27 Macro s voor de schijf van Poincaré

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "27 Macro s voor de schijf van Poincaré"

Transcriptie

1 27 Macro s voor de schijf van Poincaré 27.1 Inleiding In het secundair onderwijs zijn leerlingen vertrouwd met de Euclidische meetkunde. In het Euclidisch vlak geldt het beroemde 5 de parallellen postulaat: door een punt buiten een rechte bestaat er precies één evenwijdige rechte aan de gegeven rechte. Euclidische meetkunde is gewoon voor te stellen in het platte vlak. Tijdens de 19 de eeuw ontdekken de Hongaar Bolyai en de Rus Lobachevsky een andere vorm van meetkunde, de hyperbolische meetkunde, waarbij het parallellenpostulaat wordt gewijzigd. Janos Bolyai ( ) Nikolai Lobachevsky ( ) Het parallellen postulaat van de Euclidische meetkunde geldt NIET in deze hyperbolische meetkunde en wordt als volgt aangepast: door een punt buiten een gegeven rechte gaan er oneindig veel rechten die de gegeven rechte niet snijden. De Winne Ivan 1

2 Een dergelijke vorm van meetkunde kunnen wij ons moeilijk voorstellen. Dat maakt hyperbolische meetkunde niet minder relevant. Om ons heelal te beschrijven maken astronomen gebruik van een hyperbolisch model waarin de ruimte negatief gekromd is. In een drie-dimensionale ruimte is het wel mogelijk deze hyperbolische meetkunde op een zadeloppervlak te visualiseren. Dit is echter een moeilijke werkwijze omdat wij al te vertrouwd zijn met de platte meetkunde van een Euclidisch vlak. Vandaar dat er allerlei modellen bedacht zijn om hyperbolische meetkunde voor te stellen waarbij er door een punt buiten een gegeven rechte meerdere rechten gaan die de gegeven rechte niet snijden Bertrami-Klein model Een eenvoudig model voor de hyperbolische meetkunde is het Beltrami-Klein model. Het hyperbolische vlak is het binnenste van een cirkel. Hyperbolische lijnen zijn koorden van de cirkel. Een koorde stelt dus een oneindig lange lijn voor, en de rand van de cirkel een soort horizon Het half-vlak model van Poincaré Het Euclidische vlak wordt in twee halfvlakken verdeeld waarbij de X-as meestal als scheidingslijn wordt gekozen en het hyperbolisch vlak bestaat uit het bovenste halfvlak waar y>0. Rechten (lijnen) zijn in dit model: Halfrechten loodrecht op de X-as of Halfcirkels met middelpunt op X-as gelegen. De Winne Ivan 2

3 De schijf van Poincaré De Franse wiskundige Poincaré geeft in 1906 in zijn boek La science et l hypothèse een model voor de hyperbolische meetkunde uitgewerkt binnen een Euclidische cirkel. Binnen deze zogenaamde Poincaré-schijf gelden: Punten (d-punten) worden voorgesteld door punten binnen deze (Euclidische cirkel). Rechten (d-lijnen) worden voorgesteld door open cirkelbogen m die de cirkel c loodrecht snijden of door middellijnen van de cirkel (in feite een cirkelboog waarvan de straal oneindig is). De hoek tussen twee rechten (d-lijnen) in het snijpunt is de hoek tussen de raaklijnen in dit d-punt. Hou er rekening mee dat rechten (d-lijnen) binnen dit Poincaré model worden voorgesteld als Euclidische cirkelbogen Macro s voor rechten (d-lijnen) en d-cirkel op de schijf van Poincaré De bedoeling van deze opdracht is het uitbouwen van dit model van de hyperbolische meetkunde met GeoGebra en de creatie van een aantal gereedschappen voor o.a. het tekenen van een rechte (d-lijn) binnen deze Poincaré schijf en ook een d-cirkel binnen deze Poincaré schijf. Euclidische cirkel middelpunt M en straal 1 Rechten (d-lijnen) op Poincaré schijf d-cirkels op Poincaré schijf De Winne Ivan 3

4 27.3 Het maken van een macro met GeoGebra Vaak terugkerende handelingen kan men met GeoGebra bundelen in zogenaamde macro s. Een eenvoudig voorbeeld: Maak vooreerst een GeoGebra bestand voor de constructie van de ingeschreven cirkel van een driehoek. Stap 1: Start GeoGebra en open een nieuw leeg werkblad. Teken een driehoek ΔABC. Teken de bissectrices en bepaal het snijpunt M van deze bissectrices. Teken de loodlijn vanuit M op één van de drie zijden van de driehoek en bepaal het snijpunt S. De gevraagde cirkel heeft als middelpunt M en als straal de afstand tussen M en S. Bewaar dit bestand als ingeschrevencirkel.ggb Stap 2: Wij maken nu een macro om, gegeven de drie hoekpunten van een driehoek, met één enkele handeling de ingeschreven cirkel te tekenen. Aan de werkbalk zal ook een nieuwe knop worden toegevoegd. Veronderstel dat vooraf een afbeelding werd gemaakt voor deze knop incirkel.jpg Jij kan deze figuur incirkel.jpg zelf maken of downloaden. De Winne Ivan 4

5 Open het vorige bestand ingeschrevencirkel.ggb Kies in de menubalk bij het onderdeel Macro s Nieuwe macro aanmaken. In het dialoogvenster moet je vooreerst de eindobjecten (cirkel) en vervolgens de beginobjecten (de drie hoekpunten) van je macro specificeren. Specificeer de Eindobjecten: selecteer het via het rolmenu of klik op de objecten in de tekening. Specifiëer ook de Beginobjecten: GeoGebra selecteert voor jou automatisch de beginobjecten (in dit geval: de punten A,B en C). Geef macro een naam (Ingeschreven cirkel) en voer ook de opdrachtnaam incirkel in. Jij kan ook een icoon aan deze knop verbinden. De afbeelding hiervoor moet jij wel vooral maken, in dit geval incirkel.jpg Klik op Pictogram en open het bestand cirkel.jpg dat werd bewaard in een map op jouw PC. Klik tenslotte op Beëindigen De Winne Ivan 5

6 Indien alles correct werd dan verschijnt er een nieuwe knop op de werkbalk. Alle macro s worden automatisch bewaard in het huidige constructiebestand, dat de extensie ggb heeft. Via het item Macro s beheren in het menu Macro s kan je een macro opnieuw verwijderen, of zijn naam of afbeelding wijzigen. Bewaar dit bestand als incirkel.ggb Stap 3: Indien men deze macro voor de ingeschreven cirkel wil gebruiken dan kan men dit bestand incirkel.ggb openen. De nieuwe knop is beschikbaar. Klik op deze knop, vervolgens op drie (hoek)punten en de ingeschreven cirkel wordt getekend. Stap 4: GeoGebra voorziet ook de mogelijkheid om deze macro in een apart MACRObestand (met de extensie ggt) te bewaren. Men kan deze macro nadien inladen in een ander nieuw (leeg) GeoGebra bestand. Open het vorige bestand incirkel.ggb Klik op Macro s beheren en Opslaan. De Winne Ivan 6

7 27.4 Macro voor een d-lijn op de Poincaré schijf De schijf van Poincaré wordt voorgesteld door een cirkelschijf met straal 1, waarbij het inwendige van deze schijf de hyperbolisch ruimte voorstelt en de rand het oneindige. Rechten (d-lijnen) worden voorgesteld in dit model van de hyperbolische meetkunde voorgesteld door: open cirkelbogen m die de cirkel c loodrecht snijden of middellijnen van de cirkel (in feite een cirkelboog waarvan de straal oneindig is). Stap 1: constructie Open een nieuw leeg werkblad in GeoGebra. Teken een cirkel met middelpunt de oorsprong en straal 1. Invoerveld x^2+y^2=1 Deze cirkel is de grenslijn (horizon). Inzoomen. Het inwendige van deze cirkelschijf kan men voorstellen m.b.v. een ongelijkheid x^2+y^2<1 Alle punten van de hyperbolische meetkunde liggen in dit model binnen de rand van de cirkel zoals de punten A en B. Teken een twee punten A en B gelegen op de schijf. Bepaal de inversie A van A t.o.v. de cirkel c en de inversie B van B. Teken de lijnstukken AA en ook BB. Middelloodlijnen van beide lijnstukken en snijpunt C van deze middelloodlijnen. (Orthogonale) cirkel met middelpunt C en gaande door A. Snijpunten D en E. Tenslotte cirkelboog met middelpunt C en gaande door D en E. Dit is de gevraagde d-lijn. De Winne Ivan 7

8 GeoGebra bestand: constructie van d-lijn.ggb Stap 2: bewaren van deze constructie als macro. Uitgewerkt bestand: MACRO-d-lijn.ggb 27.5 Macro voor een d-cirkel op de Poincaré schijf. Wij vullen nu deze Poincaré schijf aan met een macro voor een d-cirkel (hyperbolische cirkel). Omdat in dit model de afstanden tussen punten naar rand toe gelegen (horizon) met onze Euclidische ogen kleiner wordt zal het middelpunt van deze d-cirkel niet samenvallen met het middelpunt van de Euclidische cirkel. De Winne Ivan 8

9 Een cirkel is immers per definitie de verzameling van punten op een gelijke afstand van het centrum. Stap 1: constructie Teken een willekeurig punt A op de schijf van Poincaré. Dit punt wordt het middelpunt van de d-cirkel. Teken een tweede punt B op deze Poincaré schijf en de d-lijn door A en B. Naar analogie met een Euclidische cirkel waarbij alle middellijnen loodrecht op de cirkel staan is dit ook het geval voor de hyperbolische cirkel. Dit middelpunt ligt uiteraard op de lijn door C en D. De gevraagde cirkel moet orthogonaal op de d-lijn door A en B gelegen zijn. Het middelpunt P is het snijpunt van de raaklijn in B aan de cirkelboog en de middellijn door A en M. Kort samengevat kunnen wij stellen dat voor een d-cirkel (hyperbolische) het middelpunt A niet overeenstemt met het middelpunt P van de Euclidische cirkel. Uitgewerkt GeoGebra bestand: Constructie_d-cirkel.ggb Stap 2: opslaan als MACRO: eindobject is een cirkel, beginobjecten A en B. De Winne Ivan 9

10 Uitgewerkte GeoGebra bestanden: d-lijnen_en_d-cirkels.ggb en d-lijnen_door_middelpunt.ggb De Winne Ivan 10

Creatief aan de slag met GeoGebra. Een tangram is een beroemde Chinese puzzel bestaande uit 7 puzzelstukjes: 1 vierkant, 1 parallellogram.

Creatief aan de slag met GeoGebra. Een tangram is een beroemde Chinese puzzel bestaande uit 7 puzzelstukjes: 1 vierkant, 1 parallellogram. 18 Tangram puzzel Een tangram is een beroemde Chinese puzzel bestaande uit 7 puzzelstukjes: 5 gelijkbenige rechthoekige driehoeken van 3 verschillende grootten, 1 vierkant, 1 parallellogram. Aan het begin

Nadere informatie

Exploraties met GeoGebra

Exploraties met GeoGebra 9 Fractalen Exploraties met GeoGebra Een fractaal is een meetkundige figuur waarin een zelfde motief zich steeds op kleinere schaal herhaalt. Men spreekt in dat verband over de bloemkoolstructuur of de

Nadere informatie

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78 ICT Meetkunde met GeoGebra 2.7 deel 1 blz 78 Om de opdrachten van paragraaf 2.7 uit het leerboek te kunnen maken heb je het computerprogramma GeoGebra nodig. Je kunt het programma openen via de leerlingenkit

Nadere informatie

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer.

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer. Cabri-werkblad Raaklijnen Raaklijnen aan een cirkel Definitie Een raaklijn aan een cirkel is een rechte lijn die precies één punt (het raakpunt) met de cirkel gemeenschappelijk heeft. Stelling De raaklijn

Nadere informatie

Een Nieuwe Wereld uit het Niets

Een Nieuwe Wereld uit het Niets Een Nieuwe Wereld uit het Niets Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@math.rug.nl www.math.rug.nl/~gert Masterclass, 16 april 2009 GV () Werelden uit het niets Masterclass,

Nadere informatie

Aan de slag met GeoGebra

Aan de slag met GeoGebra Aan de slag met GeoGebra De basis http://www.geogebra.org/ Wat je leert in deze powerpoint: Je kan GeoGebra opstarten Je kan de taal aanpassen Je kan je werk opslaan, fixeren en downloaden als afbeelding

Nadere informatie

Open het programma Geogebra. Het beginscherm verschijnt. Klik voordat je verder gaat met je muis ergens in het

Open het programma Geogebra. Het beginscherm verschijnt. Klik voordat je verder gaat met je muis ergens in het Practicum I Opgave 1 Tekenen van een driehoek In de opgave gaan we op twee verschillende manieren een driehoek tekenen. We doen dit door gebruik te maken van de werkbalk (macrovenster) en van het invoerveld.

Nadere informatie

Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen.

Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Jakob Steiner (Utzenstorf (kanton Bern), 18 maart 1796 - Bern, 1 april 1863) was een Zwitsers wiskundige. Hij wordt beschouwd als een van de belangrijkste

Nadere informatie

Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen. Geschiedenis van de niet-euclidische meetkunde

Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen. Geschiedenis van de niet-euclidische meetkunde Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen Geschiedenis van de niet-euclidische meetkunde Aan de hand van inhoud zebra-boekje Ideeën voor onderzoeksopdrachten

Nadere informatie

11 De hoed van Napoleon

11 De hoed van Napoleon 11 De hoed van Napoleon 11.1 Historiek Napoleon Bonaparte (1769-1821) was van Italiaanse afkomst en begon zijn carrière als onderluitenant in de artillerie en klom op tot Frans generaal. Op zijn dertigste

Nadere informatie

Werkbladen vergelijking van een rechte

Werkbladen vergelijking van een rechte In deze werktekst proberen wij de vergelijkingen op te stellen van rechten die aan bepaalde voorwaarden voldoen. Wij onderscheiden volgende gevallen: 1. Vergelijking van een rechte gaande door de oorsprong

Nadere informatie

Neem [pr]=[ps] en beschrijf uit r en s twee cirkelbogen met dezelfde straal, die elkaar in c snijden. [cp] is de loodlijn op [ab].

Neem [pr]=[ps] en beschrijf uit r en s twee cirkelbogen met dezelfde straal, die elkaar in c snijden. [cp] is de loodlijn op [ab]. Met a en b als middelpunt en met straal groter dan de helft van [ab] trekt men met dezelfde straal twee cirkelbogen, die elkaar snijden in c en d; cd is de middelloodlijn en m het midden van [ab] Neem

Nadere informatie

Basisconstructies, de werkbladen 1 Het midden van een lijnstuk

Basisconstructies, de werkbladen 1 Het midden van een lijnstuk Basisconstructies, de werkbladen 1 Het midden van een lijnstuk Basisconstructie 1 Het lijnstuk AB Neem vanuit A een afstand tussen de benen van de passer die wat groter is dan van A tot het geschatte midden

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie

De hoek tussen twee lijnen in Cabri Geometry

De hoek tussen twee lijnen in Cabri Geometry De hoek tussen twee lijnen in Cabri Geometry DICK KLINGENS (e-mail: dklingens@pandd.nl) Krimpenerwaard College, Krimpen aan den IJssel (NL) augustus 2008 1. Inleiding In de (vlakke) Euclidische meetkunde

Nadere informatie

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG)

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG) Lesbrief GeoGebra Inhoud: 1. Even kennismaken met GeoGebra 2. Meetkunde: 2.1 Punten, lijnen, figuren maken 2.2 Loodlijn, deellijn, middelloodlijn maken 2.3 Probleem M1: De rechte van Euler 2.4 Probleem

Nadere informatie

Proefexemplaar. ICT PraCTICumboek (1e graad / onderbouw) Filip Geeurickx Jan Thoelen Roger Van Nieuwenhuyze. GeoGebra

Proefexemplaar. ICT PraCTICumboek (1e graad / onderbouw) Filip Geeurickx Jan Thoelen Roger Van Nieuwenhuyze. GeoGebra ICT PraCTICumboek (1e graad / onderbouw) GeoGebra Filip Geeurickx Jan Thoelen Roger Van Nieuwenhuyze 3 ICT practicumboek > inhoud 1 Het pakket Geogebra 1.1 Het programma downloaden, 6 1.2 Vensters en icoontjes

Nadere informatie

door: Bart Van den Bergh

door: Bart Van den Bergh door: Bart Van den Bergh Inhoud 1. Inleiding...5 1.1. Wat is GeoGebra?... 5 1.2. Downloaden en installatie... 5 2. Basiscursus...7 2.1. Aan de slag... 7 2.1.1 Openen van het programma... 7 2.1.2 Lay-out...

Nadere informatie

Appendix B: Complexe getallen met Cabri Geometry II 1

Appendix B: Complexe getallen met Cabri Geometry II 1 Appendix B: Complexe getallen met Cabri Geometry II 1 1. Macro s in Cabri Indien een constructie geregeld uitgevoerd moet worden, is het interessant deze constructie op te slaan in een macro. Het definiëren

Nadere informatie

INLEIDING TOT GEOGEBRA

INLEIDING TOT GEOGEBRA INLEIDING TOT GEOGEBRA Sven Mettepenningen, 28/02/2007 GEOGEBRA 1 EERSTE KENNISMAKING Het pakket Geogebra kan je downloaden op de site http://www.geogebra.at/ Eventueel is het ook nuttig van de laatste

Nadere informatie

Hoofdstuk 8 : De Cirkel

Hoofdstuk 8 : De Cirkel - 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

héöéäëåéçéå=~äë=ãééíâìåçáöé=éä~~íëéå=ãéí=`~äêá= = hçéå=píìäéåë= = = = = = = =

héöéäëåéçéå=~äë=ãééíâìåçáöé=éä~~íëéå=ãéí=`~äêá= = hçéå=píìäéåë= = = = = = = = héöéäëåéçéå~äëãééíâìåçáöééä~~íëéåãéí`~äêá hçéåpíìäéåë De algemene vergelijking van een kegelsnede is van de vorm : 2 2 ax by 2cxy 2dx 2ey f 0 met a, b, c, d, e, f + + + + +. Indien je vijf punten van een

Nadere informatie

Cabri-werkblad Negenpuntscirkel

Cabri-werkblad Negenpuntscirkel Cabri-werkblad Negenpuntscirkel 0. Vooraf - Bij dit werkblad wordt kennis verondersteld van de eigenschappen van parallellogrammen, rechthoekige driehoeken en van de elementaire eigenschappen van de koordenvierhoek.

Nadere informatie

12.1 Omtrekshoeken en middelpuntshoeken [1]

12.1 Omtrekshoeken en middelpuntshoeken [1] 12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde

Nadere informatie

GeoGebra Quickstart. Snelgids voor GeoGebra. Vertaald door Beatrijs Versichel en Ivan De Winne

GeoGebra Quickstart. Snelgids voor GeoGebra. Vertaald door Beatrijs Versichel en Ivan De Winne GeoGebra Quickstart Snelgids voor GeoGebra Vertaald door Beatrijs Versichel en Ivan De Winne Dynamische meetkunde, algebra en analyse vormen de basis van GeoGebra, een educatief pakket, dat meetkunde en

Nadere informatie

Cabri werkblad. Meetkundige plaatsen

Cabri werkblad. Meetkundige plaatsen Cabri werkblad Meetkundige plaatsen 1. Wat is een meetkundige plaats? We geven direct maar een Definitie Een meetkundige figuur heet meetkundige plaats van punten met een bepaalde eigenschap indien: 1.

Nadere informatie

Lijst van alle opdrachten versie 13 mei 2014

Lijst van alle opdrachten versie 13 mei 2014 Lijst van alle opdrachten versie 13 mei 2014 Punt Pu1 Zorg dat Toon assen aan staat. Teken een punt in het vlak. Wijzig de naam naar X (hoofdletter!) (rechtsklikken op het punt voor openen snelmenu). Sleep

Nadere informatie

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven

Nadere informatie

Kegelsneden. Les 1 Gelijke afstand (Deze les sluit aan bij paragraaf 1 van Conflictlijnen van de Wageningse Methode.)

Kegelsneden. Les 1 Gelijke afstand (Deze les sluit aan bij paragraaf 1 van Conflictlijnen van de Wageningse Methode.) Kegelsneden Les 1 Gelijke afstand (Deze les sluit aan bij paragraaf 1 van Conflictlijnen van de Wageningse Methode.) De verdeling van de Noordzee Het nabuurprincipe: Elk stukje van de zeebodem hoort Bij

Nadere informatie

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde Analytische Meetkunde Lieve Houwaer, Unit informatie, team wiskunde . VECTOREN EN RECHTEN.. Vectoren... Het vectorbegrip De verzameling punten van het vlak noteren we door π. Kies in het vlak π een vast

Nadere informatie

Cabri-werkblad. Apollonius-cirkels

Cabri-werkblad. Apollonius-cirkels Cabri-werkblad Apollonius-cirkels 1. Doel We zullen in dit werkblad kennismaken met de zogenoemde Apollonius-cirkels [1] van een driehoek. Daarvoor moeten ook enkele eigenschappen van (binnen- en buiten)bissectrices

Nadere informatie

10 Afstanden. rood. even ver van A als van C even ver van A, van C en van E. 10 m. blauw

10 Afstanden. rood. even ver van A als van C even ver van A, van C en van E. 10 m. blauw 28 1 10 fstanden even ver van als van C even ver van, van C en van E 10 m Q ligt even ver van P als van Q, net zo. Dus is middelloodlijn van lijnstuk PQ, dus lijn staat loodrecht op lijn. 180 + = 90 2

Nadere informatie

19 De stelling van Pick

19 De stelling van Pick 19 De stelling van Pick 19.1 Historiek De Oostenrijkse wiskundige Georg Alexander Pick werd in 1859 geboren in Wenen en werd in 1942, omwille van zijn Joodse afkomst, gedeporteerd naar het concentratiekamp

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie

Verdieping - De Lijn van Wallace

Verdieping - De Lijn van Wallace Verdieping - e Lijn van Wallace ladzijde 4 ac - d Nee, want als ijvooreeld en samenvallen dan geldt = op en = op, dus = = maar dan moet ook S met samenvallen, dus ligt S niet uiten de driehoek en dat is

Nadere informatie

Bewijs. Zie figuur 2. Zijn U en V de projecties van P en Q op r, dan geldt: PU = PR (in driehoek RQV met PU // QV) QV QR

Bewijs. Zie figuur 2. Zijn U en V de projecties van P en Q op r, dan geldt: PU = PR (in driehoek RQV met PU // QV) QV QR Cabri-vraag VRAAG Hoe teken je een kegelsnede waarvan een punt P, een brandpunt F en de bij F behorende richtlijn r gegeven zijn? ANTWOORD Zoals bekend kan je met Cabri een kegelsnede tekenen (we spreken

Nadere informatie

Cabri-werkblad Pool en poollijn bij cirkels (vervolg)

Cabri-werkblad Pool en poollijn bij cirkels (vervolg) Cabri-werkblad Pool en poollijn bij cirkels (vervolg) 1. Inleiding Dit werkblad is een vervolg op het Cabri-werkblad 'Pool en poollijn bij cirkels', waarin basiskennis omtrent de pooltheorie bij cirkels

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

Dag van de wiskunde 26/11/2005. R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet.

Dag van de wiskunde 26/11/2005. R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. Dag van de wiskunde 26/11/2005 R. Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Dag van de Wiskunde 2005 Van Nieuwenhuyze

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

Niet-euclidische meetkunde. Les 3 Meetkunde op de bol

Niet-euclidische meetkunde. Les 3 Meetkunde op de bol Niet-euclidische meetkunde Les 3 Meetkunde op de bol (Deze les sluit aan bij de paragrafen 2.1 en 2.2 van de tekst Niet-Euclidische meetkunde van de Wageningse Methode) Kun je het vijfde postulaat afleiden

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Oneindigheid

Escher in Het Paleis. Wiskundepakket. Oneindigheid Escher in Het Paleis Wiskundepakket Oneindigheid Oneindigheid Wiskundigen hebben weinig moeite met het begrip oneindigheid. Er zijn bijvoorbeeld oneindig veel getallen, een lijn is oneindig lang en oneindig

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

1. Vlakke meetkunde. Geocadabra kan je downloaden op de website Opgave 1

1. Vlakke meetkunde. Geocadabra kan je downloaden op de website  Opgave 1 Geocadabra 1. Vlakke meetkunde Opgave 1 Geocadabra kan je downloaden op de website www.geocadabra.nl Teken de cirkel c met middelpunt M(2,1) en straal 5. Construeer de raaklijnen uit het punt P(-10,4)

Nadere informatie

Werkblad Cabri Jr. Vierkanten

Werkblad Cabri Jr. Vierkanten Werkblad Cabri Jr. Vierkanten Doel Allereerst leren we hierin dat er een verschil is tussen het "tekenen" van een vierkant en het "construeren" van een vierkant. Vervolgens bekijken we enkele eigenschappen

Nadere informatie

Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden

Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden Lesbrief 6 Meetkunde 1 Hoektransversalen in een driehoek ABC is een driehoek. Een lijn l door een hoekpunt A van de driehoek heet een hoektransversaal van A. We zullen onderzoeken onder welke voorwaarden

Nadere informatie

Integratie van de informatica in de wiskunde WIRIS 2.0

Integratie van de informatica in de wiskunde WIRIS 2.0 Integratie van de informatica in de wiskunde WIRIS 2.0 9 Dynamische meetkunde met Wiris 9.1 Vlakke analytische meetkunde Het palet Meetkunde bevat een aantal gereedschappen voor het uitvoeren van meetkundige

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

GEOGEBRA 5. Ruimtemeetkunde in de tweede graad. R. Van Nieuwenhuyze. Hoofdlector wiskunde aan Odisee, Brussel. Auteur Van Basis tot Limiet.

GEOGEBRA 5. Ruimtemeetkunde in de tweede graad. R. Van Nieuwenhuyze. Hoofdlector wiskunde aan Odisee, Brussel. Auteur Van Basis tot Limiet. GEOGEBRA 5 Ruimtemeetkunde in de tweede graad R. Van Nieuwenhuyze Hoofdlector wiskunde aan Odisee, Brussel Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com GeoGebra in de tweede graad Roger

Nadere informatie

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde Rakende cirkels Keuzeopdracht voor wiskunde Verrijkende opdracht over construeren en redeneren in figuren Voorkennis: meetkunde: cirkels, raaklijn, loodrecht stand; sinus: waarden voor bekende hoeken als

Nadere informatie

Werkblad Cabri Jr. Constructie van bijzondere vierhoeken

Werkblad Cabri Jr. Constructie van bijzondere vierhoeken Werkblad Cabri Jr. Constructie van bijzondere vierhoeken Doel Het construeren van bijzondere vierhoeken: parallellogram, ruit, vierkant. Constructies 1. Parallellogram (eerste constructie) We herhalen

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

INHOUDSTABEL. G.Guetens 2 Cabri in een notendop

INHOUDSTABEL. G.Guetens 2 Cabri in een notendop INHOUDSTABEL 1. Menubalk...3 2. Iconenlijst...5 3. Punt Rechte Halfrechte Lijnstuk construeren...9 4. Hoek construeren Hoek meten - Hoek met een gegeven grootte construeren - Lijnstuk meten -Lijnstuk met

Nadere informatie

HP Prime: Meetkunde App

HP Prime: Meetkunde App HP Prime Graphing Calculator HP Prime: Meetkunde App Meer over de HP Prime te weten komen: http://www.hp-prime.nl De Meetkunde-App op de HP Prime Meetkunde is een van de oudste wetenschappen op aarde,

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

De eerste stappen met de TI-Nspire 2.1 voor de derde graad

De eerste stappen met de TI-Nspire 2.1 voor de derde graad De eerste stappen met TI-Nspire 2.1 voor de derde graad. Technisch Instituut Heilig Hart, Hasselt Inleiding Ik gebruik al twee jaar de TI-Nspire CAS in de derde graad TSO in de klassen 6TIW( 8 uur wiskunde)

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

Penrose-betegelingen met Cabri Geometry

Penrose-betegelingen met Cabri Geometry [1] Er bestaan veelhoeken waarmee geen regelmatige betegelingen (vlakverdelingen) [1,2] gemaakt kunnen worden. Bekende veelhoeken met die eigenschap zijn de zogenoemde Penrose-tegels, naar Roger Penrose

Nadere informatie

Bijkomende Oefeningen: Les 1

Bijkomende Oefeningen: Les 1 1 Inhoudstafel ijkomende Oefeningen: Les 1...2 ijkomende Oefeningen: Les 2...3 ijkomende Oefeningen: Les 3...4 ijkomende Oefeningen: Les 4...5 ijkomende Oefeningen: Les 5...6 ijkomende Oefeningen: Les

Nadere informatie

GEOGEBRA IN DE EERSTE GRAAD. Kan dit wel? R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet.

GEOGEBRA IN DE EERSTE GRAAD. Kan dit wel? R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. GEOGEBRA Kan dit wel? IN DE EERSTE GRAAD R. Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Geogebra in de eerste graad

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-II

Eindexamen wiskunde B1-2 vwo 2007-II ier tappen ij het tappen van bier treden verschillen op in de hoeveelheid bier per glas. Uit onderzoek blijkt dat de hoeveelheid bier die per glas getapt wordt bij benadering normaal verdeeld is met een

Nadere informatie

Een symmetrische gebroken functie

Een symmetrische gebroken functie Een symmetrische gebroken functie De functie f is gegeven door f( x) e x. 3p Bereken exact voor welke waarden van x geldt: f( x). 00 F( x) xln( e x) is een primitieve van f( x) e x. 4p Toon dit aan. Het

Nadere informatie

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen:

2 1 e x. Vraag 1. Bereken exact voor welke x geldt: f (x) < 0,01. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: 0-II De functie f( ) e Vraag. Bereken eact voor welke geldt: f () < 0,0. De vergelijking oplossen: e 00

Nadere informatie

Meetkundige constructies Leerlingmateriaal

Meetkundige constructies Leerlingmateriaal Meetkundige constructies Leerlingmateriaal Nynke Koopmans Roeland Hiele Historical Aspects of Classroom Mathematics Universiteit Utrecht, juni 2013 Inleiding Inleiding Een meetkundige constructie is een

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

Analytische meetkunde. Les 4 Kwadratische vergelijkingen (Deze les sluit aan bij de paragraaf 3.1 van Analytische meetkunde van de Wageningse Methode)

Analytische meetkunde. Les 4 Kwadratische vergelijkingen (Deze les sluit aan bij de paragraaf 3.1 van Analytische meetkunde van de Wageningse Methode) Analytische meetkunde Les 4 Kwadratische vergelijkingen (Deze les sluit aan bij de paragraaf 3.1 van Analytische meetkunde van de Wageningse Methode) De vergelijking van een cirkel De cirkel heeft middelpunt

Nadere informatie

Een paradox bij kansrekenen

Een paradox bij kansrekenen Een paradox bij kansrekenen 1 Inleiding Sinds Zeno aantoonde dat de snelvoetige Achilles de schildpad nooit zou inhalen, hebben vele paradoxen de wiskundige gemeenschap bezig gehouden. Ook de kanstheorie

Nadere informatie

GEOGEBRA IN DE TWEEDE GRAAD. Kan dit wel? Roger Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet.

GEOGEBRA IN DE TWEEDE GRAAD. Kan dit wel? Roger Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. GEOGEBRA Kan dit wel? IN DE TWEEDE GRAAD Roger Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Van Nieuwenhuyze Roger Geogebra

Nadere informatie

Eindexamen wiskunde B vwo II

Eindexamen wiskunde B vwo II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Nadat GeoGebra wordt opgestart zie je het hierna afgebeelde venster: Algebra Venster. Teken Venster. Invoerveld

Nadat GeoGebra wordt opgestart zie je het hierna afgebeelde venster: Algebra Venster. Teken Venster. Invoerveld Vrije Ruimte Wiskunde GeoGebra Philip Bogaert GeoGebra 1. Inleiding GeoGebra is een (gratis) wiskundepakket dat meetkunde, algebra en analyse combineert. Het pakket werd ontwikkeld door Markus Hohenwarter

Nadere informatie

Uitwerkingen Hoofdstuk 25 deel vwob1,2 6. Meetkundige plaatsen.

Uitwerkingen Hoofdstuk 25 deel vwob1,2 6. Meetkundige plaatsen. Uitwerkingen Hoofdstuk 25 deel vwob1,2 6 1 Meetkundige plaatsen. 1 Punt F(0, 1) en de lijn l : y = -1 a. Voor de oorsprong O geldt: d( O, F) = d( O, l) = 1 ben c. c. Waarschijnlijk liggen de gevraagde

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

Hoofdstuk 5 - Meetkundige plaatsen

Hoofdstuk 5 - Meetkundige plaatsen oderne wiskunde 9e editie vwo deel Voorkennis: Eigenschappen en ewijzen ladzijde 138 V-1a Gegeven: Driehoek met hoeken :, en Te ewijzen: 180 ewijs: 1 3 Teken lijn door die evenwijdig loopt met : lijn door

Nadere informatie

Ellips-constructies met Cabri

Ellips-constructies met Cabri Ellips-constructies met Cabri 0. Inleiding De meest gebruikte definitie van de ellips luidt: Een ellips is de verzameling van punten () waarvoor de som van de afstanden tot twee vaste punten (F 1 en F,

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Cabri-werkblad Pool en poollijn bij een cirkel

Cabri-werkblad Pool en poollijn bij een cirkel Cabri-werkblad Pool en poollijn bij een cirkel 1. Inleiding In dit werkblad bekijken we enkele eigenschappen van de pool en poollijn bij cirkels (gedeelten uit de pooltheorie). Ook de pooldriehoek bij

Nadere informatie

Efficientie in de ruimte - leerlingmateriaal

Efficientie in de ruimte - leerlingmateriaal Junior College Utrecht Efficientie in de ruimte - leerlingmateriaal Versie 2 September 2012 Een project (ruimte-)meetkunde voor vwo-leerlingen Geschreven voor het Koningin Wilhelmina College Culemborg

Nadere informatie

Werkblad Cabri Jr. Cirkels in het platte vlak

Werkblad Cabri Jr. Cirkels in het platte vlak Werkblad Cabri Jr. Cirkels in het platte vlak Doel Onderzoeken van relaties tussen de vergelijking van een cirkel, de lengte van de straal en de coördinaten van het middelpunt. Constructies 1. Tonen van

Nadere informatie

12 Bewijzen in de vlakke meetkunde

12 Bewijzen in de vlakke meetkunde ewijzen in de vlakke meetkunde bladzijde 54 a ' b Gegeven: e gelijkzijdige driehoek met zijn omgeschreven cirkel. unt ligt op de kortste boog en ligt op het verlengde van zo, dat =. riehoek is gelijkzijdig.

Nadere informatie

Een vergelijking tussen boldriehoeksmeetkunde en hyperbolische driehoeksmeetkunde

Een vergelijking tussen boldriehoeksmeetkunde en hyperbolische driehoeksmeetkunde Een vergelijking tussen boldriehoeksmeetkunde en hyperbolische driehoeksmeetkunde A. Vervuurt, P.F. de Haan, W.J. van Krieken Begeleider: Prof. dr. J.P. Hogendijk juni 010 Samenvatting We trekken een vergelijking

Nadere informatie

Kubus in CS5. Voor iedere zijde wensen we een andere afbeelding te gebruiken.

Kubus in CS5.  Voor iedere zijde wensen we een andere afbeelding te gebruiken. http://photoshopper27.blogspot.nl/2012/02/3d-cube-in-photoshop-cs5.html Kubus in CS5 Voor iedere zijde wensen we een andere afbeelding te gebruiken. Verzamel dus een zestal afbeeldingen; hieronder de gebruikte

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

VOORAF. Een volledige versie is aan te kopen via

VOORAF. Een volledige versie is aan te kopen via CABRI 3D VOORAF De laatste jaren zijn enkele programma s voor ruimtemeetkunde op de softwaremarkt verschenen. Ook Cabri, waarvan het programma voor vlakke meetkunde al bestaat uit het DOS-tijdperk van

Nadere informatie

Creatief aan de slag met GeoGebra

Creatief aan de slag met GeoGebra 6 Spiralen Creatief aan de slag met GeoGebra De bedoeling van deze opdracht is het verschil te onderzoeken tussen de spiraal van Archimedes en de logaritmische spiraal. Hierbij moet men gebruik maken van

Nadere informatie

11.1 De parabool [1]

11.1 De parabool [1] 11.1 De parabool [1] Algemeen: Het punt F heet het brandpunt van de parabool. De lijn l heet de richtlijn van de parabool. De afstand van F tot l heet de parameter van de parabool. Defintie van een parabool:

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 007 tijdvak woensdag 0 juni 13.30-16.30 uur wiskunde 1, ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer

Nadere informatie

ICT-LEERLIJN (met GeoGebra) Luc Gheysens WISKUNDIGE COMPETENTIES

ICT-LEERLIJN (met GeoGebra) Luc Gheysens  WISKUNDIGE COMPETENTIES ICT-LEERLIJN (met GeoGebra) Luc Gheysens www.gnomon.bloggen.be WISKUNDIGE COMPETENTIES 1 Wiskundig denken 2 Wiskundige problemen aanpakken en oplossen 3 Wiskundig modelleren 4 Wiskundig argumenteren 5

Nadere informatie

Uitwerkingen van alle opgaven

Uitwerkingen van alle opgaven Bijlage bij Inversie Uitwerkingen van alle opgaven Juni 015 1 Uitwerkingen Hoofdstuk 1 1.1 Hoe Spiegel je in een cirkel? Opgave 1.1.1 a. ROP = P OR (hoeken vallen samen) OPR = ORP = 90 Dus volgens HH zijn

Nadere informatie

1 Middelpunten. Verkennen. Uitleg

1 Middelpunten. Verkennen. Uitleg 1 Middelpunten Verkennen Middelpunten Inleiding Verkennen Probeer vanuit drie gegeven punten (niet op één lijn) die op een cirkel moeten liggen het middelpunt van die cirkel te construeren. Je kunt hem

Nadere informatie

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet. ? GEOGEBRA 4 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Roger Van Nieuwenhuyze GeoGebra 4 Pagina 1 1. Schermen

Nadere informatie

Tweepuntsperspectief I

Tweepuntsperspectief I 1 G Tweepuntsperspectief I 1. We verlaten even het perspectief en bekijken een vierkant ABCD op ware grootte. M is het middelpunt van het vierkant. PQ is een horizontale lijn door M. Zeg dat P en Q de

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

Ontwerpen van digitale en interactieve. werkbladen met GeoGebraTube

Ontwerpen van digitale en interactieve. werkbladen met GeoGebraTube Ontwerpen van digitale en interactieve werkbladen met GeoGebraTube R. Van Nieuwenhuyze Oud-hoofdlector wiskunde aan Odisee, lerarenopleiding Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde B, (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Woensdag 3 juni 3.30 6.30 uur 0 04 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit 9 vragen.

Nadere informatie