft meerdere facetten. Dit werk richt zich op twee van

Nadere informatie

werkcollege 7 - D&P10: Hypothesis testing using a single sample

werkcollege 7 - D&P10: Hypothesis testing using a single sample cursus 11 mei 2012 werkcollege 7 - D&P10: Hypothesis testing using a single sample huiswerk opgaven Ch.9: 1, 8, 11, 12, 20, 26, 36, 37, 71 Activities 9.3 en 9.4 experimenten zelf deelnemen als proefpersoon

Nadere informatie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie Deze week: Schatten Statistiek voor Informatica Hoofdstuk 6: Schatten Cursusjaar 2009 Peter de Waal Departement Informatica Statistische inferentie A Priori en posteriori verdelingen Geconjugeerde a priori

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

Over het gebruik van continue normering Timo Bechger Bas Hemker Gunter Maris

Over het gebruik van continue normering Timo Bechger Bas Hemker Gunter Maris POK Memorandum 2009-1 Over het gebruik van continue normering Timo Bechger Bas Hemker Gunter Maris POK Memorandum 2009-1 Over het gebruik van continue normering Timo Bechger Bas Hemker Gunter Maris Cito

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Beschrijvende statistiek Beschrijvende en toetsende statistiek Beschrijvend Samenvatting van gegevens in de steekproef van onderzochte personen (gemiddelde, de standaarddeviatie, tabel, grafiek) Toetsend

Nadere informatie

Paragraaf 10.1 : Populatie en Steekproef

Paragraaf 10.1 : Populatie en Steekproef Hoofdstuk 10 Statistische Variabelen (H5 Wis A) Pagina 1 van 8 Paragraaf 10.1 : Populatie en Steekproef Les 1 : Herhaling Definitie Betrouwbaarheidsinterval (BI) Betrouwbaarheidsinterval (BI) = { de waarden

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Feedback examen Statistiek II Juni 2011

Feedback examen Statistiek II Juni 2011 Feedback examen Statistiek II Juni 2011 Bij elke vraag is alternatief A correct. 1 De variabele X is Student verdeeld in een bepaalde populatie, met verwachting µ X en variantie σ 2 X. Je trekt steekproeven

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 2 november 2011, 9.00-12.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Je kunt al: -de centrummaten en spreidingsmaten gebruiken -een spreidingsdiagram gebruiken als grafische weergave van twee variabelen

Je kunt al: -de centrummaten en spreidingsmaten gebruiken -een spreidingsdiagram gebruiken als grafische weergave van twee variabelen Lesbrief: Correlatie en Regressie Leerlingmateriaal Je leert nu: -een correlatiecoëfficient gebruiken als maat voor het statistische verband tussen beide variabelen -een regressielijn te tekenen die een

Nadere informatie

Stochastiek 2. Inleiding in the Mathematische Statistiek. staff.fnwi.uva.nl/j.h.vanzanten

Stochastiek 2. Inleiding in the Mathematische Statistiek. staff.fnwi.uva.nl/j.h.vanzanten Stochastiek 2 Inleiding in the Mathematische Statistiek staff.fnwi.uva.nl/j.h.vanzanten 1 / 12 H.1 Introductie 2 / 12 Wat is statistiek? - 2 Statistiek is de kunst van het (wiskundig) modelleren van situaties

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

Inleiding Applicatie Software - Statgraphics

Inleiding Applicatie Software - Statgraphics Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een

Nadere informatie

Toegepaste Statistiek, Week 6 1

Toegepaste Statistiek, Week 6 1 Toegepaste Statistiek, Week 6 1 Eén ordinale en één nominale variabele Nominale variabele met TWEE categorieën, 1 en 2 Ordinale variabele normaal verdeeld binnen iedere categorie? Variantie in beide categorieën

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

Levende Statistiek. Een module voor Wiskunde D VWO. Jacob van Eeghen en Liesbeth de Wreede

Levende Statistiek. Een module voor Wiskunde D VWO. Jacob van Eeghen en Liesbeth de Wreede Levende Statistiek Een module voor Wiskunde D VWO Jacob van Eeghen en Liesbeth de Wreede Jacob van Eeghen en Liesbeth de Wreede, Leiden 2010 ctwo, Utrecht 2010 Dit lesmateriaal kan gebruikt worden voor

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

Statistiek in HBO scripties

Statistiek in HBO scripties Statistiek in HBO scripties Wim Krijnen Lector Analyse Technieken voor Praktijkonderzoek Lectoraat Transparante Zorgverlening Hanze University of Applied Sciences January 29, 2015 Wim Krijnen Lector Analyse

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Inhoudsopgave. Deel I Schatters en toetsen 1

Inhoudsopgave. Deel I Schatters en toetsen 1 Inhoudsopgave Deel I Schatters en toetsen 1 1 Hetschattenvanpopulatieparameters.................. 3 1.1 Inleiding:schatterversusschatting................. 3 1.2 Hetschattenvaneengemiddelde..................

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Inleiding Kansrekening en Statistiek

Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek S.J. de Lange VSSD 4 VSSD Eerste druk 1989 Tweede druk 1991-2007 Uitgegeven door de VSSD Poortlandplein 6, 2628 BM Delft, The Netherlands

Nadere informatie

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Rik Lopuhaä TU Delft 30 januari, 2015 Rik Lopuhaä (TU Delft) Schatten van de Duitse oorlogsproductie 30 januari,

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur Kansrekening en statistiek wi2105in deel 2 27 januari 2010, 14.00 16.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na

Nadere informatie

Korte uitleg van twee veelvoorkomende statistische toetsen Veel wetenschappelijke hypothesen kunnen statistisch worden getoetst. Aan de hand van een

Korte uitleg van twee veelvoorkomende statistische toetsen Veel wetenschappelijke hypothesen kunnen statistisch worden getoetst. Aan de hand van een Korte uitleg van twee veelvoorkomende statistische toetsen Veel wetenschappelijke hypothesen kunnen statistisch worden getoetst. Aan de hand van een statistische toets beslis je of een hypothese waar is.

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 00 tijdvak wiskunde A Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Statistiek ( ) ANTWOORDEN eerste tentamen

Statistiek ( ) ANTWOORDEN eerste tentamen Statistiek (200300427) ANTWOORDEN eerste tentamen studiejaar 2010-11, blok 4; Taalwetenschap, Universiteit Utrecht. woensdag 18 mei 2011, 17:15-19:00u, Kromme Nieuwegracht 80, zaal 0.06. Schrijf je naam

Nadere informatie

Verwachtingswaarde, Variantie en Standaarddeviatie

Verwachtingswaarde, Variantie en Standaarddeviatie Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)

Nadere informatie

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef

Statistiek II. 1. Eenvoudig toetsen. Onderdeel toetsen binnen de cursus: Toetsen en schatten ivm één statistiek of steekproef Statistiek II Onderdeel toetsen binnen de cursus: 1. Eenvoudig toetsen Toetsen en schatten ivm één statistiek of steekproef Via de z-verdeling, als µ onderzocht wordt en gekend is: Via de t-verdeling,

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 18 t-toetsen 2 / 18 Steekproefgemiddelde en -variantie van normale observaties Stelling. Laat X 1,..., X n o.o. zijn en N(µ, σ 2 )-verdeeld. Dan:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 23-11-2005 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een (eventueel grafisch)

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

College 3 Interne consistentie; Beschrijvend onderzoek

College 3 Interne consistentie; Beschrijvend onderzoek College 3 Interne consistentie; Beschrijvend onderzoek Inleiding M&T 2012 2013 Hemmo Smit Overzicht van dit college Kwaliteit van een meetinstrument (herhaling) Interne consistentie: Cronbach s alpha Voorbeeld:

Nadere informatie

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2

Methoden van Onderzoek en Statistiek, Deeltentamen 2, 29 maart 2012 Versie 2 Vraag 1. Voor welk van de onderstaande variabelen zal een placebo effect waarschijnlijk het grootst zijn? 1. Haarlengte. 2. Lichaamstemperatuur. 3. Mate van tevredenheid met de behandeling. 4. Hemoglobinegehalte

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 5 oktober 007 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

4. Exponentiële vergelijkingen

4. Exponentiële vergelijkingen 4. Exponentiële vergelijkingen De gelijkheid 10 3 = 1000 bevat drie getallen: 10, 3 en 1000. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We kunnen dus drie gevallen onderscheiden:

Nadere informatie

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse

Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse Hoofdstuk 10 Eenwegs- en tweewegs-variantieanalyse 10.1 Eenwegs-variantieanalyse: Als we gegevens hebben verzameld van verschillende groepen en we willen nagaan of de populatiegemiddelden van elkaar verscihllen,

Nadere informatie

mlw stroom 2.2: Biostatistiek en Epidemiologie

mlw stroom 2.2: Biostatistiek en Epidemiologie mlw stroom 2.2: Biostatistiek en Epidemiologie Hoorcollege 1: Onderzoeksopzet en risikomaten Rosner 13.1-13.4 Capaciteitsgroep Methodologie en Statistiek tul / UM 10 januari 2006 Methodologie en Statistiek

Nadere informatie

Checklist voor peilingen Jelke Bethlehem

Checklist voor peilingen Jelke Bethlehem Checklist voor peilingen Jelke Bethlehem Versie 2.0 (6 juli 2010) Een checklist voor peilingen Inleiding Er wordt in Nederland heel veel gepeild. Dat is vooral te merken in de periode voor de Tweede Kamerverkiezingen.

Nadere informatie

Inhoud. Woord vooraf 13. Hoofdstuk 1. Inductieve statistiek in onderzoek 17. Hoofdstuk 2. Kansverdelingen en kansberekening 28

Inhoud. Woord vooraf 13. Hoofdstuk 1. Inductieve statistiek in onderzoek 17. Hoofdstuk 2. Kansverdelingen en kansberekening 28 Inhoud Woord vooraf 13 Hoofdstuk 1. Inductieve statistiek in onderzoek 17 1.1 Wat is de bedoeling van statistiek? 18 1.2 De empirische cyclus 19 1.3 Het probleem van de inductieve statistiek 20 1.4 Statistische

Nadere informatie

Foutenbronnen bij statistisch onderzoek. 9 10Jelke Bethlehem. Statistische Methoden (10004)

Foutenbronnen bij statistisch onderzoek. 9 10Jelke Bethlehem. Statistische Methoden (10004) Foutenbronnen bij statistisch onderzoek 9 10Jelke Bethlehem Statistische Methoden (10004) Den Haag/Heerlen, 2010 Verklaring van tekens. = gegevens ontbreken * = voorlopig cijfer ** = nader voorlopig cijfer

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Eindexamen wiskunde A vwo II

Eindexamen wiskunde A vwo II Eindexamen wiskunde A vwo 00 - II Beoordelingsmodel Antropometrie maximumscore 3 De waarde van g in P(X g μ = 4 en σ = 7) = 0,98 moet worden berekend Beschrijven hoe deze waarde van g met de GR berekend

Nadere informatie

Dan is de waarde van het recessieve allel q dus 0,87, vanwege het feit dat p + q = 1.

Dan is de waarde van het recessieve allel q dus 0,87, vanwege het feit dat p + q = 1. Opgave 1: Wet van Hardy-Weinberg Een populatie van 10.000 individuen voldoet wat betreft de onderlinge voortplanting aan de voorwaarden, genoemd in de wet van Hardy-Weinberg. Van deze populatie is bekend

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 11 juni 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

b. F (y) = 1 2 f. F (y) =

b. F (y) = 1 2 f. F (y) = Tentamen Statistische methoden MST-STM 27 juni 20, 9:00 2:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in en op het open vragen formulier graag beide, naar volgend voorbeeld:

Nadere informatie

Kruis per vraag slechts één vakje aan op het antwoordformulier.

Kruis per vraag slechts één vakje aan op het antwoordformulier. Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor

Nadere informatie

Omnibusenquête 2015. deelrapport. Studentenhuisvesting

Omnibusenquête 2015. deelrapport. Studentenhuisvesting Omnibusenquête 2015 deelrapport Studentenhuisvesting Omnibusenquête 2015 deelrapport Studentenhuisvesting OMNIBUSENQUÊTE 2015 deelrapport STUDENTENHUISVESTING Zoetermeer, 9 december 2015 Gemeente Zoetermeer

Nadere informatie

Tentamen Biostatistiek 3 / Biomedische wiskunde

Tentamen Biostatistiek 3 / Biomedische wiskunde Tentamen Biostatistiek 3 / Biomedische wiskunde 25 maart 2014; 12:00-14:00 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau. Het

Nadere informatie

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)?

Hoeveel condities zijn er (ga er vanuit dat het design fully crossed is)? Vraag 1. Welk design bevat geen random assignment: a) Een design gebaseerd op matching b) Een design gebaseerd op blocking c) Een factorial design d) Elk van de hierboven genoemde designs Vraag 2. In een

Nadere informatie

Klantonderzoek: statistiek!

Klantonderzoek: statistiek! Klantonderzoek: statistiek! Statistiek bij klantonderzoek Om de resultaten van klantonderzoek juist te interpreteren is het belangrijk de juiste analyses uit te voeren. Vaak worden de mogelijkheden van

Nadere informatie

Toegepaste Wiskunde 2: Het Kalman-filter

Toegepaste Wiskunde 2: Het Kalman-filter Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door

Nadere informatie