2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

Maat: px
Weergave met pagina beginnen:

Download "2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2"

Transcriptie

1 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7) 5(x 3)(x + ) = 4(x 14x + 49) 5(x + x 3x 6) = 4x 56x x 10x + 15x + 30 = -x 51x + 6 Let op de haakjes!!! Let op de volgorde van berekenen: Eerst machtsverheffen en dan vermenigvuldigen. 1

2 .0 Voorkennis Voorbeeld 3: 8a a Voorbeeld 4: 3ab 4bc b( 3a 4c) 3a 4c ab ab a Bij het vereenvoudigen van deze breuk ontbind je de teller in factoren. Hierna kun je de breuk herleiden. Voorbeeld 5: 3a 3ab 3a( a b) 3a 3a a b a b 1 Bij het vereenvoudigen van deze breuk ontbind je de teller in factoren. Hierna kun je de breuk herleiden.

3 .1 Snelheden [1] Voor de hiernaast getekende globale grafiek geldt: Afnemend stijgend tot het maximum; Na het maximum eerst toenemend dalend; Hierna afnemend dalend tot het minimum; Na het minimum toenemend stijgend. Let op: Bij een extreme waarde is de functie noch stijgend noch dalend!!!

4 .1 Snelheden [1]

5 .1 Snelheden [] s De grafiek hiernaast is een tijd-afstandgrafiek. De gemiddelde snelheid Op het interval [0, 3] is: s s(3) s(0) 60 t t Algemeen: In een tijd-afstandgrafiek is de afgelegde afstand s uitgezet tegen de tijd t; Bij een tijd-afstandgrafiek is het differentiequotiënt van s op [a, b] de gemiddelde snelheid op [a, b] De gemiddelde snelheid is: s t 5

6 .1 Snelheden [3] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 6 0 x y x 6

7 Algemeen: Het differentiequotiënt.1 Snelheden [3] van y op [x A, x B ] is: De gemiddelde toename van y op [x A, x B ]; De richtingscoëfficiënt van de lijn AB; De helling van de lijn AB; y x B B y x A A y x 7

8 .1 Snelheden [4] Voorbeeld 1: Bereken de differentiequotiënt van f(x) = x + 6x 7 op het interval [,5]: x A =, y A = f() = = 9 x B = 5, y B = f(5) = = 48 y yb ya x x x 5 3 B A Voorbeeld : Gegeven is de functie: s = 3t + 5t met s = afstand in km en t = tijd in uren. Bereken de gemiddelde snelheid per uur op het interval [1,4] t A = 1, s A = = 8 t B = 4, s B = = 68 gemiddelde snelheid per uur = s sb sa t t t B A km/uur 8

9 .1 Snelheden [5] Voorbeeld: Gegeven is de tijd-afstandformule: s = t 3 + t met t in seconden en m in meters. Bereken de snelheid op t = 3 De snelheid van deze tijd-afstandformule kun je benaderen door het differentiequotiënt op een klein interval rond t = 3 te berekenen. Neem bijvoorbeeld het interval [3; 3,01]. s s(3,01) s(3) 36, ,1001 t 3,01 3 3,01 3 Hieruit volgt dat de snelheid op t = 3 ongeveer 33 m/s is. 9

10 . Raaklijnen en hellingsgrafieken [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 6 0 x y x 10

11 . Raaklijnen en hellingsgrafieken [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f(x) = x x Differentiequotiënt van f(x) op [, 3] = y f (3) f () 6 4 x 3 3 y x 11

12 . Raaklijnen en hellingsgrafieken [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f(x) = x x y f (3) f (,99) 6 5,9501 Differentiequotiënt van f(x) op [,99 ; 3] = 4,99 x 3,99 3,99 Dit differentiequotiënt geeft een goede benadering van de helling van de grafiek f(x) in het punt A(3, 6). Wanneer er nu een oneindig klein interval genomen wordt, krijgen we: De richtingscoëfficiënt van raaklijn van de grafiek in het punt A; De helling van de grafiek in A; De snelheid waarmee y verandert voor x = 3. De notatie hiervan is: dy dx x3 1

13 . Raaklijnen en hellingsgrafieken [1] Voorbeeld: Gegeven is de functie: f(x) = x x 1. Stel de formule op van de raaklijn l van de grafiek in het punt B met x B = 5. Stap 1: Bereken de richtingscoëfficiënt met de GR: Y= Y1 = X^ -X 1 ND TRACE 6: dy/dx ENTER Toets 5 in ENTER dy/dx = 8 dus rc B = 8 13

14 . Raaklijnen en hellingsgrafieken [1] Voorbeeld: Gegeven is de functie: f(x) = x x 1. Stel de formule op van de raaklijn l van de grafiek in het punt B met x B = 5. Stap : Bereken de y-coördinaat van het punt B. f(5) = = 14 Stap 3: Stel de vergelijking van raaklijn l: y = ax + b op: l: y = 8x + b Invullen van het punt B(5, 14) geeft: 14 = b 14 = 40 + b b = -6 => l:y = 8x

15 . Raaklijnen en hellingsgrafieken [] Linksboven is de grafiek van de functie f(x) = 5x 4 + x 3 6x 5 getekend op het interval [-, ]; Deze grafiek heeft drie toppen; Linksonder is de hellingsgrafiek van de functie van f getekend; De hellingsgrafiek geeft in elk punt de snelheid aan waarmee de functie van f verandert; In de intervallen [-; -0,94) en (0; 0,64) is f(x) dalend. De hellingsgrafiek ligt onder de x-as; In de punten met x = -0,94, x = 0 en x = 0,64 heeft f(x) een top. De hellingsgrafiek snijdt hier de x-as; In de intervallen (-0,94; 0) en (0,64, ] is f(x) stijgend. De hellingsgrafiek ligt boven de x-as; 15

16 . Raaklijnen en hellingsgrafieken [] Het plotten van een hellingsgrafiek op de GR: Stap 1: Vul bij Y1 de functie f(x) in: Y= Y1 = 5X^4 + X^3 6X^ - 5 Stap : Vul bij Y in wat er op het eerste plaatje staat nderive volgt met: MATH MATH 8:nDerive( Y1 volgt met: VARS Y-VARS 1: Function 1:Y 1 Zorg dat alleen de functie Y op je scherm verschijnt 16

17 Gegeven is de functie.3 Limiet en afgeleide [1] Deze functie bestaat niet bij een x van. Invullen van x = geeft een deling door 0. De functie g(x) = x heeft als domein R en is een ononderbroken kromme. Deze functie is continu in R. De functie g is continu in een open interval V als het bijbehorende deel van de grafiek van f een ononderbroken kromme is. De grafiek van f( x) x x x 3 3 x x x ( x ) ( ) x met x f x x x f( x) x x x 3 valt samen met de grafiek van g(x) = x maar voor x = heeft de grafiek van f een perforatie met de coördinaten (,4). Toevoegen van het punt (,4) maakt van f een continue functie in R. 4 is de continumakende waarde van f voor x = : lim f( x) 4 x 17

18 .3 Limiet en afgeleide [1] lim f ( x ) b betekent dat f(x) onbeperkt tot b kan naderen door x maar dicht xa genoeg bij a te kiezen. Als de functie f continu is in a, dan geldt lim f ( x ) f ( a ) xa Als voor de functie f geldt dat lim f ( x ) f ( a ), dan is f continu in a. xa Voorbeeld 1: Bereken: x lim x x6 x 3 x x lim lim 0 x x 3 x 3 1 Voorbeeld : Bereken: x lim x x6 x x x 6 ( x )( x 3) lim lim lim( x 3) 5 x x x x x 18

19 .3 Limiet en afgeleide [] Een andere naam voor hellingfunctie is afgeleide functie. De afgeleide van een functie f [f ] geeft voor elke x: De richtingscoëfficiënt van de raaklijn van de grafiek van f in het bijbehorende punt; De helling van de grafiek van f in het bijbehorende punt. De formule van de afgeleide van een functie f kan gevonden worden met behulp van het differentiequotiënt op het interval [x, x + h]: y f ( x h) f ( x) f ( x h) f ( x) x x h x h Op het moment dat h richting 0 gaat (en dus heel erg klein wordt), volgt uit het differentiequotiënt de afgeleide f : f '( x) lim h0 f ( x h) f ( x) h 19

20 .3 Limiet en afgeleide [] Voorbeeld 1: Gegeven is de functie f(x) = 3x. Bereken f (3) met behulp van een limiet. f (3 h) f (3) f '(3) lim h0 h 3(3 h) 33 lim h0 h lim h0 h0 3(9 6 h h ) 7 h 7 18h 3h 7 lim h0 h 18h 3h lim h0 h lim18 3h 18 0

21 .3 Limiet en afgeleide [] Voorbeeld : Gegeven is de functie f(x) = 3x. Toon met behulp van een limiet aan dat f (x) = 6x. f ( x h) f ( x) f '( x) lim h0 h 3( x h) 3 x lim h0 h 3( x xh h ) 3x lim h0 h 3x 6xh3h 3x lim h0 h 6xh3h lim h0 h lim6x 3h 6x h0 1

22 .3 Limiet en afgeleide [3] Voorbeeld 1: Gegeven is de functie f(x) = ax. Toon met behulp van een limiet aan dat f (x) = ax. f ( x h) f ( x) f '( x) lim h0 h a( x h) a x lim h0 h a( x xh h ) ax lim h0 h ax axh ah ax lim h0 h axh ah lim h0 h limax ah ax h0

23 .3 Limiet en afgeleide [4] Algemeen: f(x) = ax geeft f (x) = ax f(x) = ax geeft f (x) = a f(x) = a geeft f (x) = 0 Er geldt ook: f(x) = ax 3 geeft f (x) = 3ax f(x) = ax 4 geeft f (x) = 4ax 3 En dus: f(x) = ax n geeft f (x) = nax n-1 f(x) = c g(x) geeft f (x) = c g (x) f(x) = g(x) + h(x) geeft f (x) = g (x) + h (x) [Somregel] Je kunt de afgeleide dus vinden door het getal voor de x te vermenigvuldigen met de exponent n. De exponent van de afgeleide functie wordt n-1. 3

24 .3 Limiet en afgeleide [4] Voorbeeld : Bereken de afgeleide van f(x) = 3x + 6x 9 f (x) = 6x + 6 Voorbeeld 3: Bereken de afgeleide van g(x) = 7x 5 4x 4 + 3x 3 x + 1 g (x) = 35x 4 16x 3 + 9x - Voorbeeld 4: Bereken de afgeleide van h(x) = (x 6 3x )(x 3 + 5x) h(x) = x 9 + 5x 7 3x 5 15x 3 h (x) = 9x x 6 15x 4 45x Let op: Wanneer in een opgave staat dat je de afgeleide moet berekenen met behulp van een limiet, mag je dus niet op de bovenstaande manier de afgeleide geven. 4

25 .3 Limiet en afgeleide [4] 5

26 .4 Toepassingen van de afgeleide [1] Voorbeeld : Bereken de afgeleide van p(x) = (x + 6)(x + x ) Een manier om dit te doen is het wegwerken van de haakjes en vervolgens term voor term differentiëren. Differentiëren kan ook met behulp van de productregel: Productregel: De afgeleide van p(x) = f(x) g(x) bereken je met: p (x) = f (x) g(x) + f(x) g (x) Let op: p(x) is dus het product van de functies f(x) en g(x) In dit voorbeeld geldt: f(x) = x + 6 g(x) = x + x p(x) = f(x) g(x) = (x + 6) (x Willem-Jan + x ) van der Zanden 6

27 .4 Toepassingen van de afgeleide [1] Voorbeeld : Bereken de afgeleide van p(x) = (x + 6)(x + x ) Productregel: p (x) = f (x) g(x) + f(x) g (x) p (x) = [x + 6] (x + x ) + (x + 6) [x + x ] = 1 (x + x ) + (x + 6) ( + x) = x + x + x + x x = 3x + 16x + 1 7

28 .4 Toepassingen van de afgeleide [] Voorbeeld 3: Bereken de afgeleide van q(x) = 5x 8 x 3x 6 Differentiëren gebeurt nu met de quotiëntregel: Quotiëntregel: De afgeleide van q(x) = t(x) n(x) q'( x) n( x) t'( x) t( x) n'( x) ( nx ( )) wordt nu: q'( x) q'( x) q'( x) q'( x) (3x 6) [5x 8 x]' (5x 8 x) [3x 6]' (3x 6) (10x 8) (5x 8 x) x 60x48 (3x 6) (3x 6) x x x x x (3x 6) (3x 6) 8

29 .4 Toepassingen van de afgeleide [3] Voorbeeld 1: Gegeven is de functie: f(x) = x 3 + 3x + 3 Stel met behulp van de afgeleide de formule op van de raaklijn l in het punt P met x p = 3 Stap 1: Bereken de afgeleide van de functie f(x): f(x) = x 3 + 3x + 3 f (x) = 3x + 6x Stap : Bereken de richtingscoëfficiënt in het punt P met x p = 3: f (3) = = 45 Hieruit volgt: l:y = 45x + b 9

30 .4 Toepassingen van de afgeleide [3] Voorbeeld 1: Gegeven is de functie: f(x) = x 3 + 3x + 3 Stel met behulp van de afgeleide de formule op van de raaklijn l in het punt P met x p = 3 Stap 3: Bereken de y-coördinaat van het punt P: y p = f(3) = = 57 Stap 4: Stel de vergelijking van de raaklijn l op: y = 45x + b 57 = b b = -78 Hieruit volgt: l:y = 45x

31 .4 Toepassingen van de afgeleide [4] Voorbeeld 1: Gegeven is de functie: f(x) = x + 3x + 4 Stel de met behulp van de afgeleide de vergelijking op van de raaklijn l in punt A met r.c. = 1 Stap 1: Stel de afgeleide van de functie f(x) op: l:y = ax + b en dus l:y = x + b f(x) = x + 3x + 4 f (x) = x + 3 Stap : Bereken wanneer de afgeleide gelijk is aan 1: f (x) = 1 x + 3 = 1 x = - x A = -1 31

32 .4 Toepassingen van de afgeleide [4] Voorbeeld 1: Gegeven is de functie: f(x) = x + 3x + 4 Stel de met behulp van de afgeleide de vergelijking op van de raaklijn l in punt A met r.c. = 1 Stap 3: Bepaal de y-coördinaat van het punt A: y A = f(x A ) = (-1) = Stap 4: Stel de vergelijking van de raaklijn l op: l:y = x + b Invullen van A = (-1, ) geeft: = -1 + b b = 3 Hieruit volgt: l:y = x + 3 3

33 .4 Toepassingen van de afgeleide [5] Voorbeeld : Gegeven is de functie: s = t + 4t + 6; s is de afstand in meters; t is tijd in seconden; Bereken de snelheid op tijdstip t = 3. Stap 1: Bereken de afgeleide van de functie s. De afgeleide geeft de verandering van afstand op een bepaald tijdstip weer. Dit is dus de snelheid. s = v = 4t + 4 Stap : Bereken de snelheid op tijdstip t = 3: v(3) = = = 16 m/s 33

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

8.0 Voorkennis ,93 NIEUW

8.0 Voorkennis ,93 NIEUW 8.0 Voorkennis Voorbeeld: In 2014 waren er 12.500 speciaalzaken. Sinds 2012 is het aantal speciaalzaken afgenomen met 7%. Bereken hoeveel speciaalzaken er in 2012 waren. Aantal 2014 = 0,93 Aantal 2012

Nadere informatie

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f() = Differentiequotiënt van f() op [0, 3] = y f (3) f (0) 6 0 30 30 y 1 16.1

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Differentiaalrekening. Elementaire techniek van het differentieren.

Differentiaalrekening. Elementaire techniek van het differentieren. Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Wisnet-HBO. update maart. 2010

Wisnet-HBO. update maart. 2010 Wat is Differentiëren? 1 Wat is differentiëren? Wisnet-HBO update maart. 2010 Differentiëren is eigenlijk het differentiaalquotient bepalen. Je begint met het delen van uiterst kleine verschillen op elkaar.

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5 Hoofdstuk 6: De afgeleide functie 6. Hellinggrafieken Opgave : als je vanuit punt A naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te komen, dus rc 6 b. c. d. x 0 4 helling 6,5 0, 5, 5 0,5 Opgave

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking.

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking. G&R havo B deel Differentiaalrekening C von Schwartzenberg /0 Toets voorkennis EXTRA: Differentiëren op bladzijde 56 aan het einde van deze uitwerking a f ( ) 5 7 f '( ) 8 5 b g( ) ( 5) 5 g '( ) 6 0 c

Nadere informatie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie Wiskunde 2 september 2008 versie 1-1 - Op hoeveel verschillende manieren kun je drie zwarte pionnen verdelen over de 32 zwarte velden van een schaakbord? (Neem aan dat op elk veld hooguit één pion staat.)

Nadere informatie

Straal van een curve

Straal van een curve Straal van een curve Arnold Zitterbart Schwarzwald-Gymnasium Triberg Duitsland (Vertaling: L. Sialino) Niveau Vwo-scholieren Hulpmiddelen Grafiek toepassing, Run-Matrix toepassing Doel Bepaal de straal

Nadere informatie

11.1 De parabool [1]

11.1 De parabool [1] 11.1 De parabool [1] Algemeen: Het punt F heet het brandpunt van de parabool. De lijn l heet de richtlijn van de parabool. De afstand van F tot l heet de parameter van de parabool. Defintie van een parabool:

Nadere informatie

De grafische rekenmachine en de afgeleide

De grafische rekenmachine en de afgeleide Auteur Laatst gewijzigd Licentie Webadres Jan de Geus 11 January 2011 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/27841 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein.

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Vergelijkingen oplossen

Uitwerkingen bij 1_0 Voorkennis: Vergelijkingen oplossen Toets om inhoudsopgave (bladwijzers) wel/niet te tonen Uitwerkingen bij 1_0 Voorkennis: Vergelijkingen oplossen! " #$ % & '&() '*& ) '#! " #" ),-. % / ---.01 2 3 ---. - / %3 -.1-01 2 4 & * 5 5 & %

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

2 Lijn door P met gegeven richtingscoëfficiënt

2 Lijn door P met gegeven richtingscoëfficiënt Lineariseren Wisnet-HBO update april 008 Inleiding Hieronder zijn twee grafieken getekend van de zelfde functie f := x x x met de raaklijn in het punt x =. raaklijn_y = x+ 5 0 x f(x) The tangent at x=.0.05.00.95.90

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 1. Lineair verband. 1a. na 1 min 36 cm, na min. 3 cm, daling 4 cm per minuut. b. h = 40 4t h in cm en t per minuut b. k: rc = -3 m: rc = 0.5 p: rc

Nadere informatie

2012 I Onafhankelijk van a

2012 I Onafhankelijk van a 0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen Beschrijf in eigen woorden: Waar gaat de opdracht over? Welke signaalwoorden staan in de tekst? Wijst een signaalwoord naar een strategie? Welke

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Paragraaf 1.1 : Lineaire functies en Modulus

Paragraaf 1.1 : Lineaire functies en Modulus Hoofdstuk 1 Functies en Grafieken (V4 Wis B) Pagina 1 van 9 Paragraaf 1.1 : Lineaire functies en Modulus Les 1 : Lineaire Formules Definities Algemene formule van een lijn : y = ax + b a = hellingsgetal

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt kg lengte in m gewicht in kg 7 9 c d gewicht in kg lengte in m m weegt kg dus m weegt kg meter e startgetal hellingsgetal V-a y + Dus ( ) y

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1 Lineaire verbanden 4 HAVO wiskunde A getal en ruimte deel 0. voorkennis Letterrekenen Regels: a(b + c ) = a b + ac (a + b )c = a c + bc (a + b )(c + d ) = a c + a d + b c + bd Vergelijkingen oplossen Je

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis Wiskunde voor economie drs. H.J.Ots Hellevoetsluis 15-2-2004, Wiskunde voor economie, ISBN 90-70619-05-9,drs. H.J. Ots, www.webecon.nl Wiskunde voor economie Drs. H.J. Ots ISBN 90-70619-05-9 Webecon, Hellevoetsluis,

Nadere informatie

Paragraaf 8.1 : Lijnen en Hoeken

Paragraaf 8.1 : Lijnen en Hoeken Hoofdstuk 8 Meetkunde met coördinaten (V5 Wis B) Pagina 1 van 11 Paragraaf 8.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier

Nadere informatie

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie.

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie. 2 Domein en bereik Verkennen grafieken Domein en bereik Inleiding Verkennen Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Functies. Verdieping. 6N-3p gghm

Functies. Verdieping. 6N-3p gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA Startrekenen Wiskit Leerwerkboek deel 1 Functies Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELE FOLKERSMA JASPER VAN ABSWOUDE CYRIEL KLUIERS RIEKE WYNIA Inhoudsopgave evagposduohni Deel 1

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

Wiskunde 20 maart 2014 versie 1-1 -

Wiskunde 20 maart 2014 versie 1-1 - Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6

Nadere informatie

Rekenregels voor het differentiëren. deel 1

Rekenregels voor het differentiëren. deel 1 Rekenregels voor het differentiëren deel 1 Wisnet-HBO update febr 2010 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les "Wat is Differentiëren" gaan. Verder zijn er

Nadere informatie

. noemer noemer Voorbeelden: 1 Breuken vereenvoudigen Schrijf de volgende breuken als één breuk en zo eenvoudig mogelijk: 4 1 x e.

. noemer noemer Voorbeelden: 1 Breuken vereenvoudigen Schrijf de volgende breuken als één breuk en zo eenvoudig mogelijk: 4 1 x e. Tips: Maak de volgende opgaven het liefst voorin in één van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een som niet lukt, werk hem dan uit tot waar je kunt en ga verder met de volgende

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde 3 voor B. Functies van twee variabelen.. Een functie fx, y) van twee variabelen kan analoog aan een functie van één variabele in Maple

Nadere informatie

Examen VWO. wiskunde A (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde A (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 0 juni 3.30-6.30 uur wiskunde A (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 0 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

m: y = 0, 5x + 21 snijden met de x -as ( y = 0) 0 = 0, 5x , 5x = 21 x = 42. Snijpunt met x -as: (42, 0).

m: y = 0, 5x + 21 snijden met de x -as ( y = 0) 0 = 0, 5x , 5x = 21 x = 42. Snijpunt met x -as: (42, 0). C. von Schwartzenberg 1/1 1a In 1 minuut zakt het watereil 1 0 = cm (in 10 minuten zakt het water 0 cm). 10 Na 1 minuut is de waterhoogte 0 = 6 cm en na minuen is de waterhoogte 0 = cm. 1b II h = 0 t,

Nadere informatie

Differentiëren. Training met de rekenregels en de standaard afgeleiden

Differentiëren. Training met de rekenregels en de standaard afgeleiden Differentiëren Training met de rekenregels en de standaard afgeleiden Wisnet-HBO update maart 2011 Voorkennis Repeteer de standaardafgeleiden en de rekenregels voor differentiëren. Draai eventueel het

Nadere informatie

Hoofdstuk 2 - Algebra of rekenmachine

Hoofdstuk 2 - Algebra of rekenmachine Hoofdstuk - Algebra of rekenmachine Voorkennis: kwadratische vergelijkingen bladzijde V-a pp ( + ) b kk ( 0) c xx ( + ) d k( 8k 7) e qq ( + 9) f 0, tt+ ( ) g 7r( 9r) h p( 7p+ ) V-a fx () = x( x + ) b Nt

Nadere informatie

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden Hoofdstuk : Formules en grafieken.. Lineaire verbanden Opgave : in 0 minuten daalt het water 40 cm, dus 4 cm per minuut dus na minuut geldt: h 40 4 6 cm en na minuten geldt: h 40 4 cm b. formule II Opgave

Nadere informatie

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel.

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Raaklijnen Verkennen Raaklijnen Inleiding Verkennen Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Uitleg Raaklijnen Uitleg Opgave 1 Bekijk de Uitleg. a) Wat is de vergelijking

Nadere informatie

Om het startgetal te vinden vul je een punt van de lijn in, bijvoorbeeld (2, 8). Dan: 8= dus startgetal 12.

Om het startgetal te vinden vul je een punt van de lijn in, bijvoorbeeld (2, 8). Dan: 8= dus startgetal 12. Blok Vaardigheden bladzijde 8 a l gaat door (0, 8) dus startgetal 8 l gaat door (0, 8) en (8, ), dus 8 naar rechts en omlaag ofwel naar rechts en 0, omlaag. Het hellingsgetal is dan 0, b y- 0, x 8 c Evenwijdig

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur Examen HAVO 204 tijdvak woensdag 4 mei.0-6.0 uur wiskunde B (pilot) Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B, (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Vrijdag 4 mei 3.30 6.30 uur 0 0 Voor dit examen zijn maximaal 86 punten te behalen; het examen bestaat uit 8 vragen.

Nadere informatie

Hoofdstuk 2 - Kwadratische functies

Hoofdstuk 2 - Kwadratische functies Hoofdstuk - Kwadratische functies Hoofdstuk - Kwadratische functies Voorkennis V-1a y = 3(x ) 3 x 3 6x 1 y = 6x 1 b y = 9( 4x 4) 3 4x 4 9 36x 36 y = 36x 36 c y = x( x 7) 3 x 7 x x 7x y = x 7x V-a y = (

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Vliegende parkieten Opgave 1. Het energieverbruik van de parkiet als deze vliegt met

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Rekenregels voor het differentiëren

Rekenregels voor het differentiëren Rekenregels voor het differentiëren Wisnet-HBO update febr. 2010 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les "Wat is Differentiëren" gaan. Verder zijn er Maplets

Nadere informatie

integreren is het omgekeerde van differentiëren

integreren is het omgekeerde van differentiëren Integraalrekening Als we een functie f(x) differentiëren is het resultaat de eerste afgeleide f (x). Dezelfde functie f(x) kunnen we ook integreren met als resultaat de zogenaamde primitieve functie F(x).

Nadere informatie

Examen VWO. wiskunde A (pilot) tijdvak 2 woensdag 22 juni 13:30-16:30 uur

Examen VWO. wiskunde A (pilot) tijdvak 2 woensdag 22 juni 13:30-16:30 uur Examen VWO 2016 tijdvak 2 woensdag 22 juni 13:30-16:30 uur wiskunde A (pilot) Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 82 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Eindexamen havo wiskunde B pilot I

Eindexamen havo wiskunde B pilot I Vliegende parkieten De wetenschapper Vance Tucker heeft onderzocht hoeveel energie een parkiet verbruikt bij het vliegen met verschillende snelheden. Uit zijn onderzoek blijkt dat de hoeveelheid energie

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 24 juni 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Opmerking In de berekening mogen v = 0 en/of v = 187,5 zonder toelichting zijn weggelaten.

Opmerking In de berekening mogen v = 0 en/of v = 187,5 zonder toelichting zijn weggelaten. HAVO wb 00-I Weerstand De formules voor P rol en P lucht invoeren in de grafische rekenmachine (GR) en bepalen voor welke waarde van v deze gelijk zijn v,7 P lucht > P rol voor v > =,7 (km/uur) (v >,7

Nadere informatie

Onderneming en omgeving - Economisch gereedschap

Onderneming en omgeving - Economisch gereedschap Onderneming en omgeving - Economisch gereedschap 1 Rekenen met procenten, basispunten en procentpunten... 1 2 Werken met indexcijfers... 3 3 Grafieken maken en lezen... 5 4a Tweedegraads functie: de parabool...

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: cirkel en parabool 11/5/2013 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

WISKUNDE 3 PERIODEN EUROPEES BACCALAUREAAT 2010. DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : TOEGESTANE HULPMIDDELEN : OPMERKINGEN : Geen

WISKUNDE 3 PERIODEN EUROPEES BACCALAUREAAT 2010. DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : TOEGESTANE HULPMIDDELEN : OPMERKINGEN : Geen EUROPEES BACCALAUREAAT 010 WISKUNDE 3 PERIODEN DATUM : 4 juni 010 DUUR VAN HET EXAMEN : 3 uur (180 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Rekenregels en Verhoudingen (H4 Wis A) Pagina 1 van 11 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie