Wiskunde 2 september 2008 versie Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie

Maat: px
Weergave met pagina beginnen:

Download "Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie"

Transcriptie

1 Wiskunde 2 september 2008 versie Op hoeveel verschillende manieren kun je drie zwarte pionnen verdelen over de 32 zwarte velden van een schaakbord? (Neem aan dat op elk veld hooguit één pion staat.) Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie pionnen inwisselbaar zijn. Een combinatie van 3 uit 32 is 2. De lijn die door de punten (0, 1) en (2, 7) gaat, heeft als richtingscoëfficiënt een waarde die je op basis van deze gegevens niet goed kun t bepalen. Bepaal de richtingscoëfficiënt met 3. De grafiek van daalt nooit 2. als x < 0 3. als x < --1Bereken de afgeleide met de productregel en bepaal voor welke waarden van x deze negatief is. De afgeleide p is kleiner dan 0 als, want is altijd positief. Het oplossen van de ongelijkheid geeft als oplossing x < Pas de rekenregels voor logaritmen toe:

2 Wiskunde 2 september 2008 versie Gegeven is de functie. Bij is de richtingscoëfficiënt van de grafiek van h gelijk aan Functie h kun je schrijven als. Bereken de afgeleide van functie h: Vul in in het functievoorschrift van de afgeleide functie. Dit levert: Pas de rekenregels voor het rekenen met wortels toe: LET OP - Heeft u uw studentnummer ingevuld? - Heeft u alle vragen beantwoord? (Niet ingevulde vragen worden fout gerekend).

3 Wiskunde 2 september 2008 versie U heeft van dit tentamen versie 1 gemaakt. Geef dit aan rechtsonder op het antwoordformulier. OP DE VOLGENDE PAGINA VINDT U DE OPEN VRAGEN

4 Wiskunde 2 september 2008 versie Open vragen Laat bij elke vraag (indien van toepassing) zien hoe u aan het antwoord komt door alle stappen en berekeningen op te schrijven. Ook voor een correct antwoord kunt u zonder uitleg of berekening geen punten ontvangen. Bepaal de coördinaten van het snijpunt of de snijpunten van de grafieken van onderstaande functies (indien ze bestaan). Laat eventuele wortelvormen staan, maar vereenvoudig wel zoveel mogelijk. a. en (1½ punt) b. en (1½ punt) c. en (3 punten) Stel telkens beide functiewaarden aan elkaar gelijk, bereken de waarde(n) voor x waarvoor ze aan elkaar gelijk zijn, en bereken vervolgens de bijbehorende y-coördinaat (-aten) a. 2 Invullen in f levert Coördinaten van het snijpunt zijn: Oplossen van x: ¾ punt, oplossen y: ½ punt, weergeven als coördinaten: ¼ punt b. Twee oplossingen: x = 0 of x = 80. Invullen van deze waarden van x in één van de oorspronkelijke functievoorschriften levert respectievelijk en De coördinaten van de twee snijpunten zijn: (0, -2) en (80, 6398) Oplossen van x: ¾ punt, oplossen y: ½ punt, weergeven als coördinaten: ¼ punt c. Gebruik de abc-formule om de oplossingen te vinden, met a = 1, b = -2, en c = -4 De x-coördinaten zijn dus en Deze waarden van x invullen in één van de twee functievoorschriften om de bijbehorende y- coördinaten te vinden: De coördinaten van de twee snijpunten zijn: en Oplossen van x: 1½ punt, oplossen y: 1 punt, weergeven als coördinaten: ½ punt

5 miljoen $ Wiskunde 2 september 2008 versie Onderstaande grafiek geeft aan hoe de investering in technieken voor zonne-energie is toegenomen van 100 miljoen dollar in 2005 tot 1000 miljoen dollar in a. Laat met een berekening zien dat op basis van de gegevens voor 2005 en 2007, de groeifactor per jaar kan worden geschat op. (2 punten) De groeifactor tussen 2007 en 2005 is. De groeifactor per jaar is dan Investering in technieken voor zonne-energie 2005 tot 2007 Aangeven wat het verschil is tussen 2007 en 2005: ½ punt. Juiste berekening: 1 ½ punt. b. Veronderstel dat de groeifactor per jaar inderdaad 3,16 is, wat zou dan de investering voor 2006 zijn? Komt deze uitkomst voor 2006 overeen met wat de grafiek aangeeft voor 2006? ( 1 punt) De verwachte uitkomst voor 2006 als de groeifactor gelijk is aan 3,16 komt uit op 100 * 3,16 = 316 miljoen dollar. Dit komt aardig overeen met de grafiek. Investering voor 2006 correct berekend: ½ punt. Juiste antwoord overeenkomst grafiek: ½ punt. Als bij a. de uitkomst een andere groeifactor was, dan moet de berekening correct zijn, en afhankelijk van de afwijking van de grafiek, zal de overeenkomst daar ook anders zijn. Dan toch volledige aantal punten geven. c. Geef met een berekening aan wat de verwachting voor de investering in 2008 zal zijn. ( 1 punt) Voor 2008 verwachten we 1000 * 3,16 = 3160 miljoen dollar. Juiste berekening met de groeifactor die in a. (onafhankelijk van of het antwoord correct is of niet) is gevonden: 1 punt 3. a. Bepaal de coördinaten van de extreme waarde(n) van de functie en stel vast of het om minimum of maximum gaat. (4 punten) Eerst differentiëren om de afgeleide functie van f te vinden: ½ punt Bepaal wanneer deze gelijk aan 0 is en bepaal vervolgens het tekenverloop om te zien bij welke waarden van x de grafiek van f daalt of stijgt, en te zien waar een maximum of een minimum is. Bij x = -3 en bij x = 1 is de afgeleide gelijk aan 0, (1 punt voor juiste berekening van de waarden van x) dus de grafiek van f heeft daar een horizontale raaklijn.

6 Wiskunde 2 september 2008 versie Vul enkele getallen voor x in om te zien waar de afgeleide positief is (grafiek stijgt) of negatief is (grafiek daalt): x -3 1 f(x) ½ punt Hieruit valt af te leiden dat de grafiek van f een maximum heeft bij x = -3 en een minimum heeft bij x = 1 1 punt voor het interpreteren van het tekenverloop en het bepalen van waar het minimum en het maximum ligt. Bereken nu de y-coördinaten bij deze x-waarden door deze in te vullen in het oorspronkelijke functievoorschrift. Dit levert ½ punt voor het bepalen van de y-coördinaten De coördinaten van het maximum zijn (-3, 20) en de coördinaten van het minimum zijn (1, -12) ½ punt voor het weergeven van de coördinaten. b. Bepaal waar de grafiek van f de y-as snijdt. ( ½ punt) De grafiek van f snijdt de y-as als x = 0. Invullen in het functievoorschrift geeft De grafiek van f snijdt de y-as in het punt (0, -7) ½ punt voor berekening en weergeven coördinaten van het punt c. Schets de grafiek van f aan de hand van de punten die je bij a. en b. gevonden hebt. ( 1½ punt)

7 Wiskunde 2 september 2008 versie y x 1 punt voor een grafiek die gebruik maakt van de gegevens die bij a. en b. gevonden zijn. ½ punt voor een assenstelsel met schaalverdeling en labels bij de assen. Punten mc: 0-2 goed: 0 pt; 3 goed: 1 pt; 4 goed: 2 pt; 5 goed: 3 pt; 6 goed: 4 pt. Punten open vragen: maximaal 16 Eindcijfer =

Wiskunde 20 maart 2014 versie 1-1 -

Wiskunde 20 maart 2014 versie 1-1 - Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

WISKUNDETOETS FPP. Instructies

WISKUNDETOETS FPP. Instructies WISKUNDETOETS FPP 22 juni 2016 19.00 uur 21.30 uur Deze wiskundetoets bestaat uit 6 meerkeuzevragen en 3 open vragen Instructies Je mag het boek Wiswijs en eigen aantekeningen bij de toets gebruiken. Dit

Nadere informatie

Differentiaalrekening. Elementaire techniek van het differentieren.

Differentiaalrekening. Elementaire techniek van het differentieren. Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze

Nadere informatie

F3 Formules: Formule rechte lijn opstellen 1/3

F3 Formules: Formule rechte lijn opstellen 1/3 F3 Formules: Formule rechte lijn opstellen 1/3 Inleiding Bij Module F1 heb je geleerd dat Formule, Verhaal, Tabel, Grafiek en Vergelijking altijd bij elkaar horen. Bij Module F2 heb je geleerd wat een

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA Startrekenen Wiskit Leerwerkboek deel 1 Functies Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELE FOLKERSMA JASPER VAN ABSWOUDE CYRIEL KLUIERS RIEKE WYNIA Inhoudsopgave evagposduohni Deel 1

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

7.1 De afgeleide van gebroken functies [1]

7.1 De afgeleide van gebroken functies [1] 7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

WISNET-HBO NHL update jan. 2009

WISNET-HBO NHL update jan. 2009 Tweedegraadsfuncties Parabolen maken WISNET-HBO NHL update jan. 2009 Inleiding In deze les leer je wat systeem brengen in het snel herkennen van tweedegraadsfuncties. Een paar handige trucjes voor het

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2001-I

Eindexamen wiskunde A1-2 vwo 2001-I Eindexamen wiskunde A- vwo 00-I 4 Antwoordmodel Ogave Contradansen Er zijn mogelijkheden voor elke maat Er zijn dus 8 mogelijke volgordes de conclusie: ja, de bewering is waar Maximumscore 4 Er moet driemaal

Nadere informatie

extra oefeningen HOOFDSTUK 4 VMBO 4

extra oefeningen HOOFDSTUK 4 VMBO 4 extra oefeningen HOOFDSTUK 4 VMBO 4 1. a. Teken in één assenstelsel de grafieken bij de formules y = 4x - 3 en y = 7 - x b. Bereken de coördinaten van het snijpunt c. Teken in hetzelfde assenstelsel de

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want ANALYTISCHE MEETKUNDE: HERHALING DERDE JAAR OEFENINGEN Lees eerst de formules op het andere blad, en los vervolgens de oefeningen van het bijbehorende deel op. Wanneer je alles hebt opgelost, maak je de

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 0 tijdvak woensdag 0 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage.. Dit eamen bestaat uit 0 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1, (nieuwe stijl) Examen HV Hoger lgemeen Voortgezet nderwijs Tijdvak 1 Dinsdag 0 mei 13.30 1.30 uur 0 03 Voor dit examen zijn maximaal 8 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

Goniometrische functies - afstandsleren 48

Goniometrische functies - afstandsleren 48 Goniometrische functies - afstandsleren 48 9 GONIOMETRISCHE FUNCTIES De goniometrische functies leer je kennen via de tool exe-leren en applets die je vindt in de cursus op Blackboard. De applets zijn

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }

Nadere informatie

Eindexamen havo wiskunde B pilot II

Eindexamen havo wiskunde B pilot II Eindexamen havo wiskunde B pilot 0 - II Het gewicht van een paard maximumscore 4 Een keuze van (bijvoorbeeld) een lengte van 0 (cm) voor het kleinste paard (en dus een lengte van 80 (cm) voor het grootste

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Straal van een curve

Straal van een curve Straal van een curve Arnold Zitterbart Schwarzwald-Gymnasium Triberg Duitsland (Vertaling: L. Sialino) Niveau Vwo-scholieren Hulpmiddelen Grafiek toepassing, Run-Matrix toepassing Doel Bepaal de straal

Nadere informatie

2.1 Lineaire formules [1]

2.1 Lineaire formules [1] 2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel.

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Raaklijnen Verkennen Raaklijnen Inleiding Verkennen Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Uitleg Raaklijnen Uitleg Opgave 1 Bekijk de Uitleg. a) Wat is de vergelijking

Nadere informatie

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis Wiskunde voor economie drs. H.J.Ots Hellevoetsluis 15-2-2004, Wiskunde voor economie, ISBN 90-70619-05-9,drs. H.J. Ots, www.webecon.nl Wiskunde voor economie Drs. H.J. Ots ISBN 90-70619-05-9 Webecon, Hellevoetsluis,

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband tussen

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Opmerking In de berekening mogen v = 0 en/of v = 187,5 zonder toelichting zijn weggelaten.

Opmerking In de berekening mogen v = 0 en/of v = 187,5 zonder toelichting zijn weggelaten. HAVO wb 00-I Weerstand De formules voor P rol en P lucht invoeren in de grafische rekenmachine (GR) en bepalen voor welke waarde van v deze gelijk zijn v,7 P lucht > P rol voor v > =,7 (km/uur) (v >,7

Nadere informatie

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3

8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor

Nadere informatie

EERSTE AFGELEIDE TWEEDE AFGELEIDE

EERSTE AFGELEIDE TWEEDE AFGELEIDE Lesrief EERSTE AFGELEIDE etreme waarden raaklijn normaal TWEEDE AFGELEIDE uigpunten 6/7Np GGHM03 Inleiding Met ehulp van de grafische rekenmachine kun je snel zien of de grafiek daalt of stijgt. Het horizontaal

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 14 mei uur Examen HAVO 204 tijdvak woensdag 4 mei.0-6.0 uur wiskunde B (pilot) Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

De grafische rekenmachine en de afgeleide

De grafische rekenmachine en de afgeleide Auteur Laatst gewijzigd Licentie Webadres Jan de Geus 11 January 2011 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/27841 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein.

Nadere informatie

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A, (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschaelijk Onderwijs 0 0 Tijdvak Inzenden scores Uiterlijk o 6 juni de scores van de alfabetisch eerste tien kandidaten er school o

Nadere informatie

Examen HAVO. wiskunde B1

Examen HAVO. wiskunde B1 wiskunde B1 Eamen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak Woensdag 1 juni 13.30 16.30 uur 0 06 Voor dit eamen zijn maimaal 83 punten te behalen; het eamen bestaat uit 0 vragen. Voor elk vraagnummer

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 19 mei uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 19 mei uur Eamen HAVO 011 tijdvak 1 donderdag 19 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 19 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Hoofdstuk 2 - Kwadratische functies

Hoofdstuk 2 - Kwadratische functies Hoofdstuk - Kwadratische functies Hoofdstuk - Kwadratische functies Voorkennis V-1a y = 3(x ) 3 x 3 6x 1 y = 6x 1 b y = 9( 4x 4) 3 4x 4 9 36x 36 y = 36x 36 c y = x( x 7) 3 x 7 x x 7x y = x 7x V-a y = (

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Beoordelingsmodel VWO wiskunde A 009-II Vraag Antwoord Scores Zeemonsters maximumscore 3 P(895) = 85 P(995) = 9 Er zijn 3 soorten ontdekt maximumscore ( t 767) 6 (6t 76657) P'( t) = ( t 767) 069 P'( t)

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2001-II

Eindexamen wiskunde A1-2 vwo 2001-II Eindeamen wiskunde A- vwo 00-II 4 Antwoordmodel Opgave Vakkenkeuze Maimumscore 47,9% van 493 = 36 meisjes doen economie 60,% van 344 = 07 jongens doen economie Maimumscore 3 Het totaal van de percentages

Nadere informatie

wiskunde B pilot havo 2016-I

wiskunde B pilot havo 2016-I De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van

Nadere informatie

Kunstrijden op de schaats

Kunstrijden op de schaats Eindexamen havo wiskunde A pilot 204-II Kunstrijden op de schaats maximumscore 4 De Zweedse kunstrijders kunnen op 3! manieren geplaatst worden De overige kunnen op 4! manieren geplaatst worden Er zijn

Nadere informatie

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5.

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5. 11 ) Oefeningen 1) Vergelijkingen van functies Welke vergelijkingen stellen een rechte voor? Welke vergelijkingen stellen een parabool voor? Welke vergelijkingen stellen noch een rechte noch een parabool

Nadere informatie

Wisnet-HBO. update maart. 2010

Wisnet-HBO. update maart. 2010 Wat is Differentiëren? 1 Wat is differentiëren? Wisnet-HBO update maart. 2010 Differentiëren is eigenlijk het differentiaalquotient bepalen. Je begint met het delen van uiterst kleine verschillen op elkaar.

Nadere informatie

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte.

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte. Grafieken, functies en verzamelingen Eerst enkele begrippen Grafiek In een assenstelsel teken je een grafiek. Assenstelsel Een assenstelsel bestaat uit twee assen die elkaar snijden: een horizontale en

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Eindexamen wiskunde B pilot havo I

Eindexamen wiskunde B pilot havo I Overlevingstijd Als iemand in koud water terecht komt, daalt zijn lichaamstemperatuur. Als de lichaamstemperatuur is gedaald tot 30 ºC ontstaat een levensbedreigende situatie. De tijd die verstrijkt tussen

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

Werkbladen vergelijking van een rechte

Werkbladen vergelijking van een rechte In deze werktekst proberen wij de vergelijkingen op te stellen van rechten die aan bepaalde voorwaarden voldoen. Wij onderscheiden volgende gevallen: 1. Vergelijking van een rechte gaande door de oorsprong

Nadere informatie

Functies. Verdieping. 6N-3p gghm

Functies. Verdieping. 6N-3p gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2006-II

Eindexamen wiskunde A1-2 vwo 2006-II Eindexamen wiskunde A- vwo 006-II 4 Beoordelingsmodel Zeep aangeven hoe de kans P(X < 90 = 93, =,4) met de GR kan worden berekend Deze kans is (ongeveer) 0,06 3 De gevraagde kans is 006, het antwoord (ongeveer)

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur

Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur Examen HAVO 014 tijdvak 1 woensdag 14 mei 1.0-1.0 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A . Bereken zonder rekenmachine: + d. + 0 + 6 6 6 Hogeschool Rotterdam Voorbeeldeamen Wiskunde A 6 6 Oplossingen. Bereken zonder rekenmachine: + 6 b. + 6 0 + 9. Bereken zonder rekenmachine: 9 9 d.. Een supermarkt

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. 7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

Onderneming en omgeving - Economisch gereedschap

Onderneming en omgeving - Economisch gereedschap Onderneming en omgeving - Economisch gereedschap 1 Rekenen met procenten, basispunten en procentpunten... 1 2 Werken met indexcijfers... 3 3 Grafieken maken en lezen... 5 4a Tweedegraads functie: de parabool...

Nadere informatie

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f() = Differentiequotiënt van f() op [0, 3] = y f (3) f (0) 6 0 30 30 y 1 16.1

Nadere informatie

Correctievoorschrift HAVO 2016

Correctievoorschrift HAVO 2016 Correctievoorschrift HAVO 06 tijdvak wiskunde B (pilot) Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels Vakspecifieke regels Beoordelingsmodel 5 Inzenden scores Regels

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1 Herhalingsoefeningen Tweedegraadsfuncties Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Eindexamen wiskunde A1-2 havo 2007-II

Eindexamen wiskunde A1-2 havo 2007-II Eindexamen wiskunde A- havo 007-II Beoordelingsmodel Sprintsnelheid maximumscore 4 De toenamen zijn achtereenvolgens 37,5 ; 0,5 ; 3,0 ; 3,5 ; 3,5 De staven zijn getekend bij 0, 40, 60, 80 en 00 meter Er

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Eindexamen havo wiskunde A pilot 03-II Beoordelingsmodel Paracetamol in het bloed maximumscore 4 De eerste 0 minuten wordt er 50 mg in het bloed opgenomen (en is er nog 50 mg in maag en darmen), de volgende

Nadere informatie

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te

Nadere informatie

Toegepast Rekenen Theorie:

Toegepast Rekenen Theorie: Toegepast Rekenen Theorie: Hfst 1: Rekenen De volgorde van de basisbewerkingen is: Eerst tussen haakjes Daarna de volgorde volgens het ezelsbruggetje: Meneer Van Dalen Wacht Op Antwoord - Machtsverheffen

Nadere informatie

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h

Vraag Antwoord Scores ( ) ( ) Voor de waterhoogte h geldt: ( 2h+ 3h 2h Eindexamen vwo wiskunde B 0 - II Een regenton maximumscore 5 h V= ( rx ( )) d x 0 00 ( rx ( )) ( 5 5x 5x ) = + Een primitieve van 5+ 5x 5x is 5x+ 7 x 5x Dus = ( 5 + 7 5 ) V h h h 00 V = h+ h h = h+ h h

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn Codelijst: : de dynamisch gegenereerde waarde van INVUL: invuloefening ( Short answer ) KLEUR: gebruik kleur! MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn MC: multiple

Nadere informatie

Eindexamen vwo wiskunde A pilot 2013-I

Eindexamen vwo wiskunde A pilot 2013-I Eindexamen vwo wiskunde A pilot 03-I 4 Beoordelingsmodel Zevenkamp maximumscore 3,835 De vergelijking 7 = 9,3076 (6,7 X ) moet worden opgelost Beschrijven hoe deze vergelijking (bijvoorbeeld met de GR)

Nadere informatie

Correctievoorschrift HAVO 2012

Correctievoorschrift HAVO 2012 Correctievoorschrift HAVO 0 tijdvak wiskunde B (pilot) Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

Paragraaf 5.1 : Wortelvormen en Breuken

Paragraaf 5.1 : Wortelvormen en Breuken Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 1 van 11 Paragraaf 5.1 : Wortelvormen en Breuken Les 1 : Wortelformules, Domein en Bereik Definities Domein = { alle -en die je mag invullen in de formule

Nadere informatie

Eindexamen wiskunde A1-2 havo 2007-I

Eindexamen wiskunde A1-2 havo 2007-I Eindexamen wiskunde A- havo 007-I Beoordelingsmodel Marathon maximumscore 3 uur, 4 minuten en 55 seconden is 60 60 + 4 60 + 55 = 7495 seconden De gemiddelde snelheid is 495 5, 63 7495 m/s maximumscore

Nadere informatie

Eindexamen wiskunde A pilot havo 2011 - II

Eindexamen wiskunde A pilot havo 2011 - II Eindexamen wiskunde A pilot havo 0 - II Beoordelingsmodel Woningvoorraad maximumscore 3 b = 3 6 3 a = = 0, 30 0 Opmerkingen Als voor het verschil in jaren 3 9 genomen is, hiervoor geen scorepunten in mindering

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen Beschrijf in eigen woorden: Waar gaat de opdracht over? Welke signaalwoorden staan in de tekst? Wijst een signaalwoord naar een strategie? Welke

Nadere informatie

Hoofdstuk 2 - Algebra of rekenmachine

Hoofdstuk 2 - Algebra of rekenmachine Hoofdstuk - Algebra of rekenmachine Voorkennis: kwadratische vergelijkingen bladzijde V-a pp ( + ) b kk ( 0) c xx ( + ) d k( 8k 7) e qq ( + 9) f 0, tt+ ( ) g 7r( 9r) h p( 7p+ ) V-a fx () = x( x + ) b Nt

Nadere informatie

Toepassingen met de grafische rekenmachine TI-83/84 (plus)

Toepassingen met de grafische rekenmachine TI-83/84 (plus) Toepassingen met de grafische rekenmachine TI-83/84 (plus) Met de grafische rekenmachine kun je diverse wiskundige bewerkingen uitvoeren en grafieken tekenen. We geven per toepassing een voorbeeld en vervolgens

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie