Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie"

Transcriptie

1 Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0 ). Van de volgende soorten functies zullen we een voorbeeld geven van het uitvoeren van functie-onderzoek. 14 Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie 1) Met een positief exponent in de term(en) R N I. Lijnen: constante functies = en lineaire of eerstegraadsfuncties: =+ II. Kwadratische functies III. Derdegraads functies IV. Hogeregraads functies V. Rationale of gebroken functies 2) Met een negatief exponent N VI. hyperbolische functies 3) Met een breuk als exponent; VII. Exponentiele en logaritmische functies: dit zijn de wortelfuncties Functies zoals (bijv. 2 ) horen hier ook bij, want = (omzetting) VIII. functies van de vorm (exponentiële functies) en ( logaritmische en ln-functies ( = ) ) Speciale functies: IX. Absolute functies oftewel modulus functies (functies met een knik bij =0) X. Inverse functies (gespiegeld in = ) exponentiële functies versus log functies 2 log = ln of bijv. twee lijnen =5 =20 4

2 Checklist voor functie-onderzoek 1. Domein van de functie - Welke waarden kan aannemen? Ook bereik bekijken (de waarden van ) 2. Nulpunten van. Snijpunten met de x-as. Hiervoor ==0 oplossen 3. Snijpunten met de y-as bepalen, d.w.z. 0 invullen in : 0,0 4. Extreme waarden zoeken (maxima en minima) Eerst stationaire punten bepalen : 0 oplossen (eerste orde afgeleide) wordt in de economie ook wel de marginale functie genoemd en geeft ongeveer aan: de verandering van als met één eenheid toeneemt, uitgaande van een bep. punt van de grafiek Het stationair punt kan een maximum (max), minimum (min) of buigpunt (bp) zijn. 1e methode is m.b.v. tekenoverzichten tekenoverzichten maken voor en bij tekenwissel in stationair punt van heeft een max of min. (Geen tekenwisseling dan een buigpunt in ) Als 0 dan is stijgend Als 0 dan is dalend intervallen bepalen Aan een tekenoverzicht kan je heel veel aflezen over de vorm van de grafiek van de functie 2 e methode bepalen max of min voor m.b.v. de tweede afgeleide van in het stat.punt. Als 0 in het stationair punt dan heeft een minimum Als 0 in het stationair punt dan heeft een maximum 5. Eventuele buigpunten bepalen 0 oplossen (2 e orde afgeleide Tekenoverzichten maken en " ) Indien tekenwisseling in bij het stationaire punt dan heeft een buigpunt. Bepalen coördinaten van het buigpunt, 6. NIEUW: convexiteit/ concaviteit - interval bepalen waar de functie convex / concaaf is. Convex stijgend : functie (y-waarde) stijgt dan steeds sneller per eenheid van x erbij 15 Concaaf stijgend : de y-waarde stijgt steeds langzamer per eenheid van x erbij Een buigpunt is een overgang van convex naar concaaf of omgekeerd. Convexiteit/concaviteit belangrijke rol in de economie (bijv. snellere/langzamere toename kosten/winst per eenheid produktie/verkoop)

3 7. Het gedrag van als ( limieten ). De functie kan dan een horizontale asymptoot (HA) hebben. 8. Het gedrag van vlakbij niet gedefinieerde x-waarden. De functie kan dan verticale asymptoten (VA) hebben. De pntn 7en 8 gaan over limieten en asymptoten, HA, VA en SA (horizontale, verticale en schuine asymptoten) 9. Tabelletje maken met de belangrijke gevonden punten van om te kunnen schetsen 16 = 10. Schetsen van de grafiek met aangeven van alle gevonden punten en bijzonderheden 11. NIEUW: Bereken raaklijnen in punten van en buigraaklijnen in buigpunten van Berekenen (raak)lijnen met behulp van de vergelijking =+ Opm 1: als =0 (stationair punt) dan heeft de grafiek daar een horizontale raaklijn (dus in extremen en buigpunten heeft de functie een horizontale raaklijn) Opm 2: als niet bestaat voor een waarde van, maar f zelf bestaat wel, dan heeft in die x-waarde een verticale raaklijn (een vertikale lijn is geen functie want voldoet niet aan de vertikale lijntest, zie Kaper H1) Verticale raaklijnen zoals bijv. 0 bij de functie, hebben geen r.c. want bestaat niet in dat punt. In de andere gevallen is de raaklijn aan een punt van de grafiek van : met.. Extra restricties omdat we werken met economische grootheden Bij economische functies (zoals kostenfuncties, produktiefuncties etc.) zijn de x- en y-waarden beide groter gelijk aan nul. Met andere woorden we bekijken alleen het deel van de functie dat in het eerste kwadrant ligt (dus waar x en y beiden groter of gelijk aan nul zijn) Eerst bepaal je alle gevraagde intervallen wiskundig en daarna pas ga je de economische restrictie op het interval toepassen. Het deel dat daardoor niet meer voldoet (v.n.) arceer je dan en je zet er v.n. bij. Verderop in dit diktaatje zijn hier een aantal voorbeelden van.

4 Uitwerking functie-onderzoek I. Lijnen: constante functies horizontale lijnen met 0 en lineaire of eerstegraadsfuncties: met 17 II. Kwadratische functies Algemeen : met, 0 (dit is een polynoom of veeltermfunctie) Als 0 dan dalparabool Heeft een minimum als extreme waarde. Als 0 dan bergparabool Heeft een maximum als extreme waarde. optioneel kwadraat afsplitsen. Handig bij bepalen extreme waarde en symmetrieas van Bepaling snijpunten met de x-as 0 0 oplossen: Ontbinden in factoren uit het hoofd 14 als mogelijk, anders m.b.v. de abc-formule : discriminant), met 4 (de Een voorbeelfunctie 23 0 : het is een dalparabool (heeft een minimum als extreme waarde) 1. Domein : 2. Nulpunten : ,0 1,0 3. Snijppunten y-as : ,3

5 4. Extreme waarden : hiervoor tekenoverzichten maken Nu links en rechts van 1 een waarde invullen in en kijken of +++ of zie bijbehorend tekenoverzicht. Aflezen: gaat van dalend naar stijgend dus er is een min bij Het minimum is 1, invullen dus voor elke convex (bolle zijde naar onder) 6. heft geen nulpunten dus ook geen overgang van +++ naar of omgekeerd; er zijn geen buigpunten 7 en 8. Geen bijzonderheden, geen asymptoten. 9. enkele punten (tabel invullen) schets : overal convex: eerst dalend convex dan stijgend convex dalend op interval, 1 stijgend convex 1,, nergens concaaf (bolle zijde naar boven) en overal convex (bolle zijde naar onderen) 11. Raaklijnbepaling bijvoorbeeld: bepaal de raaklijn in de extreme waarde dus in min 1,4. Raaklijn in 1,4 aan met wisten we eigenlijk al, want rc raaklijn in extreme waarde 0 Punt invullen ter bepaling van de b-waarde: 1, *! Dit is een HORIZONTALE RAAKLIJN,omdat 0 in een extreme waarde van De raaklijnen in de andere punten van zijn niet horizontaal. III. Derdegraadsfuncties De eenvoudigste derdegraadsfunctie is 1. Domein geen bijzonderheden:, 2. Nulpunten 0 0 nulp. : (0, 0) 3. Snijp. Met y-as 0,0 4. Extreme waarden Kan zijn top, dal of buigppunt bij 0 en daarvoor tekenoverzicht maken en bepalen. 5. Onderzoek naar buigpunt 2 e orde afgeleide :

6 Tekenoverzicht maken en tekens bepalen bij de eerste en tweede afgeleide van Tekenwisseling bij 0 in. Er is een buigpunt in namelijk in 0,0 Geen tekenwisseling in dus geen extereme waarden voor is concaaf en stijgend op,0 want is daar is convex en stijgend op 0, want is daar Limiet naar en geen bijzonderheden ; 8. geen asymptoten want er zijn geen verboden x-waarden (niet-gedefinieerde x-waarden) 9. enkele punten 10. Schets van 11. Vergelijking buigraaklijn in 0,0 De lijn heet buigraaklijn omdat het punt een buigpunt is.. van de raaklijn in a-waarde invullen in vergelijking raaklijn: 0 je raakpunt invullen in vergelijking raaklijn 0, Gevonden: 0 0 vergelijking buigraaklijn in 0,0 is (x-as) (horizontale (buig)raaklijn want 00) 2 e voorbeeld van een derdegraadsfunctie Bepaal het domein, de eventuele nulpunten, de extreme waarden en de buigpunten met buigraaklijn. Op welke interval is convex/ cocaaf/ stijgend/ dalend. 1. Domein geen bijzonderheden 2. Nulpunten Twee nulpunten 0,0 en 1, Controle : 0000 en 1 0 beide kloppen 3. Snijpunt met y-as ,0 Extreme waarden en buigpunten mbv de eerste en tweede afgeleiden en tekenoverzichten

7 en Stationaire punten bij 0 en 1 ; nu nog bepalen van de aard van de punten: van +++ naar --- daarom f(x) gaat van stijgend naar dalend en heeft een max voor Het maximum is 0,0 of andere methode: 010 dus max voor 0 van ---naar +++ dus f van dalend naar stijgend. heeft een min voor 1 en 1 Of met dus min voor. Het min is 1, Dit stationair punt is een extreem punt en wel een minimum. De minimum waarde is 5. Bepalen buigpunt(en): Conclusie na invullen punten in tekenoverzicht: tekenwisseling bij heeft en daarom heeft een buigpunt voor Bepalen y-waarde: BP :, (Merk op: in dit buigpunt is 0 ) 6. is concaaf op interval, en convex op interval, 7 en 8. Geen bijzonderheden en dus geen asymptoten. **opmerking buigpunt : Dit buigpunt, is geen stationair punt want 0 voor Daarom zal de buigraaklijn ook NIET horizontaal zijn 11. Buigraaklijn (raaklijn in het buigpunt),, invullen in is de vergelijking van de buigraaklijn Buigraaklijn: enkele punten om te tekenen: 0, 4,1 4, 1, Opm. Derdegraadsfuncties zijn veelgebruikte economische functies (zie blz... en de tentamensommen)

8 IV. Een hogere graads functie (vierde graads polynoom- of veeltermfunctie) Domein (alle waarden van x zijn toegestaan) 2. Nulpunten : Snijpunten met de y-as 0 0,0 4. Extreme waarden (stationaire punten) m.b.v. 0 Er zijn twee nulpunten: 0,0, m.b.v. tekenoverzichten uitzoeken of min ; max (of buigpunt) is. 5. Eventueel buigpunt m.b.v Tekenoverzichten maken en punten invullen om +++ en in te kunnen vullen. Conclusie tekenoverzicht heeft 2 buigpunten (twee tekenwisselingen bij ) en 1 minimum (1 tekenwiss. bij ) Het is een minimum omdat f gaat van dalend naar stijgend bij 1 Bp : 0 ; 00 bp 0,0 Bp. ; Min 1 ; 1 1, 6. is convex op het interval,0, ( betekent verenigd met) is concaaf op het interval 0,, Nulpunten :0,0, 0 7en 8. Geen bijzonderheden (geen asymptoten) Stationaire punten voor 0 en 1 (zie 0). De 2 e methode ter bepaling extreme waarden : _0 0 voor minimum en _0 0 voor maximum Voor daarom minimum voor Voor geen extreem punt voor, maar BP (bij nader onderzoek) 11. Buigraaklijnen 1 e in 0,0 00 Punt invullen: e buigraaklijn: 0 (x-as) horizontale buigraaklijn

9 2 e in, Punt invullen: 22 2 e buigraaklijn is (niet horizontaal) V. rationale of gebroken functies 1. Domein: 10 1 Noemer mag geen 0 worden: Domein is 1 (alles behalve 1) 2. Snijp. x-as : teller is 0 10 er is geen geen nulpunt 0 3. Snijp. y-as : 0 1 0,1 4. Extremen 0 quotientregel toepassen als teller = abc-formule geeft 2,8 0,8 In het tekenoverzicht lezen we af: maximum bij 0,8 en minimum bij 2,8 5. en 6.) Nu de tweede afgeleide van (de eerste of de tweede afhankelijk van hoe je de noemer hebt genoteerd; beide goed) Alleen teller =0 bepaalt of je breuk 0 wordt Teller=0 oplossen (of teller eerst helemaal uitschrijven is ook goed) 0 als teller =0 : maar v.n. (=voldoet niet) want noemer mag niet 0 zijn en voor 1 is noemer wel nul. Tekenoverzichten:

10 7) Berekenen van de asymptoten (HA, VA en SA) lim lim lim 1 1 geen H.A lim (delen door hoogste graad i/d noemer) lim lim VA : Voor de SA (schuine asymptoot) gaan we een deling maken Stel : met 2 lim lim 2 want is de schuine asymptoot 9. Enkele punten voor de functie noteren wordt nul Oefensom : som 3 van de Erasmus toets 10. Schets de functie Voorbeeld van een lijn met gat Domein : 1 (x mag geen -1 zijn, want dan is noemer nul) Nulp. : nulpunt 3,0 Snijp. met y-as : 3 wordt 0,3 1 rc.= 1 voor elke x d.w.z. zelf is een lijn lim lim lim 3134 Idem lim 4 daarom is 1,4 een gat i/d grafiek want de limiet bestaat wel, terwijl niet voldoet. lim wordt lim 3 idem lim wordt Grafiek van is grafiek van met een gat bij (lijn met gaatje) Als je de noemer kan wegdelen, zal de grafiek een gat hebben Opm: ook bij verboden x-waarden in het tekenoverzicht links en rechts hiervan het teken bepalen.

11 VI. Hyperbolische functies functies met een negatief exponent Een bijzonder gebroken functie is de hyperbolische functie (veel in de economie gebruikt) Bijvoorbeeld: = = 24 Domein is 0 (alles behalve 0, want de noemer mag geen nul worden) heeft geen nulpunten want de teller kan nooit nul worden 1 heeft ook geen nulpunten want de teller kan ook nooit nul worden is altijd negatief (zie tekenoverzicht) dus is altijd dalend en heeft geen extremen 2 2 heeft geen nulpunten,mmaar wel tekenwisseling! Dat zie je als je punten invult bij de tekenoverzichten Horizontale asymptoot voor 0 (het getal in de noemer dat niet voldoet) want lim 0 lim 0 Vertikale asymptoot voor 0 want lim lim Niet vergeten: Bij de tekenoverzichsten de waardes checken links en rechts van elk nulpunt en ook links en rechts van elke verboden x-waarden Oefensommen : 1. Onderzoek en schets de functie 2 3. Bepaal ook de buigraaklijn (tent. 3 mrt.2012) Bepaal de volgende intervallen : a. stijgend en dalend b. convex en concaaf c. Marginale functie stijgend en dalend d. De aard van de stationaire punten e. De aard m.b.v. (tweede methode)

12 VII. = Machtsfunctie met een gebroken exponenten (een breuk als exponent) - dit zijn de wortelfuncties = Domein is R; alle waarden voor zijn toegestaan 2. Bepalen nulpunt 3. Snijp. Met de y-as 00 0,0 Extremen/ buigpunten en 0 =0 0. Nulpunt is 0, 00, heeft geen oplossingen De noemer mag geen 0 worden en teller kan geen 0 worden dus heeft geen nulpunten en daarom heeft geen extremen 5. 0 onderzoek naar buigpunten heeft geen nulpunten en 0 0 levert geen antwoord op, want de teller kan geen nul worden. Tekenoverzichten: is altijd positief, daarom is overal stijgend (en 0 bestaat niet) heeft geen nulpunten, maar wel een tekenwisseling bij 0 (verboden punt) Conclusie : er is een buigpunt in 0,0 voor en is een stijgende functie 6. Interval convex is,0 7 en 8. Interval concaaf is 0, Er is geen verticale asymptoot, want er zijn geen verboden x-waarden Er is geen horizontale asymptoot want als naar of naar - gaat wordt f(x) ook of - 9. Enkele punten in een tabelletje zetten 10. Schets de functie Merk op: alhoewel niet is gedefinieerd in 0 heeft wel een buigpunt in buigraaklijn in 0,0 berekenen: 0 (bestaat niet). Dit antwoord betekent dat er een verticale raaklijn Vergelijking buigraaklijn : 0 ( de y-as) is in 0,0.

13 VIII VIII 26

14 27

15 28

16 29 16 Oefen de opgaven 2A van de oude tentamens

17 Enkele uitgewerkte tentamensommen om te oefenen: 30

18 31

19 32

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

Differentiaalrekening. Elementaire techniek van het differentieren.

Differentiaalrekening. Elementaire techniek van het differentieren. Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Vergelijkingen oplossen

Uitwerkingen bij 1_0 Voorkennis: Vergelijkingen oplossen Toets om inhoudsopgave (bladwijzers) wel/niet te tonen Uitwerkingen bij 1_0 Voorkennis: Vergelijkingen oplossen! " #$ % & '&() '*& ) '#! " #" ),-. % / ---.01 2 3 ---. - / %3 -.1-01 2 4 & * 5 5 & %

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

1 Lineaire functies. 2 Kwadratische functies. 3 Gebroken functies. Info Wiskunde HBO

1 Lineaire functies. 2 Kwadratische functies. 3 Gebroken functies. Info Wiskunde HBO Info Wiskunde HBO Lineaire functies. Onderwerpen opgave. Formule, tabel en grafiek... Betekenis snijpunt lineaire grafieken.. t/m.. Functievoorschrift en constantes bij lineair verband.. t/m.6. Gelijkheden

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1.

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1. Hoofdstuk 9: Allerlei functies 9. Machtsfuncties en wortelfuncties Opgave : a. 0,0, c. y en y d. y en y Opgave : a. de grafiek van y ontstaat uit die van y door T 0, T 0,6 y y 6 Opgave : a. T 6,0 T,0 c.

Nadere informatie

Studiewijzer Calculus voor het schakelprogramma van Bouwkunde (2DB03) cursus 2015/2016

Studiewijzer Calculus voor het schakelprogramma van Bouwkunde (2DB03) cursus 2015/2016 Studiewijzer Calculus voor het schakelprogramma van Bouwkunde (2DB03) cursus 2015/2016 Inleiding In de cursus Calculus voor het schakelprogramma van Bouwkunde (2DB03) wordt het volgende gebruikt het boek:

Nadere informatie

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis

Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis Wiskunde voor economie drs. H.J.Ots Hellevoetsluis 15-2-2004, Wiskunde voor economie, ISBN 90-70619-05-9,drs. H.J. Ots, www.webecon.nl Wiskunde voor economie Drs. H.J. Ots ISBN 90-70619-05-9 Webecon, Hellevoetsluis,

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

2. Kwadratische functies.

2. Kwadratische functies. Uitwerkingen R-vragen hoofdstuk. Kwadratische functies.. R De term a is bepalend voor zeer grote waardes van. Als a < 0 dan wordt de term a zeer groot en negatief zowel bij. en Er is sprake van een bergparabool

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1

Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1 Herhalingsoefeningen Tweedegraadsfuncties Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1)

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1) Hoofdstuk 0 - De abc-formule Hoofdstuk 0 - De abc-formule Voorkennis V-a y = 5 = 8 5 = en y = ( ) 5 = 8 5 = b y = + 8 = 6 = 6 en y = + 8 = 0,6 6 8 c y = + ( ) = + = = 6 en y = ( ) + ( ) = 9 6 = 9 + 8 =

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Laatste nieuws Calculus voor het schakelprogramma van Bouwkunde 2DB03, 2015-2016

Laatste nieuws Calculus voor het schakelprogramma van Bouwkunde 2DB03, 2015-2016 Laatste nieuws Calculus voor het schakelprogramma van Bouwkunde 2DB03, 2015-2016 Kwartiel 1, week 8.1 Op het college van dinsdag 20 oktober is het volgende behandeld: - opgaven van Oncourse over integralen

Nadere informatie

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5.

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5. 11 ) Oefeningen 1) Vergelijkingen van functies Welke vergelijkingen stellen een rechte voor? Welke vergelijkingen stellen een parabool voor? Welke vergelijkingen stellen noch een rechte noch een parabool

Nadere informatie

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te

Nadere informatie

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1},

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1}, Hoofdstuk II Calculus Les Differentiatie van functies Waarscijnlijk eeft iedereen wel een idee ervan wat een functie is, maar voor de duidelijkeid zal et andig zijn om de meest belangrijke begrippen na

Nadere informatie

De onderstaande waarden in de tabel zet je dan netjes uit in een xy-assenstelsel: naar boven, een negatief getal schuift de parabool naar beneden.

De onderstaande waarden in de tabel zet je dan netjes uit in een xy-assenstelsel: naar boven, een negatief getal schuift de parabool naar beneden. Samenvatting H29: Parabolen en Hyperbolen De standaard parabool heeft als formule y = x 2 Deze vorm moet je vlot en netjes kunnen tekenen. De onderstaande waarden in de tabel zet je dan netjes uit in een

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

WISKUNDE 3 PERIODEN EUROPEES BACCALAUREAAT 2010. DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : TOEGESTANE HULPMIDDELEN : OPMERKINGEN : Geen

WISKUNDE 3 PERIODEN EUROPEES BACCALAUREAAT 2010. DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : TOEGESTANE HULPMIDDELEN : OPMERKINGEN : Geen EUROPEES BACCALAUREAAT 010 WISKUNDE 3 PERIODEN DATUM : 4 juni 010 DUUR VAN HET EXAMEN : 3 uur (180 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

Toegepaste Wiskunde deel 1

Toegepaste Wiskunde deel 1 Toegepaste Wiskunde deel Uitwerkingen etra opgaven hoofdstuk Functies. y f ( ) 4 ( )( ) is minimaal -4 voor 0 y g f ( ) ( ) 4 ( )( ) bestaat wanneer D en B 4, ( )( ) 0, voor het domein en het bereik geldt

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling

Nadere informatie

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn Codelijst: : de dynamisch gegenereerde waarde van INVUL: invuloefening ( Short answer ) KLEUR: gebruik kleur! MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn MC: multiple

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 1. Lineair verband. 1a. na 1 min 36 cm, na min. 3 cm, daling 4 cm per minuut. b. h = 40 4t h in cm en t per minuut b. k: rc = -3 m: rc = 0.5 p: rc

Nadere informatie

Hoofdstuk 2 - Kwadratische functies

Hoofdstuk 2 - Kwadratische functies Hoofdstuk - Kwadratische functies Hoofdstuk - Kwadratische functies Voorkennis V-1a y = 3(x ) 3 x 3 6x 1 y = 6x 1 b y = 9( 4x 4) 3 4x 4 9 36x 36 y = 36x 36 c y = x( x 7) 3 x 7 x x 7x y = x 7x V-a y = (

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo Docentenhandleiding Netwerk 3e editie deel 3B havo 0 Hoofdstuk 7 Verschillende verbanden Beginniveau Al eerder hebben de leerlingen kennis gemaakt met lineaire, kwadratische en exponentiële verbanden.

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

Modelvraagstukken: Limieten van Rationale Functies (RF).

Modelvraagstukken: Limieten van Rationale Functies (RF). Sint-Norbertusinstituut Duffel Modelvraagstukken: Limieten van Rationale Functies RF) Inhoudsopgave Basisieten Nulpunten en hun multipliciteit 3 Limietwaarden op oneindig 4 3 Berekening in detail 4 3 Verkorte

Nadere informatie

Onderneming en omgeving - Economisch gereedschap

Onderneming en omgeving - Economisch gereedschap Onderneming en omgeving - Economisch gereedschap 1 Rekenen met procenten, basispunten en procentpunten... 1 2 Werken met indexcijfers... 3 3 Grafieken maken en lezen... 5 4a Tweedegraads functie: de parabool...

Nadere informatie

Leerlijnen REKENEN WISKUNDE (BB)

Leerlijnen REKENEN WISKUNDE (BB) Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij

Nadere informatie

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1 Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra 3 0.1.1 Verzameling van getallen en het symbool 4 0.1.2 Merkwaardige

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Inverse functies en limieten

Inverse functies en limieten Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA Startrekenen Wiskit Leerwerkboek deel 1 Functies Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELE FOLKERSMA JASPER VAN ABSWOUDE CYRIEL KLUIERS RIEKE WYNIA Inhoudsopgave evagposduohni Deel 1

Nadere informatie

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met

Nadere informatie

Breuksplitsen WISNET-HBO NHL. update juli 20014

Breuksplitsen WISNET-HBO NHL. update juli 20014 Breuksplitsen WISNET-HBO NHL update juli 20014 1 Inleiding Bij sommige opleidingen is het belangrijk dat er enige vaardigheid ontwikkeld wordt om grote breuken te manipuleren en om te zetten in een aantal

Nadere informatie

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels

Week 2_2. 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels Week 2_2 1.2 Limieten 1.4 Continuïteit 2.2 De afgeleide 2.3 Differentiatieregels 2 Basiswiskunde_Week_2_2.nb 1.2 Voorbeeld Beschouw de uitdrukking x2 +3 x in de buurt van x = 2. x-4 Als x op 2 lijkt, dan

Nadere informatie

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme Wiskunde voor kunstmatige intelligentie, 006 Les Speciale functies We ebben in de vorige les een aantal elementaire functies bekeken en iervoor gezien oe we deze functies kunnen afleiden. In wezen waren

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt kg lengte in m gewicht in kg 7 9 c d gewicht in kg lengte in m m weegt kg dus m weegt kg meter e startgetal hellingsgetal V-a y + Dus ( ) y

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

11 e editie. Inhoudsopgaven VWO 5

11 e editie. Inhoudsopgaven VWO 5 11 e editie Inhoudsopgaven VWO 5 Inhoudsopgave 5 vwo A 1 Formules herleiden 1-1 Lineaire formules 1-2 Gebroken formules 1-3 Wortelformules 1-4 Machtsformules 1-5 Gemengde opdrachten 2 Statistiek (op computer)

Nadere informatie

mei 16 19:37 Iedere keer is de groeifactor gelijk. (een factor is een getal in een vermenigvuldiging)

mei 16 19:37 Iedere keer is de groeifactor gelijk. (een factor is een getal in een vermenigvuldiging) Wiskunde 3VWO Hoofdstuk 8 par 8.1 par 8.2 Procenten en groeifactoren Niet par 8.3 Periodieke verbanden par 8.4 Machtsfuncties par 8.5 Grafieken veranderen par 8.6 Extreme waarden mei 16 19:37 Maandag zitten

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

WISKUNDETOETS FPP. Instructies

WISKUNDETOETS FPP. Instructies WISKUNDETOETS FPP 22 juni 2016 19.00 uur 21.30 uur Deze wiskundetoets bestaat uit 6 meerkeuzevragen en 3 open vragen Instructies Je mag het boek Wiswijs en eigen aantekeningen bij de toets gebruiken. Dit

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo kader Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk

Nadere informatie

Dag van de wiskunde 22 november 2014

Dag van de wiskunde 22 november 2014 WISKUNDIGE UITDAGINGEN MET DE TI-84 L U C G H E Y S E N S VRAGEN/OPMERKINGEN/ peter.vandewiele@telenet.be TOEPASSING 1: BODY MASS INDEX Opstarten programma en naamgeven! Peter Vandewiele 1 TOEPASSING 1:

Nadere informatie

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur 1 Stelling van Pythagoras bewijs paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur c a b b

Nadere informatie

Functies. Verdieping. 6N-3p gghm

Functies. Verdieping. 6N-3p gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Reader Wiskunde MBO Niveau 4 Periode. M. van der Pijl. Transfer Database

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Reader Wiskunde MBO Niveau 4 Periode. M. van der Pijl. Transfer Database Noorderpoortcollege School voor MBO Stadskanaal Reader Reader Wiskunde MBO Niveau Periode M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet

Nadere informatie

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f() = Differentiequotiënt van f() op [0, 3] = y f (3) f (0) 6 0 30 30 y 1 16.1

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2010 WISKUNDE 5 PERIODEN DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

Functies van meer variabelen voor dummy s

Functies van meer variabelen voor dummy s Functies van meer variabelen voor dummy s Dit is een 'praktische gids voor dummy s'. Hieronder kun je een aantal voorbeelden met uitleg vinden, oefeningen en uitwerkingen. De voorbeelden komen deels uit

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Inhoudsopgave 1 Definitie Betekenis van de afgeleide 1 2 Standaardafgeleiden

Nadere informatie

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte.

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte. Grafieken, functies en verzamelingen Eerst enkele begrippen Grafiek In een assenstelsel teken je een grafiek. Assenstelsel Een assenstelsel bestaat uit twee assen die elkaar snijden: een horizontale en

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid.

Nadere informatie

VIDEO 4 4. MODULUSVERGELIJKINGEN

VIDEO 4 4. MODULUSVERGELIJKINGEN VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook

Nadere informatie

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden Hoofdstuk : Formules en grafieken.. Lineaire verbanden Opgave : in 0 minuten daalt het water 40 cm, dus 4 cm per minuut dus na minuut geldt: h 40 4 6 cm en na minuten geldt: h 40 4 cm b. formule II Opgave

Nadere informatie