Studie van functies en de analytische meetkunde in het vierde jaar van het ASO-TSO-KSO

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Studie van functies en de analytische meetkunde in het vierde jaar van het ASO-TSO-KSO"

Transcriptie

1 GeoGebra in het vierde jaar Studie van functies en de analytische meetkunde in het vierde jaar van het ASO-TSO-KSO R. Van Nieuwenhuyze Docent wiskunde aan HUB, Brussel Auteur Van Basis tot Limiet. Pedagogisch begeleider wiskunde VLP 1 ste en 2 de graad Van Nieuwenhuyze Roger Dag van de wiskunde

2 1. Voorbeeld 1: Studie van tweedegraadsfuncties. Stappenplan: Schematische weergave van een mogelijk stappenplan: schuifknoppen a, α en β f(x) = x 2 g(x) = a*x 2 A = ( α,0) B = ( α, β) O = (0,0) h = verschuiving[g, vector[o, A]] j = verschuiving[h, vector[a, B]] b= 2a* α 2 = α +β c a* = k(x) a*x b*x c k verbergen Tekst invoeren "f (x) = " + j Tekst invoeren "f (x) = " + k De nodige teksten invoeren (geavanceerd gebruiken voor de eerste) Van Nieuwenhuyze Roger Dag van de wiskunde

3 Je moet dus zowel de tekst: we hebben een dalparabool en we hebben een bergparabool op je scherm zetten. Nadien klik je met de rechtermuisknop op de eerste tekst en je gaat naar Eigenschappen en dan vul je op het tabblad Geavanceerd het volgende in: Bij bergparabool vul je uiteraard als voorwaarde a < 0 in. Je brengt best ook nog op je scherm de tekst: we hebben geen parabool meer! Hier moet dan bij geavanceerd, a = 0 ingetypt worden. Let op: je mag hierbij niet het gewone gelijkheidsteken invullen maar wel het gelijkheidsteken met het? erboven kiezen bij het passende rolmenu. Ook volgende teksten moeten op je scherm komen: Belangrijke opmerking: Om de invloed van a na te gaan zet je de schuiknoppen α en β op 0. Om de invloed van α na te gaan zet je de schuiknop β best op 0. Om de schuifknoppen te verslepen, klik je best eerst op de selecteerknop en nadien op het puntje van de schuifknop. Nadien klik je op de + of de van je numeriek klavier van je computer. Dit geeft een beter effect dan gewoon de schuifknop te verslepen met de muisbesturing! Van Nieuwenhuyze Roger Dag van de wiskunde

4 2. Voorbeeld 2: Transformaties op elementaire functies Stappenplan: Teken een schuifknop met de naam Keuze die varieert van 1 tot 4 met stappen van 1. Via tekst invoegen voer je de passende functievoorschriften in en zet je ze op de juiste plaats onder de schuifknop. Om deze teksten mooi op het scherm te brengen moet je Latech aanvinken en een goeie keuze maken in het bijhorende rolmenu! De functie f moet als volgt in het commandovenster ingevoerd worden: f(x) = Als[Keuze 1, x³, Als[Keuze 2, 1 / x, Als[Keuze 3, sqrt(x), cbrt(x)]]] Voer een schuifknop d in die varieert van -5 tot 5 met stappen van 0.1 Voer nadien de functie g in als volgt: g(x) = f(x+d) Om het voorschrift mooi op het scherm te krijgen, typ je in: "g(x) = " + g Je moet echter wel Latech aanvinken! Breng nog de nodige teksten op je scherm. Versleep nu eens de knop Keuze en nadien de knop d. Van Nieuwenhuyze Roger Dag van de wiskunde

5 3. Voorbeeld 3: Vergelijkingen van de raaklijnen door een punt aan een cirkel We werken het voorbeeld uit waarbij we de cirkel kunnen vastleggen door 3 schuifknoppen. De schuifknoppen a en b leggen de coördinaat van het middelpunt vast en de schuifknop r legt de straal van de cirkel vast. a en b variëren van -10 tot 10 met stappen van 1. r varieert van 1 tot 10 met stappen van 1. Teken deze schuifknoppen. Voer nadien de vergelijking van de cirkel in als: (x a) + (y b) = r Teken 2 schuifknoppen d en e in die variëren van -10 tot 10 met stappen van 1 en die de coördinaat van P vastleggen. Teken nadien de raaklijnen uit P aan de cirkel door eerst de snijpunten A en B van deze raaklijnen met de cirkel te zoeken. Hoe doe je dit? Breng nadien de nodige teksten op je scherm. Gebruik hiervoor o.a. "t: " + t. Van Nieuwenhuyze Roger Dag van de wiskunde

6 4. Voorbeeld 4: Vergelijking van een cirkel bepalen die aan bepaalde voorwaarden voldoet Stel de vergelijking op van de cirkel die door het punt P(9,4) gaat en concentrisch is 2 2 aan x + y 16x 12y + 75 = 0 Bepaal de vergelijking van de cirkel door de punten A(-1,2) en B(3,0) en waarbij het middelpunt ligt op de rechte a met als vergelijking 2x + y 3 = 0. Van Nieuwenhuyze Roger Dag van de wiskunde

7 Hierbij is GeoGebra dus een zeer handig hulpmiddel om bepaalde uitwerkingen van leerlingen te controleren. Indien je natuurlijk dergelijke oefeningen enkel met GeoGebra laat oplossen dan kan je je ook vragen stellen of je leerlingen wel later over de nodige wiskundige vaardigheden zullen beschikken Oefeningen waarbij de leerlingen ook hun antwoorden (die ze eerst op papier uitgewerkt hebben) met GeoGebra kunnen controleren zijn o.a.: Bepaal het middelpunt en de straal van de volgende cirkels Ga na of de volgende vergelijkingen cirkels voorstellen Een driehoek ABC wordt bepaald door a 15x + 8y 95 = 0, b -3x + 4y 37 = 0, c 3x + 4y +29 = 0. Bepaal de vergelijking van de cirkel die ingeschreven is in driehoek ABC Ga na of het punt P binnen of buiten de gegeven cirkel ligt Bepaal de eventuele snijpunten van de cirkel c en de rechte a Toon aan dat 12x + 15y -10 = 0 de vergelijking van een raaklijn is aan de cirkel met als vergelijking x² + y² + 4x + 2y - 4 = 0. Twee cirkels c1 en c2 snijden elkaar in de punten A en B. Toon aan dat M1M2 de middelloodlijn is van [AB]. Merk ook op dat je met GeoGebra niets bewijst. Er kan enkel een onderzoek vooraf gedaan worden en nadien wordt best, rekening houdend met het leerplan uiteraard, een wiskundig bewijs op bord gegeven. 5. Voorbeeld 5: Doorsnede van een balk met een vlak. Zoek de doorsnede van de balk met het vl(klm). Van Nieuwenhuyze Roger Dag van de wiskunde

8 Deze opgave wordt best vooraf aan de leerlingen doorgegeven. Anders verliest men te veel tijd met het tekenen van de balk. Oplossing: Zoek eerst het snijpunt J van de rechte KL met het grondvlak ABCD. Breng hiervoor een verticaal hulpvlak aan Volg nadien de stappen die beschreven staan in het tabelletje links op volgende tekening: Nog veel toffe GeoGebra-ervaringen gewenst in de klas Van Nieuwenhuyze Roger Dag van de wiskunde

ICT Practicumboek (4e JAAR secundair onderwijs)

ICT Practicumboek (4e JAAR secundair onderwijs) ICT Practicumboek (4e JAAR secundair onderwijs) GeoGebra Dit leerwerkboekje is bruikbaar in alle klassen aso tso kso van alle netten Functieleer, meetkunde & complexe getallen in het vierde jaar met GeoGebra

Nadere informatie

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet. ? GEOGEBRA 4 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Roger Van Nieuwenhuyze GeoGebra 4 Pagina 1 1. Schermen

Nadere informatie

Dag van de wiskunde 26/11/2005. R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet.

Dag van de wiskunde 26/11/2005. R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. Dag van de wiskunde 26/11/2005 R. Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Dag van de Wiskunde 2005 Van Nieuwenhuyze

Nadere informatie

GEOGEBRA 5. Ruimtemeetkunde in de tweede en derde graad. R. Van Nieuwenhuyze. Hoofdlector wiskunde aan HUB, Brussel. Auteur Van Basis tot Limiet.

GEOGEBRA 5. Ruimtemeetkunde in de tweede en derde graad. R. Van Nieuwenhuyze. Hoofdlector wiskunde aan HUB, Brussel. Auteur Van Basis tot Limiet. GEOGEBRA 5 Ruimtemeetkunde in de tweede en derde graad R. Van Nieuwenhuyze Hoofdlector wiskunde aan HUB, Brussel Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com GeoGebra in de tweede en derde

Nadere informatie

GEOGEBRA IN DE TWEEDE GRAAD. Kan dit wel? Roger Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet.

GEOGEBRA IN DE TWEEDE GRAAD. Kan dit wel? Roger Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. GEOGEBRA Kan dit wel? IN DE TWEEDE GRAAD Roger Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Van Nieuwenhuyze Roger Geogebra

Nadere informatie

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5.

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5. 11 ) Oefeningen 1) Vergelijkingen van functies Welke vergelijkingen stellen een rechte voor? Welke vergelijkingen stellen een parabool voor? Welke vergelijkingen stellen noch een rechte noch een parabool

Nadere informatie

GEOGEBRA 5. Ruimtemeetkunde in de tweede graad. R. Van Nieuwenhuyze. Hoofdlector wiskunde aan Odisee, Brussel. Auteur Van Basis tot Limiet.

GEOGEBRA 5. Ruimtemeetkunde in de tweede graad. R. Van Nieuwenhuyze. Hoofdlector wiskunde aan Odisee, Brussel. Auteur Van Basis tot Limiet. GEOGEBRA 5 Ruimtemeetkunde in de tweede graad R. Van Nieuwenhuyze Hoofdlector wiskunde aan Odisee, Brussel Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com GeoGebra in de tweede graad Roger

Nadere informatie

GEOGEBRA IN DE EERSTE GRAAD. Kan dit wel? R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet.

GEOGEBRA IN DE EERSTE GRAAD. Kan dit wel? R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. GEOGEBRA Kan dit wel? IN DE EERSTE GRAAD R. Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Geogebra in de eerste graad

Nadere informatie

Werken met de CAS. in de tweede graad. R. Van Nieuwenhuyze. Oud-hoofdlector wiskunde aan Odisee, Brussel. Auteur Van Basis tot Limiet.

Werken met de CAS. in de tweede graad. R. Van Nieuwenhuyze. Oud-hoofdlector wiskunde aan Odisee, Brussel. Auteur Van Basis tot Limiet. Werken met de CAS in de tweede graad R. Van Nieuwenhuyze Oud-hoofdlector wiskunde aan Odisee, Brussel Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com pag. 1 Van Nieuwenhuyze Roger CAS in

Nadere informatie

ICT-LEERLIJN (met GeoGebra) Luc Gheysens WISKUNDIGE COMPETENTIES

ICT-LEERLIJN (met GeoGebra) Luc Gheysens  WISKUNDIGE COMPETENTIES ICT-LEERLIJN (met GeoGebra) Luc Gheysens www.gnomon.bloggen.be WISKUNDIGE COMPETENTIES 1 Wiskundig denken 2 Wiskundige problemen aanpakken en oplossen 3 Wiskundig modelleren 4 Wiskundig argumenteren 5

Nadere informatie

Docent wiskunde aan de HUB, Brussel. Auteur Van Basis tot Limiet. Pedagogisch begeleider wiskunde (VLP).

Docent wiskunde aan de HUB, Brussel. Auteur Van Basis tot Limiet. Pedagogisch begeleider wiskunde (VLP). Dag van de wiskunde 1 e en 2 e graad 27/11/2010 Docent wiskunde aan de HUB, Brussel. Auteur Van Basis tot Limiet. Pedagogisch begeleider wiskunde (VLP). roger.van.nieuwenhuyze@skynet.be Van Nieuwenhuyze

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Open het programma Geogebra. Het beginscherm verschijnt. Klik voordat je verder gaat met je muis ergens in het

Open het programma Geogebra. Het beginscherm verschijnt. Klik voordat je verder gaat met je muis ergens in het Practicum I Opgave 1 Tekenen van een driehoek In de opgave gaan we op twee verschillende manieren een driehoek tekenen. We doen dit door gebruik te maken van de werkbalk (macrovenster) en van het invoerveld.

Nadere informatie

Proefexemplaar. ICT PraCTICumboek (1e graad / onderbouw) Filip Geeurickx Jan Thoelen Roger Van Nieuwenhuyze. GeoGebra

Proefexemplaar. ICT PraCTICumboek (1e graad / onderbouw) Filip Geeurickx Jan Thoelen Roger Van Nieuwenhuyze. GeoGebra ICT PraCTICumboek (1e graad / onderbouw) GeoGebra Filip Geeurickx Jan Thoelen Roger Van Nieuwenhuyze 3 ICT practicumboek > inhoud 1 Het pakket Geogebra 1.1 Het programma downloaden, 6 1.2 Vensters en icoontjes

Nadere informatie

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel.

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Raaklijnen Verkennen Raaklijnen Inleiding Verkennen Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Uitleg Raaklijnen Uitleg Opgave 1 Bekijk de Uitleg. a) Wat is de vergelijking

Nadere informatie

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78 ICT Meetkunde met GeoGebra 2.7 deel 1 blz 78 Om de opdrachten van paragraaf 2.7 uit het leerboek te kunnen maken heb je het computerprogramma GeoGebra nodig. Je kunt het programma openen via de leerlingenkit

Nadere informatie

PROBLEEMOPLOSSEND DENKEN MET

PROBLEEMOPLOSSEND DENKEN MET PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder

Nadere informatie

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG)

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG) Lesbrief GeoGebra Inhoud: 1. Even kennismaken met GeoGebra 2. Meetkunde: 2.1 Punten, lijnen, figuren maken 2.2 Loodlijn, deellijn, middelloodlijn maken 2.3 Probleem M1: De rechte van Euler 2.4 Probleem

Nadere informatie

Tweede graadsfuncties

Tweede graadsfuncties CAMPUS BRUSSEL Opfriscursus Wiskunde Tweede graadsfuncties Deel 1: kwadratische vergelijkingen en ongelijkheden Tweede-graadsfuncties 1 Gevraagd: hoeveel moet je aan het reisagentschap betalen als er 20

Nadere informatie

Paragraaf 8.1 : Lijnen en Hoeken

Paragraaf 8.1 : Lijnen en Hoeken Hoofdstuk 8 Meetkunde met coördinaten (V5 Wis B) Pagina 1 van 11 Paragraaf 8.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier

Nadere informatie

R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet.

R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com Van Nieuwenhuyze Roger Probleemoplossend werken in de tweede graad

Nadere informatie

Nadat GeoGebra wordt opgestart zie je het hierna afgebeelde venster: Algebra Venster. Teken Venster. Invoerveld

Nadat GeoGebra wordt opgestart zie je het hierna afgebeelde venster: Algebra Venster. Teken Venster. Invoerveld Vrije Ruimte Wiskunde GeoGebra Philip Bogaert GeoGebra 1. Inleiding GeoGebra is een (gratis) wiskundepakket dat meetkunde, algebra en analyse combineert. Het pakket werd ontwikkeld door Markus Hohenwarter

Nadere informatie

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1 Herhalingsoefeningen Tweedegraadsfuncties Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1

Nadere informatie

Paragraaf 1.1 : Lineaire functies en Modulus

Paragraaf 1.1 : Lineaire functies en Modulus Hoofdstuk 1 Functies en Grafieken (V4 Wis B) Pagina 1 van 9 Paragraaf 1.1 : Lineaire functies en Modulus Les 1 : Lineaire Formules Definities Algemene formule van een lijn : y = ax + b a = hellingsgetal

Nadere informatie

Proefexemplaar. ICT PRACTICUMBOEK (3e JAAR / ONDERBOUW) Tim Van der Hoeven Roger Van Nieuwenhuyze

Proefexemplaar. ICT PRACTICUMBOEK (3e JAAR / ONDERBOUW) Tim Van der Hoeven Roger Van Nieuwenhuyze ICT PRACTICUMBOEK (3e JAAR / ONDERBOUW) GeoGebra Dit leerwerkboekje is bruikbaar in 3 ASO (leerweg 4 en 5) 3 TSO-KSO (leerplan A - B - C) Derde jaar van het GO! Meetkunde en analytische meetkunde vraagstukken

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

Vergelijkingen van cirkels en lijnen

Vergelijkingen van cirkels en lijnen Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

Bijkomende Oefeningen: Les 1

Bijkomende Oefeningen: Les 1 1 Inhoudstafel ijkomende Oefeningen: Les 1...2 ijkomende Oefeningen: Les 2...3 ijkomende Oefeningen: Les 3...4 ijkomende Oefeningen: Les 4...5 ijkomende Oefeningen: Les 5...6 ijkomende Oefeningen: Les

Nadere informatie

Werken met parameters

Werken met parameters Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je hoe de waarde van een parameter in een functievoorschrift de vorm of ligging van de functie kan beïnvloeden. Je gaat dit onderzoeken voor tweedegraadsfuncties.

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

1 Middelpunten. Verkennen. Uitleg

1 Middelpunten. Verkennen. Uitleg 1 Middelpunten Verkennen Middelpunten Inleiding Verkennen Probeer vanuit drie gegeven punten (niet op één lijn) die op een cirkel moeten liggen het middelpunt van die cirkel te construeren. Je kunt hem

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Ontwerpen van digitale en interactieve. werkbladen met GeoGebraTube

Ontwerpen van digitale en interactieve. werkbladen met GeoGebraTube Ontwerpen van digitale en interactieve werkbladen met GeoGebraTube R. Van Nieuwenhuyze Oud-hoofdlector wiskunde aan Odisee, lerarenopleiding Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

GeoGebra Quickstart. Snelgids voor GeoGebra. Vertaald door Beatrijs Versichel en Ivan De Winne

GeoGebra Quickstart. Snelgids voor GeoGebra. Vertaald door Beatrijs Versichel en Ivan De Winne GeoGebra Quickstart Snelgids voor GeoGebra Vertaald door Beatrijs Versichel en Ivan De Winne Dynamische meetkunde, algebra en analyse vormen de basis van GeoGebra, een educatief pakket, dat meetkunde en

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

2. Kwadratische functies.

2. Kwadratische functies. Uitwerkingen R-vragen hoofdstuk. Kwadratische functies.. R De term a is bepalend voor zeer grote waardes van. Als a < 0 dan wordt de term a zeer groot en negatief zowel bij. en Er is sprake van een bergparabool

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14 INHOUD 1 De cirkel 9 1.1 Definities en benamingen 9 Oefeningen 11 1.2 Cirkel door drie punten 13 Oefeningen 14 1.3 Onderlinge ligging van een rechte en een cirkel 20 1.3.1 Aantal snijpunten van een rechte

Nadere informatie

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen Wiskunde oefentoets hoofdstuk 0: Meetkundige berekeningen Iedere antwoord dient gemotiveerd te worden, anders worden er geen punten toegekend. Gebruik van grafische rekenmachine is toegestaan. Succes!

Nadere informatie

Aan de slag met GeoGebra

Aan de slag met GeoGebra Aan de slag met GeoGebra De basis http://www.geogebra.org/ Wat je leert in deze powerpoint: Je kan GeoGebra opstarten Je kan de taal aanpassen Je kan je werk opslaan, fixeren en downloaden als afbeelding

Nadere informatie

Analytische meetkunde. Les 4 Kwadratische vergelijkingen (Deze les sluit aan bij de paragraaf 3.1 van Analytische meetkunde van de Wageningse Methode)

Analytische meetkunde. Les 4 Kwadratische vergelijkingen (Deze les sluit aan bij de paragraaf 3.1 van Analytische meetkunde van de Wageningse Methode) Analytische meetkunde Les 4 Kwadratische vergelijkingen (Deze les sluit aan bij de paragraaf 3.1 van Analytische meetkunde van de Wageningse Methode) De vergelijking van een cirkel De cirkel heeft middelpunt

Nadere informatie

INLEIDING TOT GEOGEBRA

INLEIDING TOT GEOGEBRA INLEIDING TOT GEOGEBRA Sven Mettepenningen, 28/02/2007 GEOGEBRA 1 EERSTE KENNISMAKING Het pakket Geogebra kan je downloaden op de site http://www.geogebra.at/ Eventueel is het ook nuttig van de laatste

Nadere informatie

Efficientie in de ruimte - leerlingmateriaal

Efficientie in de ruimte - leerlingmateriaal Junior College Utrecht Efficientie in de ruimte - leerlingmateriaal Versie 2 September 2012 Een project (ruimte-)meetkunde voor vwo-leerlingen Geschreven voor het Koningin Wilhelmina College Culemborg

Nadere informatie

door: Bart Van den Bergh

door: Bart Van den Bergh door: Bart Van den Bergh Inhoud 1. Inleiding...5 1.1. Wat is GeoGebra?... 5 1.2. Downloaden en installatie... 5 2. Basiscursus...7 2.1. Aan de slag... 7 2.1.1 Openen van het programma... 7 2.1.2 Lay-out...

Nadere informatie

3 Hoeken en afstanden

3 Hoeken en afstanden Domein Meetkunde havo B 3 Hoeken en afstanden Inhoud 3.1 Cirkels en hun middelpunt 3.2 Snijden en raken 3.3 Raaklijnen en hoeken 3.4 Afstanden berekenen 3.5 Overzicht In opdracht van: Commissie Toekomst

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Wiskunde als inspiratie voor een zoektocht

Wiskunde als inspiratie voor een zoektocht Wiskunde als inspiratie voor een zoektocht INLEIDING Een aantal jaar geleden leerde ik een nieuw spel kennen: geocaching. Dit is in feite een zoektocht waarbij je gebruik maakt van GPS-coördinaten. Op

Nadere informatie

27 Macro s voor de schijf van Poincaré

27 Macro s voor de schijf van Poincaré 27 Macro s voor de schijf van Poincaré 27.1 Inleiding In het secundair onderwijs zijn leerlingen vertrouwd met de Euclidische meetkunde. In het Euclidisch vlak geldt het beroemde 5 de parallellen postulaat:

Nadere informatie

Schotelantennes. Maak ze met wiskunde! /k 1/18. metaal x m. mal. gips. y = x 2 /(4F) y m. y p. x p

Schotelantennes. Maak ze met wiskunde! /k 1/18. metaal x m. mal. gips. y = x 2 /(4F) y m. y p. x p Schotelantennes Maak ze met wiskunde! y y = x 2 /(4F) y m mal y p metaal x m x p x gips /k 1/18 Stukje van een groter geheel Als je een probleem uit de praktijk beschrijft met wiskundige vergelijkingen,

Nadere informatie

Cursus Geogebra. Werkbladen voor vmbo en havo/vwo onderbouw. Docentencongres wiskunde: Aan de slag met ICT! Februari 2011

Cursus Geogebra. Werkbladen voor vmbo en havo/vwo onderbouw. Docentencongres wiskunde: Aan de slag met ICT! Februari 2011 Cursus Geogebra Docentencongres wiskunde: Aan de slag met ICT! Werkbladen voor vmbo en havo/vwo onderbouw Februari 2011 J. Manders Dominicus College Nijmegen jan.manders@dominicuscollege.nl 2 Introductie

Nadere informatie

Maximale oppervlakte van een rechthoek ingeschreven in een cirkel

Maximale oppervlakte van een rechthoek ingeschreven in een cirkel Maximale oppervlakte van een rechthoek ingeschreven in een cirkel Auteur : Camille Gaspard Niveau: 3 de graad Sleutelwoorden: Studie van functies Dynamische meetkunde Opgave Een cirkel met centrum O en

Nadere informatie

Kaart 1: Kubus aanpassen Zet bij Beeld de assen uit en het rooster aan.

Kaart 1: Kubus aanpassen Zet bij Beeld de assen uit en het rooster aan. Kaart 1: Kubus aanpassen Zet bij Beeld de assen uit en het rooster aan. Kies uit het menu Rechte door 2 punten voor lijnstuk tussen twee punten. Klik op een roosterpunt en punt A wordt getekend. Teken

Nadere informatie

12 Bewijzen in de vlakke meetkunde

12 Bewijzen in de vlakke meetkunde ewijzen in de vlakke meetkunde bladzijde 54 a ' b Gegeven: e gelijkzijdige driehoek met zijn omgeschreven cirkel. unt ligt op de kortste boog en ligt op het verlengde van zo, dat =. riehoek is gelijkzijdig.

Nadere informatie

INTERACTIEF LESGEVEN - OP ELK PLATFORM - VOOR IEDEREEN. Dag van de wiskunde 24 november 2012. Björn Carreyn

INTERACTIEF LESGEVEN - OP ELK PLATFORM - VOOR IEDEREEN. Dag van de wiskunde 24 november 2012. Björn Carreyn INTERACTIEF LESGEVEN - OP ELK PLATFORM - VOOR IEDEREEN Dag van de wiskunde 24 november 2012 Björn Carreyn twitter/mrcarreyn bjorn.carreyn@me.com http://www.demare.be/mrcarreyn 1! Inhoud werkwinkel! 3 2!

Nadere informatie

De eerste stappen met de TI-Nspire 2.1 voor de derde graad

De eerste stappen met de TI-Nspire 2.1 voor de derde graad De eerste stappen met TI-Nspire 2.1 voor de derde graad. Technisch Instituut Heilig Hart, Hasselt Inleiding Ik gebruik al twee jaar de TI-Nspire CAS in de derde graad TSO in de klassen 6TIW( 8 uur wiskunde)

Nadere informatie

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur Wiskunde B Profi (oude stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 20 juni 3.30 6.30 uur 20 0 Voor dit eamen zijn maimaal 78 punten te behalen; het eamen bestaat uit 4 vragen.

Nadere informatie

Eindexamen wiskunde B 1-2 vwo I

Eindexamen wiskunde B 1-2 vwo I Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Exponenten en Gemengde opgaven logaritmen

Exponenten en Gemengde opgaven logaritmen 08 Exponenten en Gemengde opgaven logaritmen Lijnen en cirkels bladzijde a k p // l p, dus p + p p p + (p + )(p + ) (p )(p ) p + 6p + p 6p + 8 p p b k p l p, dus rc kp rc lp p + p p p + p p p + p p p p

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

1. Vlakke meetkunde. Geocadabra kan je downloaden op de website Opgave 1

1. Vlakke meetkunde. Geocadabra kan je downloaden op de website  Opgave 1 Geocadabra 1. Vlakke meetkunde Opgave 1 Geocadabra kan je downloaden op de website www.geocadabra.nl Teken de cirkel c met middelpunt M(2,1) en straal 5. Construeer de raaklijnen uit het punt P(-10,4)

Nadere informatie

Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen

Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen (Deze les sluit aan bij het paragraaf 3 en 4 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site

Nadere informatie

11.1 De parabool [1]

11.1 De parabool [1] 11.1 De parabool [1] Algemeen: Het punt F heet het brandpunt van de parabool. De lijn l heet de richtlijn van de parabool. De afstand van F tot l heet de parameter van de parabool. Defintie van een parabool:

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

11 De hoed van Napoleon

11 De hoed van Napoleon 11 De hoed van Napoleon 11.1 Historiek Napoleon Bonaparte (1769-1821) was van Italiaanse afkomst en begon zijn carrière als onderluitenant in de artillerie en klom op tot Frans generaal. Op zijn dertigste

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Creatief aan de slag met GeoGebra. Een tangram is een beroemde Chinese puzzel bestaande uit 7 puzzelstukjes: 1 vierkant, 1 parallellogram.

Creatief aan de slag met GeoGebra. Een tangram is een beroemde Chinese puzzel bestaande uit 7 puzzelstukjes: 1 vierkant, 1 parallellogram. 18 Tangram puzzel Een tangram is een beroemde Chinese puzzel bestaande uit 7 puzzelstukjes: 5 gelijkbenige rechthoekige driehoeken van 3 verschillende grootten, 1 vierkant, 1 parallellogram. Aan het begin

Nadere informatie

SOM- en PRODUCTGRAFIEK van twee RECHTEN

SOM- en PRODUCTGRAFIEK van twee RECHTEN SOM- en PRODUCTGRAFIEK van twee RECHTEN 1. SOMGRAFIEK Walter De Volder Breng onder Y 1 en Y 2 de vergelijking van een rechte in. Stel Y 3 = Y 1 + Y 2. Construeer de drie grafieken. Onderzoek verschillende

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

Blok 5 - Vaardigheden

Blok 5 - Vaardigheden Extra oefening - Basis B-a De richtingscoëfficiënt is 7 = 8 =. 7 x = en y = 7 invullen in y = x + b geeft 7 = + b 7 = + b dus b =. Een vergelijking is y = x. b De richtingscoëfficiënt is =. 8 5 x = 8 en

Nadere informatie

Annelies Droessaert en Etienne Goemaere

Annelies Droessaert en Etienne Goemaere De meerwaarde van TI-Nspire in de 2 de graad Annelies Droessaert en Etienne Goemaere 1. INLEIDING De meeste scholen kiezen er momenteel voor om een grafisch rekentoestel in te voeren vanaf de 2 de graad.

Nadere informatie

Analytische meetkunde. Les 1 Introductie analytische meetkunde

Analytische meetkunde. Les 1 Introductie analytische meetkunde Analytische meetkunde Les 1 Introductie analytische meetkunde (Deze les sluit aan bij hoofdstuk 1 van Analytische meetkunde van de Wageningse Methode) Waar ligt de schat? Loop in een rechte lijn van de

Nadere informatie

Apps in de wiskundeles

Apps in de wiskundeles Annegreet Poelman en Silke Vangheluwe Apps in de wiskundeles Nascholing over het gebruik van ipads tijdens de lessen wiskunde in het secundair onderwijs UGent - Onderwijstechnologie INLEIDING Technologie

Nadere informatie

Eindexamen wiskunde B havo II

Eindexamen wiskunde B havo II Opgave 1 Een functie e functie f is gegeven door figuur 1 2x 40 f (x) =, waarbij x 19. x 19 In figuur 1 en op de bijlage is de grafiek getekend van f en de verticale asymptoot x = 19. 6p 1 Los op: 0

Nadere informatie

Hoofdstuk 8 : De Cirkel

Hoofdstuk 8 : De Cirkel - 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt

Nadere informatie

Hoofdstuk 2 - Kwadratische functies

Hoofdstuk 2 - Kwadratische functies Hoofdstuk - Kwadratische functies Hoofdstuk - Kwadratische functies Voorkennis V-1a y = 3(x ) 3 x 3 6x 1 y = 6x 1 b y = 9( 4x 4) 3 4x 4 9 36x 36 y = 36x 36 c y = x( x 7) 3 x 7 x x 7x y = x 7x V-a y = (

Nadere informatie

EXTREMUMVRAAGSTUKKEN MET

EXTREMUMVRAAGSTUKKEN MET EXTREMUMVRAAGSTUKKEN MET Luc Gheysens Roger Van Nieuwenhuyze Vakbegeleiders wiskunde Inleiding GeoGebra is een wiskundepakket dat meetkunde, algebra en analyse combineert. Het pakket werd ontwikkeld door

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

WISNET-HBO NHL update jan. 2009

WISNET-HBO NHL update jan. 2009 Tweedegraadsfuncties Parabolen maken WISNET-HBO NHL update jan. 2009 Inleiding In deze les leer je wat systeem brengen in het snel herkennen van tweedegraadsfuncties. Een paar handige trucjes voor het

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: cirkel en parabool 11/5/2013 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

2.1 Lineaire formules [1]

2.1 Lineaire formules [1] 2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 989-990: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt: een deelnemer start met 0 punten, per

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Cabri werkblad. Meetkundige plaatsen

Cabri werkblad. Meetkundige plaatsen Cabri werkblad Meetkundige plaatsen 1. Wat is een meetkundige plaats? We geven direct maar een Definitie Een meetkundige figuur heet meetkundige plaats van punten met een bepaalde eigenschap indien: 1.

Nadere informatie

2 Vergelijkingen van lijnen

2 Vergelijkingen van lijnen 2 Vergelijkingen van lijnen Verkennen Meetkunde Lijnen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Gebruik de applet! Uitleg Meetkunde Lijnen Uitleg Opgave 1 Bestudeer de Uitleg. Laat zien

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

12.1 Omtrekshoeken en middelpuntshoeken [1]

12.1 Omtrekshoeken en middelpuntshoeken [1] 12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde

Nadere informatie

Dynamische meetkunde. Een reactie op euclides 84-8

Dynamische meetkunde. Een reactie op euclides 84-8 Dynamische meetkunde Een reactie op euclides 84-8 Dit stuk is geschreven naar aanleiding van enkele toevalligheden die bij elkaar kwamen in Euclides nummer 8 van juli 2009. De eerste aanleiding was het

Nadere informatie

Aantekening VWO 6 Wis D Hfst 9 : Lijnen en Cirkels. Het voordeel van de laatste is dat (a,0) en (0,b) de snijpunten met de assen zijn!!

Aantekening VWO 6 Wis D Hfst 9 : Lijnen en Cirkels. Het voordeel van de laatste is dat (a,0) en (0,b) de snijpunten met de assen zijn!! Aantekening VWO 6 Wis D Hfst 9 : Lijnen en Cirkels Les 1 Lijnen Een lijn kun je op verschillende manieren weergeven = a + b p + q = r 1 (niet zelfde a en b van manier 1) a b Het voordeel van de laatste

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie