Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent"

Transcriptie

1 Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31

2 Beschrijvende maten We beschrijven populaties en steekproeven dmv karakteristieken populaties worden gekenmerkt door parameters µ, σ, ρ, steekproeven worden gekenmerkt door statistieken x, s, r, 3 soorten karakteristieken centraliteitsmaten beschrijven de ligging (location) spreidingsmaten beschrijven de spreiding (dispersion) vormmaten beschrijven de vorm Numerieke beschrijving van data p 2/31

3 Centraliteitsmaten het rekenkundig gemiddelde de mediaan de modus en het meetkundig gemiddelde Numerieke beschrijving van data p 3/31

4 Het rekenkundig gemiddelde Het (rekenkundig) gemiddelde (mean),vanx 1, x 2,,x n is x = x 1 + x x n n = 1 n j=1 x j Het gemiddelde van de waarden 1, 2, 3, 4 en 5 bedraagt x = =3 Het gemiddelde van 1, 2, 3, 4 en 50 bedraagt x = =12 x is gemakkelijk te berekenen maar is gevoelig voor uitschieters Middel tegen die gevoeligheid : trimmed mean Numerieke beschrijving van data p 4/31

5 Het rekenkundig gemiddelde x = 1 n x j f(x) = 1 n f(x j ) j=1 j=1 ax+ b= 1 n (ax j + b)= a x + b j=1 Bijzonder geval : x x= 0 f(x)+g(x) = 1 n = 1 n (f(x j )+g(x j )) j=1 f(x j )+ 1 n j=1 g(x j )= f(x)+g(x) j=1 Numerieke beschrijving van data p 5/31

6 Het rekenkundig gemiddelde Gegeven : frequentietabel Gevraagd : bepaal x discrete data : heeft x i absolute frequentie n i, dan x = 1 n x j = 1 n n i x i j=1 i Voorbeeld : gemiddelde van 1, 2, 1, 3 en 2 x = j=1 x j = =18 = i=1 n i x i = =18 Numerieke beschrijving van data p 6/31

7 Het rekenkundig gemiddelde Gegeven : frequentietabel Gevraagd : bepaal x continue data : benader elke x i door het klassemidden t j waarvoor t i i 2 x j <t i + i 2 x = 1 x j 1 n n j=1 i n i t i x = j=1 x j = n i t i = i Numerieke beschrijving van data p 7/31

8 Mediaan De mediaan (median) van x 1,x 2,, x j,, x n is de middelste waarde als de metingen gerangschikt worden van klein naar groot De mediaan van de waarden 1, 2, 3, 4 en 5 bedraagt 3 De mediaan van 1, 2, 3, 4 en 50 bedraagt 3 De mediaan is minder gevoelig dan het gemiddelde en kan ook gebruikt worden bij ordinale data Numerieke beschrijving van data p 8/31

9 De modus De modus (mode) van een verzameling meetwaarden wordt gedefinieerd als de waarde waarvoor de frequentie het hoogst is In geval gewerkt wordt met klassen, spreekt men van de modale klasse Gebruik : bij grote steekproeven de meest populaire waarde aanduiden bij bimodale verdelingen Numerieke beschrijving van data p 9/31

10 Het meetkundig gemiddelde Het meetkundig gemiddelde (geometric mean) van x 1,x 2,, x j,, x n wordt gedefinieerd als GM = n x 1 x 2 x j x n log GM= 1 n i=1 log x i = log x De logaritme van GM = het (rekenkundig) gemiddelde van de logaritme van de waarnemingen Het GM van 10, 100 en 1000 bedraagt 100 vermits GM= = 100 log 10 GM= i=1 log 10 x i = 1 3 (1+2+3)=2= GM =102 = 100 Numerieke beschrijving van data p 10/31

11 Centraliteitsmaten : richtlijnen Twee factoren spelen een rol : de schaal (kwantitatief of niet-kwantitatief) symmetrisch- of scheef-zijn van de verdeling van de waarnemingen Richtlijnen : x : bij kwantitatieve data en voor (min of meer) symmetrische distributies mediaan : bij ordinale data en voor kwantitatieve data waarvan de distributie scheef is modus : bij bimodale verdelingen meetkundig gemiddelde : bij observaties gemeten op een logaritmische schaal Numerieke beschrijving van data p 11/31

12 Spreidingsmaten minimum en maximum range standaarddeviatie en variantie variatiecoëfficiënt percentielen Numerieke beschrijving van data p 12/31

13 De range De range van een verzameling meetwaarden x 1,x 2,, x j,, x n wordt gedefinieerd als het verschil tussen de grootste en de kleinste meetwaarde Numerieke beschrijving van data p 13/31

14 Minimum en maximum Kleinste en grootste meetwaarde Dit geeft iets meer informatie dan de range Voorbeeldsteekproef : uit meetwaarden : min = 164 cm en max = 196 cm, dwz range =32cm uit frequentietabel : min = 1635 cm en max = 196 cm, dwz range =33cm Numerieke beschrijving van data p 14/31

15 Probleem Noch de range, noch min-max kunnen verschillen detecteren tussen volgende verdelingen : (a) (b) f f x x Numerieke beschrijving van data p 15/31

16 Spreidingsmaten afwijking : x x = 1 n (x i x) i=1 x x = 1 n x i 1 n x = x x =0 i=1 i=1 gemiddelde afwijking : x x = 1 n variantie : (x x) 2 = 1 n (x i x) 2 i=1 i=1 x i x Numerieke beschrijving van data p 16/31

17 Steekproefvariantie De variantie (variance) s 2 X van een verzameling van n waarden x 1, x 2,, x n van de grootheid X wordt gedefinieerd als het gemiddelde van de kwadraten van de afwijkingen van de waarden tov hun gemiddelde x : s 2 X = 1 n (x i x) 2 i=1 De standaarddeviatie (standard deviation) of standaardafwijking s X wordt gedefinieerd als de positieve vierkantswortel van de variantie : s X = s 2 X Numerieke beschrijving van data p 17/31

18 Verbeterde steekproefvariantie De steekproefvariantie s 2 X = 1 n (x i x) 2 i=1 is een benadering voor de populatievariantie σx 2 Men kan aantonen dat s 2 X systematisch een te kleine benadering levert voor σx 2 en dat een betere benadering gegeven wordt door de zogenaamde verbeterde steekproefvariantie s 2 X met s 2 X = 1 n 1 (x i x) 2 = n n 1 s2 X i=1 Numerieke beschrijving van data p 18/31

19 Steekproefvariantie s 2 X = 1 n (x i x) 2 i=1 s 2 X = (x x) 2 = x 2 2 xx+ x 2 = x 2 2 x x + x 2 = x 2 x 2 s 2 X = 1 n i=1 x 2 i x 2 Numerieke beschrijving van data p 19/31

20 Steekproefvariantie van functies s 2 f(x) = [f(x)] 2 f(x) 2 Toegepast op f(x) =ax+ b s 2 ax+b = (ax+ b) 2 ax+ b 2 = a 2 x 2 +2abx+ b 2 (a x + b) 2 = a 2 x 2 +2abx + b 2 (a 2 x 2 +2abx + b 2 ) = a 2 (x 2 x 2 ) = a 2 s 2 X s ax+b = a s X Numerieke beschrijving van data p 20/31

21 Ongelijkheid van Chebyshev Voor om het even welke positieve waarde k geldt : minstens een fractie 1 1/k 2 van alle meetwaarden ligt in het interval ]x ks,x + ks[ Bewijs : gegeven n, x en s; kies k Verdeel de meetwaarden in D = {x j x j x <ks} en V = {x j x j x ks}, zodat #D +#V = n ns 2 = k 2 s 2 = k 2 s 2 (#V ) x j D V (x j x) 2 x j V (x j x) 2 x j V #V n 1 k, 2 dwz de fractie van de n meetwaarden die tot V behoren is hoogstens 1/k 2 en dus ligt minstens 1 1/k 2 in D Numerieke beschrijving van data p 21/31

22 Ongelijkheid van Chebyshev Voor om het even welke positieve waarde k geldt : minstens een fractie 1 1/k 2 van alle meetwaarden ligt in het interval ]x ks,x + ks[ k ]x ks,x + k, s[ 1 1 k 2 1 ]x 1 s, x +1,s[ 0 = 0% 3 2 ]x 2 s, x +2s[ = 75% ]x 3 s, x +3s[ 90% 9 Deze regel geldt altijd, hoe het histogram er ook uitziet! In de praktijk zijn de vermelde fracties meestal hoger! Numerieke beschrijving van data p 22/31

23 Vuistregel voor belvormige verdelingen ongeveer 68 % ligt in ]x s, x + s[ =]3128, 7091[ ongeveer 95 % ligt in ]x 2 s, x + 2s[=]1146, 9073[ bijna alle metingen liggen in ]x 3 s, x +3s[=] 0836, 11055[ n i x s x x =5109 s =1981 Numerieke beschrijving van data p 23/31

24 De z-score van een meetwaarde Als de meetwaarden x j uitgedrukt zijn in bvb meter, dan is x ook in meter is s 2 X is s x in meter in vierkante meter Transformatie : z j = x j x s X z j is dimensieloos met waarden in [ 3, 3] Deze transformatie fungeert als een soort standaardisatie van de meetwaarden Numerieke beschrijving van data p 24/31

25 Variatiecoëfficiënt De variatiecoëfficiënt (variation coefficient) van een verzameling niet-negatieve meetwaarden x 1,x 2,, x i,, x n van de grootheid X wordt gedefinieerd als s x Numerieke beschrijving van data p 25/31

26 Spreidingsmaten : richtlijnen s X : als x wordt gebruikt, di bij min of meer symmetrische kwantitatieve data Percentielen en interquartielen : wanneer de mediaan wordt gebruikt : bij ordinale data of bij scheef-verdeelde kwantitatieve data wanneer x wordt gebruikt, maar als het de bedoeling is individuele waarnemingen te vergelijken met een verzameling normen interquartiele range : voor de beschrijving van de centrale 50 % van een distributie, onafhankelijk van de vorm range : bij kwantitatieve data als het de bedoeling is de nadruk te leggen op extreme waarden variatiecoëfficiënt : indien kwantitatieve verdelingen op verschillende schalen worden vergeleken Numerieke beschrijving van data p 26/31

27 Vormmaten x x =0 (x x) 2 : variantie (spreidingsmaat) (x x) 3 : scheefheid (x x) 4 : kurtosis scheefheid en kurtosis zijn vormmaten Numerieke beschrijving van data p 27/31

28 Scheefheid De scheefheid (skewness) van x 1,x 2,, x j,, x n wordt 1 (x j x) 3 n j=1 gedefinieerd als s 3 (a) (b) (c) (d) (a) negatief scheef (b) positief scheef (c) en (d) symmetrisch Numerieke beschrijving van data p 28/31

29 Scheefheid Verband met ligging van mediaan en gemiddelde Zijn de mediaan en het gemiddelde gelijk, dan is de distributie min of meer symmetrisch Is het gemiddelde groter dan de mediaan, dan is de distributie positief scheef Is het gemiddelde kleiner dan de mediaan, dan is de distributie negatief scheef Numerieke beschrijving van data p 29/31

30 Kurtosis De kurtosis (curtosis) van x 1,x 2,, x j,, x n wordt 1 (x j x) 4 n j=1 gedefinieerd als s 4 (a) (b) (a) leptokurtisch (b) platykurtisch en (c) kurtosis 3 (c) Numerieke beschrijving van data p 30/31

31 Een voorbeeld Descriptives GESLACHT Statistic Std Err GEWICHT m Mean 68,87, % Confidence Lower Bound 67,30 Interval for Mean Upper Bound 70, % Trimmed Mean 68, Median 68, Variance 73, Std Deviation 8, Minimum Maximum Range Interquartile Range 12, Numerieke beschrijving van data p /31

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 2 : Grafische beschrijving van data Marnix Van Daele Marnix.VanDaele@UGent.be Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Grafische beschrijving van data p. 1/35 Soorten meetwaarden

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

Onderzoeksmethodiek LE: 2

Onderzoeksmethodiek LE: 2 Onderzoeksmethodiek LE: 2 3 Parameters en grootheden 3.1 Parameters Wat is een parameter? Een karakteristieke grootheid van een populatie Gem. gewicht van een 34-jarige man 3.2 Steekproefgrootheden Wat

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen

SPSS Introductiecursus. Sanne Hoeks Mattie Lenzen SPSS Introductiecursus Sanne Hoeks Mattie Lenzen Statistiek, waarom? Doel van het onderzoek om nieuwe feiten van de werkelijkheid vast te stellen door middel van systematisch onderzoek en empirische verzamelen

Nadere informatie

Kwantitatieve methoden. Samenvatting met verwijzing naar Excel functies

Kwantitatieve methoden. Samenvatting met verwijzing naar Excel functies Kwantitatieve methoden Samenvatting met verwijzing naar Excel functies I. Inleiding Statistiek is een gebied in de wiskunde dat zich bezighoudt met het samenvatten, beschrijven en analyseren van (grote

Nadere informatie

College Week 4 Inspecteren van Data: Verdelingen

College Week 4 Inspecteren van Data: Verdelingen College Week 4 Inspecteren van Data: Verdelingen Inleiding in de Methoden & Technieken 2013 2014 Hemmo Smit Dus volgende week Geen college en werkgroepen Maar Oefententamen on-line (BB) Data invoeren voor

Nadere informatie

SPSS 15.0 in praktische stappen voor AGW-bachelors Uitwerkingen Stap 7: Oefenen I

SPSS 15.0 in praktische stappen voor AGW-bachelors Uitwerkingen Stap 7: Oefenen I SPSS 15.0 in praktische stappen voor AGW-bachelors Uitwerkingen Stap 7: Oefenen I Hieronder volgen de SPSS uitvoer en de antwoorden van de opgaven van Stap 7: Oefenen I. Daarnaast wordt bij elke opgave

Nadere informatie

College 4 Inspecteren van Data: Verdelingen

College 4 Inspecteren van Data: Verdelingen College Inspecteren van Data: Verdelingen Inleiding M&T 01 013 Hemmo Smit Overzicht van deze cursus 1. Grondprincipes van de wetenschap. Observeren en meten 3. Interne consistentie; Beschrijvend onderzoek.

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

Antwoordvel Versie A

Antwoordvel Versie A Antwoordvel Versie A Interimtoets Toegepaste Biostatistiek 13 december 013 Naam:... Studentnummer:...... Antwoorden: Vraag Antwoord Antwoord Antwoord Vraag Vraag A B C D A B C D A B C D 1 10 19 11 0 3

Nadere informatie

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden

Enkelvoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Formules Excel Bedrijfsstatistiek

Formules Excel Bedrijfsstatistiek Formules Excel Bedrijfsstatistiek Hoofdstuk 2 Data en hun voorstelling AANTAL.ALS vb: AANTAL.ALS(A1 :B6,H1) Telt hoeveel keer (frequentie) de waarde die in H1 zit in A1:B6 voorkomt. Vooral bedoeld voor

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies

Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies 6.. Uit een normaal verdeeld universum X met gemiddelde waarde µ = en standaardafwijking σ = worden 0 onafhankelijke steekproefwaarden

Nadere informatie

Overzicht statistiek 5N4p

Overzicht statistiek 5N4p Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

Beschrijvende statistieken

Beschrijvende statistieken Elske Salemink (Klinische Psychologie) heeft onderzocht of het lezen van verhaaltjes invloed heeft op angst. Studenten werden at random ingedeeld in twee groepen. De ene groep las positieve verhaaltjes

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Statistiek: Centrummaten 12/6/2013. dr. Brenda Casteleyn

Statistiek: Centrummaten 12/6/2013. dr. Brenda Casteleyn Statistiek: Centrummaten 12/6/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie 1) Nominaal niveau: Gebruik de Modus, dit is de meest frequente waarneming 2) Ordinaal niveau:

Nadere informatie

Statistiek: Vorm van de verdeling 1/4/2014. dr. Brenda Casteleyn

Statistiek: Vorm van de verdeling 1/4/2014. dr. Brenda Casteleyn Statistiek: Vorm van de verdeling /4/204 . Theorie Enkel de theorie die nodig is voor de oefeningen is hierin opgenomen. Scheefheid of asymmetrie Indien de meetwaarden links van de mediaan meer spreiding

Nadere informatie

Elementaire Statistiek

Elementaire Statistiek Elementaire Statistiek Elementaire Statistiek J. van Soest VSSD VSSD Zevende druk 1992, 1994, 1997 Eerste druk 1972 Uitegegeven door: VSSD Leeghwaterstraat 42 2628 CA Delft, The Netherlands tel. +31 15

Nadere informatie

Onderzoeksmethoden: Statistiek 1

Onderzoeksmethoden: Statistiek 1 0 123458898391081904749010998490849 074907079`794793784908`094389983.. Onderzoeksmethoden: Statistiek 1 Joepie, ons computerprogramma levert output Wat doen we hiermee? Marjan van den Akker 1 2 Output

Nadere informatie

4 Domein STATISTIEK - versie 1.2

4 Domein STATISTIEK - versie 1.2 USolv-IT - Boomstructuur DOMEIN STATISTIEK - versie 1.2 - c Copyrighted 42 4 Domein STATISTIEK - versie 1.2 (Op initiatief van USolv-IT werd deze boomstructuur mede in overleg met het Universitair Centrum

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Statistiek. Beschrijvend statistiek

Statistiek. Beschrijvend statistiek Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen Biostatistiek voor BMT (2S390) op 23-11-2005 U mag alleen gebruik maken van een onbeschreven Statistisch Compendium (dikt. nr. 2218) en van een (eventueel grafisch)

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

Inleiding statistiek

Inleiding statistiek Inleiding Statistiek Pagina 1 uit 8 Inleiding statistiek 1. Inleiding In deze oefeningensessie is het de bedoeling jullie vertrouwd te maken met een aantal basisbegrippen van de statistiek, meer bepaald

Nadere informatie

aten voor het centrum, de spreiding en de vorm van een frequentieverdeling

aten voor het centrum, de spreiding en de vorm van een frequentieverdeling M aten voor het centrum, de spreiding en de vorm van een frequentieverdeling 11 In dit hoofdstuk bespreken we enkele kengetallen van een frequentieverdeling, zoals het gemiddelde, de mediaan en de standaardafwijking.

Nadere informatie

Hoofdstuk 4. Beschrijvende statistiek. 4.1 Beschrijvende statistiek voor één variabele

Hoofdstuk 4. Beschrijvende statistiek. 4.1 Beschrijvende statistiek voor één variabele Hoofdstuk 4 Beschrijvende statistiek Alle commando s voor statistische berekeningen en analyse bevinden zich onder de optie Analyze in het hoofdmenu. Hieronder worden de verschillende commando s besproken

Nadere informatie

Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor

Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor Frequentiematen voor ziekte: Hoe vaak komt de ziekte voor 4 juni 2012 Het voorkomen van ziekte kan op drie manieren worden weergegeven: - Prevalentie - Cumulatieve incidentie - Incidentiedichtheid In de

Nadere informatie

1 Meten en statistiek

1 Meten en statistiek 1 Meten en statistiek Bij het verrichten van metingen moeten we ons realiseren dat elke meting behept is met bepaalde onzekerheden of afwijkingen. Deze afwijkingen kunnen velerlei oorzaken hebben zoals

Nadere informatie

TIP 10: ANALYSE VAN DE CIJFERS

TIP 10: ANALYSE VAN DE CIJFERS TOETSTIP 10 oktober 2011 Bepaling wat en waarom je wilt meten Toetsopzet Materiaal Betrouw- baarheid Beoordeling Interpretatie resultaten TIP 10: ANALYSE VAN DE CIJFERS Wie les geeft, botst automatisch

Nadere informatie

De Collegereeks Statistiek. statistiek. Statistiek in het dagelijkse nieuws. Statistiek Hoorcollege 1. Descriptieve statistiek ttitik

De Collegereeks Statistiek. statistiek. Statistiek in het dagelijkse nieuws. Statistiek Hoorcollege 1. Descriptieve statistiek ttitik 9/8/009 De Collegereeks Statistiek Statistiek Hoorcollege 1 Descriptieve statistiek ttitik Informatiekunde Universiteit Utrecht Dr. H. Prüst (37): Descriptieve statistiek (H 1,,3) (HP) 3(38): Score & Kans

Nadere informatie

Onderzoeksmethoden: Statistiek 1: Beschrijvende statistiek. Output gegevens. Kansrekening en statistiek in de informatica

Onderzoeksmethoden: Statistiek 1: Beschrijvende statistiek. Output gegevens. Kansrekening en statistiek in de informatica Onderzoeksmethoden: Statistiek 1: Beschrijvende statistiek Peter de Waal (gebaseerd op slides Marjan van den Akker, Peter de Waal) Departement Informatica Beta-faculteit, Universiteit Utrecht 00394756520584654261849505028761647595030...

Nadere informatie

Inleidende begrippen over foutentheorie

Inleidende begrippen over foutentheorie Hoofdstuk 1 Inleidende begrippen over foutentheorie Doelstellingen 1. leren omgaan met fouten op een meting 2. kennis van statistische basisbegrippen 3. meetgegevens verwerken en interpreteren (in Excell)

Nadere informatie

Onderzoek. B-cluster BBB-OND2B.2

Onderzoek. B-cluster BBB-OND2B.2 Onderzoek B-cluster BBB-OND2B.2 Succes met leren Leuk dat je onze bundels hebt gedownload. Met deze bundels hopen we dat het leren een stuk makkelijker wordt. We proberen de beste samenvattingen voor jou

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op vrijdag , 9-12 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op vrijdag 29-04-2004, 9-2 uur. Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

SPSS. Statistiek : SPSS

SPSS. Statistiek : SPSS SPSS - hoofdstuk 1 : 1.4. fase 4 : verrichten van metingen en / of verzamelen van gegevens Gegevens gevonden bij een onderzoek worden systematisch weergegeven in een datamatrix bij SPSS De datamatrix Gebruik

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW]

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW] bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst statistiek/gegevensverwerking los materiaal, niet uit boek [PW] procenten percentage: bv: van de 0 kinderen hadden er 7: hoeveel procent

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek 2 voor TeMa (2S195) op maandag , TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek 2 voor TeMa (2S95) op maandag 08-03-2004, 9.00-2.00 uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine,

Nadere informatie

Hoofdstuk 6 Discrete distributies

Hoofdstuk 6 Discrete distributies Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33 Discrete distributies binomiale verdeling

Nadere informatie

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y

Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y 1 Regressie analyse Zowel correlatie als regressie meten statistische samenhang Correlatie: geen oorzakelijk verband verondersteld: X Y Regressie: wel een oorzakelijk verband verondersteld: X Y Voorbeeld

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2

mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 mlw stroom 2.2 Biostatistiek en Epidemiologie College 9: Herhaalde metingen (2) Syllabus Afhankelijke Data Hoofdstuk 4, 5.1, 5.2 Bjorn Winkens Methodologie en Statistiek Universiteit Maastricht 21 maart

Nadere informatie

Leergang CCP Module 1 Statistiek voor het Credit Management - Drs. J.H. Gieskens AC CCM QT -

Leergang CCP Module 1 Statistiek voor het Credit Management - Drs. J.H. Gieskens AC CCM QT - Leergang CCP Module 1 Statistiek voor het Credit Management - Drs. J.H. Gieskens AC CCM QT - CCP Mod1 - Reader Statistiek Pagina 1 van 17 1. Inleiding: Statistiek De beeldvorming rond het begrip statistiek

Nadere informatie

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN

Interim Toegepaste Biostatistiek deel 1 14 december 2009 Versie A ANTWOORDEN Interim Toegepaste Biostatistiek deel december 2009 Versie A ANTWOORDEN C 2 B C A 5 C 6 B 7 B 8 B 9 D 0 D C 2 A B A 5 C Lever zowel het antwoordformulier als de interim toets in Versie A 2. Dit tentamen

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40) woensdag 28 oktober 2009, 9.00-12.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4) woensdag 8 oktober 9, 9.-. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven Statistisch

Nadere informatie

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden

toetsende statistiek deze week: wat hebben we al geleerd? Frank Busing, Universiteit Leiden toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling week 3: schatten en toetsen: de z-toets week 4: het toetsen van gemiddelden: de t-toets Moore, McCabe, and Craig.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

1.2 Nominale, ordinale, interval-schaal

1.2 Nominale, ordinale, interval-schaal I.1 Samenvatten van data 1.1 Inleiding De term data wordt overvloedig gebruikt bij wetenschappelijk onderzoek. Data zijn resultaten van een onderzoek. In het algemeen bestaat een verzameling data uit eigenschappen

Nadere informatie

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur

Tentamen Biostatistiek 1 voor BMT (2DM40), op maandag 5 januari 2009 14.00-17.00 uur Faculteit der Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4), op maandag 5 januari 29 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine en van een onbeschreven

Nadere informatie

Statistiek basisbegrippen

Statistiek basisbegrippen MARKETING / 07B HBO Marketing / Marketing management Raymond Reinhardt 3R Business Development raymond.reinhardt@3r-bdc.com 3R 1 M Statistiek: wetenschap die gericht is op waarnemen, bestuderen en analyseren

Nadere informatie

Initiële Data Analyse. (Truuks en Flessenhalzen)

Initiële Data Analyse. (Truuks en Flessenhalzen) Slide 1 Initiële data analyse (Truuks en Flessenhalzen) Herman Adèr 13 Mei, 2003 Overzicht Slide 2 Fasen in de data analyse Data kwaliteit Initiële Data Analyse Behoud van informatie Ontbrekende waarnemingen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Kruis per vraag slechts één vakje aan op het antwoordformulier.

Kruis per vraag slechts één vakje aan op het antwoordformulier. Toets Stroom 1.2 Methoden en Statistiek tul, MLW 7 april 2006 Deze toets bestaat uit 25 vierkeuzevragen. Kruis per vraag slechts één vakje aan op het antwoordformulier. Vraag goed beantwoord dan punt voor

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

d. Maak een spreidingsdiagram van de gegevens. Plaats de x-waarden op de x-as en de z-waarden op de y-as.

d. Maak een spreidingsdiagram van de gegevens. Plaats de x-waarden op de x-as en de z-waarden op de y-as. Opdracht 6a ----------- Dichtheidskromme, normaal-kwantiel-plot Een nauwkeurige waarde van de lichtsnelheid is van belang voor ontwerpers van computers, omdat de elektrische signalen zich uitsluitend met

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Medische statistiek 1 Les 1: Waarschijnlijkheidrekening I Theorie A Inleidende defenities V: de verzameling van alle mogelijke uitkomsten A,B,... : een gebeurtenis is een verzameling uitkomsten in V Q

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Meervoudige ANOVA Onderzoeksvraag Voorwaarden

Meervoudige ANOVA Onderzoeksvraag Voorwaarden Er is onderzoek gedaan naar rouw na het overlijden van een huisdier (contactpersoon: Karolijne van der Houwen (Klinische Psychologie)). Mensen konden op internet een vragenlijst invullen. Daarin werd gevraagd

Nadere informatie

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1:

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1: Hoofdstuk 8: De normale verdeling 8. Centrum- en spreidingsmaten Opgave : 00000 4 4000 5 3000 a. 300 dollar 0 b. 9 van de atleten verdienen minder dan de helft van het gemiddelde. Het gemiddelde is zo

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Woensdag 7 Oktober 1 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie 2 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Opgave 1: (zowel 2DM40 als 2S390)

Opgave 1: (zowel 2DM40 als 2S390) TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (DM4 en S39) op donderdag, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c Hoofdstuk 8, Statistische maten 1 Hoofdstuk 8 Statistische maten Kern 1 Centrum- en spreidingsmaten 1 a Partij is een kwalitatieve variaele, kindertal een kwantitatieve, discrete variaele.,c d kindertal

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Biostatistiek voor BMT (2DM4 en 2S39) op maandag 2--27, 4.-7. uur Bij het tentamen mag gebruik worden gemaakt van een zakrekenmachine

Nadere informatie

Situering algemene en universitaire ziekenhuizen

Situering algemene en universitaire ziekenhuizen Situering Sinds 1 januari 2005 moet ieder Vlaams ziekenhuis een periodieke evaluatie maken van de kwaliteit van de zorgen in het eigen ziekenhuis. Dit staat beschreven in het kwaliteitsdecreet van 17 oktober

Nadere informatie

Statistische Bijlagen Consumentenonderzoek.

Statistische Bijlagen Consumentenonderzoek. MPI HOLLAND Statistische Bijlagen Consumentenonderzoek. Statistische uitvoer Enquête Jos van Zuidam 24-6-2010 Deze bijlage bevat enkele achtergrondgegevens behorend bij de publicatie Consumentenonderzoek

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Bijlage 3: Multiple regressie analyse

Bijlage 3: Multiple regressie analyse Bijlage 3: Multiple regressie analyse REGRESSION /DESCRIPTIVES MEAN STDDEV CORR SIG N /MISSING PAIRWISE /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B

2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B 1. (a) Bereken het gemiddelde salaris van de werknemers in de tabel hiernaast. (b) Bereken ook het mediale salaris. (c) Hoe groot is het modale salaris hier? salaris in euro s aantal werknemers 15000 1

Nadere informatie

Gemiddelde, mediaan, kwartielen, interkwartielafstand, minimum, maximum, variantie, standaardafwijking, boxdiagrammen

Gemiddelde, mediaan, kwartielen, interkwartielafstand, minimum, maximum, variantie, standaardafwijking, boxdiagrammen Opdracht 3a ----------- Gemiddelde, mediaan, kwartielen, interkwartielafstand, minimum, maximum, variantie, standaardafwijking, boxdiagrammen Voor de meting van de leesvaardigheid van kinderen wordt als

Nadere informatie

INLEIDING FUNCTIES 1. COÖRDINATEN

INLEIDING FUNCTIES 1. COÖRDINATEN INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je op welke manier centrum- en spreidingsmaten je helpen bij de interpretatie van statistische gegevens. Je leert ook dat grafische voorstellingen

Nadere informatie

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012)

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012) Antwoorden bij - De normale verdeling vwo A/C (aug 0) Opg. a Aflezen bij de 5,3 o C grafiek:,3% en bij de,9 o C grafiek: 33,3% b Het tweede percentage is 33,3 /,3 = 5, maal zo groot. c Bij de 5,3 o C grafiek

Nadere informatie

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5

INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 INDUCTIEVE STATISTIEK VOOR DE GEDRAGSWETENSCHAPPEN OPLOSSINGEN BIJ HOOFDSTUK 5 1. De onderzoekers van een preventiedienst vermoeden dat werknemers in een bedrijf zonder liften fitter zijn dan werknemers

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

8.1 Centrum- en spreidingsmaten [1]

8.1 Centrum- en spreidingsmaten [1] 8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

E Y = ln(β 1 x) ln β 1 + β 2

E Y = ln(β 1 x) ln β 1 + β 2 Tentamen Statistische Methoden MST STM 1 april 2009, 9.00 12.00 uur Toelichting. Een antwoord alleen is niet voldoende: er dient een motivatie, toelichting of berekening aanwezig te zijn. Gebruik, tenzij

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Infoboekje. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Infoboekje. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Exploratieve statistiek Infoboekje Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg www.uhasselt.be/lesmateriaal-statistiek . Van deze

Nadere informatie

Verwachtingswaarde, Variantie en Standaarddeviatie

Verwachtingswaarde, Variantie en Standaarddeviatie Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)

Nadere informatie

variantie: achtergronden en berekening

variantie: achtergronden en berekening variantie: achtergronden en berekening Hugo Quené opleiding Taalwetenschap Universiteit Utrecht 8 sept 1995 aangepast 8 mei 007 1 berekening variantie Als je de variantie met de hand moet uitrekenen, is

Nadere informatie

Vertaling van enkele termen uit de kansrekening en statistiek alternative hypothesis alternatieve hypothese approximate methods benaderende methoden asymptotic variance asymptotische variantie asymptotically

Nadere informatie

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met

Nadere informatie

A. Week 1: Introductie in de statistiek.

A. Week 1: Introductie in de statistiek. A. Week 1: Introductie in de statistiek. Populatie en steekproef. In dit vak leren we de basis van de statistiek. In de statistiek probeert men erachter te komen hoe we de populatie het beste kunnen observeren.

Nadere informatie

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel)

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) In 1947 werd in opdracht van N.V. Magazijn De Bijenkorf een statistisch onderzoek verricht naar de lichaamsafmetingen van de Nederlandse

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie