Deel 3 havo. Docentenhandleiding havo deel 3 CB

Maat: px
Weergave met pagina beginnen:

Download "Deel 3 havo. Docentenhandleiding havo deel 3 CB"

Transcriptie

1 Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte route. Veranderingen ten opzichte van de tweede editie De invoering van ICT en natuurlijk de ervaringen van gebruikers hebben geleid tot een aantal belangrijke aanpassingen van de tweede editie. Daardoor is een evenwichtiger opbouw van de leerstof ontstaan. De vijfde kern Door gebruikers is regelmatig aangegeven dat er behoefte is aan vraagstukken die vaardigheden vragen uit voorgaande kernen of hoofdstukken. Die zijn nu opgenomen in een vijfde kern met de titel Gemengde opgaven. Deze kern bestaat uit vier pagina's en bevat dus geen nieuwe leerstof. Extra oefening in het werkboek Om leerlingen zelfstandig en met extra oefening het hoofdstuk nog eens door te laten werken, staan in het werkboek twee of meer pagina's extra vraagstukken met een verwijzing naar de kernen. U kunt deze vraagstukken natuurlijk ook gebruiken om tempoverschillen op te vangen. Planning De delen 3A en 3B bevatten in totaal 12 hoofdstukken. In deel 3B kunt u na hoofdstuk 8 kiezen uit twee stromen. De hoofdstukken 9 en 10 voor de M-profielen, de hoofdstukken 11 en 12 voor de N-profielen. De aansluiting met Wiskunde A 12 en B 12 in 4 havo zal daardoor beter verlopen. Voor 30 lesweken is dat 3 weken per hoofdstuk. De leerstoflijnen In het volgende schema vindt u een overzicht van de verdeling van de leerstof over de verschillende domeinen. Domein A Domein B Rekenen, meten en schatten In alle hoofdstukken Algebraïsche verbanden Hoofdstuk 1 Lineaire functies Hoofdstuk 3 Lineaire vergelijkingen Hoofdstuk 5 Kwadratische verbanden Hoofdstuk 6 Exponentiële groei Hoofdstuk 7 Verschillende verbanden Hoofdstuk 10 Functies en grafieken (M-profielen) Hoofdstuk 11 Parabolen (N-profielen) Domein C Meetkunde Hoofdstuk 2 Hoofdstuk 4 Hoofdstuk 12 Gelijkvormigheid Goniometrie Ruimtemeetkunde (N-profielen) Domein D Informatieverwerking en statistiek Hoofdstuk 8 Statistiek Hoofdstuk 9 Tellen en kans (M-profielen) 0

2 Hoofdstuk 1 Lineaire functies Beginniveau Geen specifieke vaardigheden of voorkennis. Kennen en kunnen - een lineair verband herkennen aan een tabel en een grafiek - het begrip beginwaarde - het begrip lineaire of eerstegraads functie - het begrip hellingsgetal - een lijn tekenen met gegeven hellingsgetal - een hellingsgetal berekenen bij een lijn door twee punten - de algemene vorm van een lineaire functie - een formule maken bij een lijn door twee punten Verkorte route : 1, 2, 3, 4, 6, 7, 8 : 11, 12, 13, 15 : 18, 19, 20, 21, 23, 24 : 25, 26, 27, 30, 31, 32 1

3 Opmerkingen Algemeen Het programma VU-Grafiek geeft een belangrijke ondersteuning aan dit hoofdstuk. Bij een lineair verband horen bij gelijke stappen van de ene variabele gelijke stappen van de andere variabele. De grafiek is een rechte lijn. Het hellingsgetal geeft de steilheid aan van de grafiek of van een rechte lijn. Het hellingsgetal wordt berekend met verticale verandering : horizontale verandering. Bij stijgende grafieken is het hellingsgetal positief, bij dalende grafieken negatief. In deze kern wordt een formule opgesteld bij een lijn door twee punten. Zowel het hellingsgetal als het snijpunt met de verticale as moeten worden berekend. De cd-rom biedt uitleg in bewegende beelden. ICT VU-Grafiek Met dit programma en de opdrachten uit het boek kunnen ze alles nog eens visualiseren. ICT De cd-rom biedt de leerlingen de mogelijkheid om de theorie nog eens te herhalen en extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 2

4 Hoofdstuk 2 Gelijkvormigheid Beginniveau De begrippen vergroten en verkleinen kennen. Weten wat F-hoeken en Z-hoeken zijn. Kennen en kunnen - het begrip gelijkvormigheid en het gelijkvormigheidsteken - de vergrotingsfactor kunnen gebruiken - wat zijn gelijkvormige driehoeken - wanneer zijn driehoeken gelijkvormig - berekeningen met gelijkvormige driehoeken - toepassingen met gelijkvormige driehoeken - de invloed van vergroten en verkleinen op afmetingen, oppervlak en inhoud Verkorte route : 1, 2, 4, 5 : 6, 7,8, 9, 10, 11 : 13, 14, 15, 16, 17, 18 : 22, 23, 24 3

5 Opmerkingen Algemeen De leerlingen hebben bij dit hoofdstuk een geodriehoek en een rekenmachine nodig. Het gaat hier om het begrip gelijkvormigheid en de daarbij horende vermenigvuldigingsfactor. Denk daarbij ook aan het schaalmodel dat ze kennen van klas 1 en 2. Het is goed om nog even de eigenschappen van F-hoeken en Z-hoeken bij evenwijdige lijnen op te halen. Leerlingen komen de gelijkvormige driehoeken in twee situaties tegen: het 'trechter' model en het 'zandloper' model. Vervolgens moeten ze de gelijkvormigheid op kunnen schrijven aan de hand van de gelijke hoeken. In twee voorbeelden wordt uitgelegd hoe je met gelijkvormigheid de lengte van lijnstukken kunt uitrekenen. Op de cd-rom staat een hele leuke animatie. Als de afmetingen van een voorwerp met een factor k worden vermenigvuldigd, dan verandert de oppervlakte met een factor k² en de inhoud met een factor k³. ICT De cd-rom biedt de leerlingen de mogelijkheid om berekeningen met gelijkvormigheid te visualiseren en extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 4

6 Hoofdstuk 3 Lineaire vergelijkingen Beginniveau Dit hoofdstuk is een vervolg op hoofdstuk 1. Kennen en kunnen - het snijpunt kunnen aflezen en controleren van een lineaire functie met een horizontale lijn - een lineaire vergelijking kunnen opstellen - werken met een balans die in evenwicht blijft als links en rechts hetzelfde wordt weggehaald - dit principe van de balans gebruiken bij het oplossen van vergelijkingen (de balansmethode) - wat betekent groter en kleiner in grafieken - hoe los je een ongelijkheid op met behulp van grafieken - hoe los je een lineaire ongelijkheid op met behulp van de balansmethode - het gevolg van links en rechts delen door een negatief getal Verkorte route : 1, 2, 3, 6, 7, 8 : 10, 11, 13, 14, 15, 17, 20 : 22, 23, 24, 25, 26, 27 : 29, 30, 31, 32, 33, 34 5

7 Opmerkingen Algemeen Het gaat hier om het oplossen van lineaire vergelijkingen en ongelijkheden. Snijpunten kun je aflezen en controleren met de formules. Bij het berekenen van het snijpunt kun je een lineaire vergelijking opstellen. Om de oplossing van een lineaire vergelijking te bepalen, gebruik je de balansmethode. Op de cd-rom staat een leuke applet voor het oplossen van vergelijkingen (zie opgave 12, 16 en 21). Hier worden de lineaire ongelijkheden behandeld. Eerst wordt uitgelegd wat groter en kleiner betekent voor de bijbehorende grafieken. Vervolgens wordt de x-waarde van het snijpunt berekend en kan de oplossing gegeven worden. Lineaire ongelijkheden kun je ook oplossen met de balansmethode maar dan kan het teken 'omklappen'. ICT De cd-rom biedt de leerlingen de mogelijkheid om extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 6

8 Hoofdstuk 4 Goniometrie Beginniveau Leerlingen moeten met verhoudingen kunnen rekenen en de hoekmaat kennen. Verder moeten ze met de geodriehoek hoeken kunnen meten en tekenen. Kennen en kunnen - de begrippen hellingshoek en hellingsgetal - de tangens van een (hellings)hoek als uitkomst van de deling hoogteverschil : horizontale afstand - de tangens van een hoek in een rechthoekige driehoek - de tangens van een gegeven hoek bepalen met de rekenmachine - als de tangens gegeven is met de rekenmachine de bijbehorende hoek bepalen - als een hoek en de aanliggende rechthoekszijde gegeven is de overstaande rechthoekszijde uitrekenen - in een rechthoekige driehoek de sinus en cosinus kunnen berekenen - de sinus of de cosinus van een gegeven hoek bepalen met de rekenmachine - als de sinus of de cosinus gegeven is met de rekenmachine de bijbehorende hoek bepalen - in rechthoekige driehoeken met sinus, cosinus of tangens de onbekende zijden berekenen Verkorte route : 1, 2, 3, 4, 5, 7, 8 : 10, 11, 12, 14, 15, 17, 18, 19, 20 : 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 : 35, 36, 37, 38, 39, 40 7

9 Opmerkingen Algemeen Leerlingen hebben bij dit hoofdstuk een geodriehoek en een rekenmachine nodig. De steilheid van een lijn kun je uitdrukken in een hellingshoek of een hellingsgetal. Daaraan wordt gekoppeld de tangens van een hoek. In een rechthoekige driehoek is dat de verhouding van overstaande rechthoekszijde : aanliggende rechthoekszijde. Met de rekenmachine moet je heen en terug kunnen rekenen. Dus bij een gegeven hoek de tangens bepalen en bij een gegeven tangens de hoek in graden laten berekenen. In deze kern wordt ook uitgelegd hoe je in een rechthoekige driehoek met de tangens de overstaande rechthoekszijde kunt uitreken. Op de cd-rom staat een animatie. In som 19 moeten ze met de hoekensom eerst de andere hoek uitrekenen om een aanliggende rechthoekszijde uit te kunnen rekenen. De andere twee goniometrische verhoudingen zijn de sinus en de cosinus. Ook daarmee moet je heen en terug kunnen rekenen. De onbekende zijden in een rechthoekige driehoek moeten ze nu met een van de goniometrische verhoudingen kunnen berekenen. De keus voor welke van de drie hangt af van de situatie. Op de cd-rom staat een animatie van een berekening met een sinus en met een cosinus. ICT De cd-rom laat berekeningen zien met de tangens, de sinus en de cosinus en er kan extra geoefend worden. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 8

10 Hoofdstuk 5 Kwadratische functies Beginniveau Leerlingen moeten nog weten dat de grafiek van een kwadratische functie een parabool is Verder moet hij kunnen rekenen met kwadraten en negatieve getallen. Kennen en kunnen - de algemene vorm van een kwadratische functie met de top op de y-as - het verschil tussen een dal- en een bergparabool - de nulpunten (x-waarden) van een functie van de vorm y = ax² + c kunnen bepalen - de algemene vorm y = ax² + bx (her)kennen - daarvan de nulpunten kunnen bepalen - de algemene vorm y = ax² + bx + c (her)kennen - de x-coördinaat van de top kunnen berekenen met de formule - de nulpunten van een kwadratische functie kunnen berekenen met de abc-formule - het minimum of maximum van een kwadratische functie kunnen bepalen Verkorte route : 1, 2, 4, 7, 8 : 9, 10, 11, 12 : 14, 15, 16, 17 : 18, 19, 20, 21, 22, 23, 24 9

11 Opmerkingen Algemeen Leerlingen moeten aan de hand van een tabel een grafiek kunnen tekenen. Het programma VU-Grafiek geeft daarbij een belangrijke ondersteuning aan dit hoofdstuk. In deze kern beperken we ons tot parabolen met de top op de y-as. Algemene vorm: y = ax² + c Nulpunten worden berekend met balansmethode en worteltrekken. In deze kern worden parabolen behandeld waarvan de grafiek door O gaat. Algemene vorm: y = ax² + bx Nulpunten worden berekend door te ontbinden in factoren. Nu komt de algemene vorm van een kwadratische functie aan bod. Algemene vorm: y = ax² + bx + c Om de x-coördinaat van de top te bepalen, kunnen de leerlingen gebruik van de methode op pagina 98 of van de formule voor x top op pagina 99. Aan bod komt de abc-formule (zonder bewijs). Op de havo is gekozen is voor de vorm zoals deze ook op de formulekaart in de bovenbouw staat vermeld. Op de cd-rom staat nog een animatie van de abc-formule. Daarbij wordt eerst x top uitgerekend en vervolgens het symmetriedeel. ICT VU-Grafiek Met dit programma en de opdrachten uit het boek kunnen ze alles nog eens visualiseren. ICT De cd-rom biedt de leerlingen de mogelijkheid om extra te oefenen. Ook is er een leuke toepassing van fractals (zie blauwvlak pagina 111). Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 10

12 Hoofdstuk 6 Exponentiële groei Beginniveau Kunnen werken met een rekenmachine Kennen en kunnen - weten wat exponentiële groei is - weten dat de beginwaarde bij t = 0 hoort - weten wat de groeifactor per tijdseenheid is en deze berekenen - de algemene vorm H = b g t (her)kennen - zelf een formule kunnen opstellen - een groeifactor kunnen omrekenen naar een andere tijdseenheid - de grafiek van een exponentieel proces kunnen tekenen - de invloed van de groeifactor op de grafiek: stijgend of dalend - het begrip verdubbelingstijd - het begrip halveringstijd Verkorte route : 1, 2, 3, 4, 5, 6, 7, 8, 9 : 11, 12, 13, 14, 15, 17, 18, 19, 21, 22 : 25, 26, 27, 28, 29, 30 : 31, 32, 34, 35, 37 11

13 Opmerkingen Algemeen Leerlingen hebben bij dit hoofdstuk een rekenmachine nodig. Het programma VU-Grafiek biedt weer een goede ondersteuning. In deze kern wordt de kennis van klas 2 opgehaald. Ook deze formule hebben de leerlingen al ik klas 2 gezien. Wijs ze er nog eens op dat de variabele hier de exponent is en niet zoals bij machtsfuncties het grondtal. Op de cd-rom staat een animatie. In deze kern wordt verband gelegd tussen groeifactor en grafiek. Er is voor gekozen om in dit hoofdstuk alleen de exponentiele verbanden aan bod te laten komen. Natuurlijk is het wel nuttig om de verschillen aan te geven met lineaire verbanden. Die hebben ze tenslotte al gehad in hoofdstuk 1. Verdubbelingstijd en halveringstijd worden berekend via grafiek en tabel. Daarna controle met de formules. ICT VU-Grafiek Met dit programma en de opdrachten uit het boek kunnen ze alles nog eens visualiseren. ICT De cd-rom biedt de leerlingen de mogelijkheid om extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 12

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB Deel 3 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

Docentenhandleiding vwo deel 2

Docentenhandleiding vwo deel 2 Deel 2 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen

Nadere informatie

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo kader Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B vmbo kader Inhoud deel 3A Hoofdstuk 1 Vlakke meetkunde Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Rekenen Hoofdstuk 4 Statistiek Hoofdstuk 5 Ruimtemeetkunde Hoofdstuk

Nadere informatie

Deel 2A vmbo basis kader

Deel 2A vmbo basis kader Deel 2A vmbo basis kader De hoeveelheid leerstof is gebaseerd op drie of vier lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken. De verkorte route kan gebruikt

Nadere informatie

Inleiding goniometrie

Inleiding goniometrie Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat

Nadere informatie

Tussendoelen in MathPlus

Tussendoelen in MathPlus MALMBERG UITGEVERIJ B.V. Tussendoelen in MathPlus Versie 1 Inhoud Tussendoelen onderbouw in MathPlus... 2 Tabel tussendoelen... 2 1HVG... 7 Domein Rekenen... 7 Domein Meten en tekenen... 9 Domein Grafieken

Nadere informatie

Docentenhandleiding vmbo gth deel 2

Docentenhandleiding vmbo gth deel 2 Deel 2 vmbo gth De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen

Nadere informatie

Moderne wiskunde. Deel 4 vmbo gemengd theoretisch. Docentenhandleiding bij:

Moderne wiskunde. Deel 4 vmbo gemengd theoretisch. Docentenhandleiding bij: Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo gemengd theoretisch inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

Moderne wiskunde. Deel 4 vmbo kader. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21

Moderne wiskunde. Deel 4 vmbo kader. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo kader inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur Opstap

Nadere informatie

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort Eindtermen wiskunde TL en GL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en schatten Meetkunde WI/K/7

Nadere informatie

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16 Wiskunde Het schoolexamen in het vierde leerjaar (2015-2016) wordt ook toegepast binnen de locatie Statenkwartier. Schooljaar 2014-2015 ( leerjaar 3 ) Kader Schoolexamen 1 SE 1 De volgende onderdelen worden

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband tussen

Nadere informatie

2.1 Gelijkvormige driehoeken[1]

2.1 Gelijkvormige driehoeken[1] 2.1 Gelijkvormige driehoeken[1] 5 25 50 100 25 125 250 x Hierboven staat een verhoudingstabel. Kruiselings vermenigvuldigen van de getallen geeft: 5 x 125 = 25 x 25 (= 625) 5 x 250 = 25 x 50 (= 1250) 25

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

3 Pythagoras 90. 4 Statistiek 128

3 Pythagoras 90. 4 Statistiek 128 2BK1 2KGT1 Voorkennis 1 Meetkunde 6 1 Vlakke figuren 8 1.1 Namen van vlakke figuren 10 1.2 Driehoeken 15 1.3 Driehoeken tekenen 19 1.4 Vierhoeken 24 1.5 Hoeken berekenen in een vierhoek 30 1.6 Gemengde

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B Analytische meetkunde Inhoud.. Coördinaten in het vlak.. Vergelijkingen van lijnen.3. Vergelijkingen van cirkels.4. Snijden.5. Overzicht In opdracht van: Commissie Toekomst Wiskunde

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

Leerlijnen REKENEN WISKUNDE (BB)

Leerlijnen REKENEN WISKUNDE (BB) Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij

Nadere informatie

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16 Wiskunde Schooljaar 2014-2015 ( leerjaar 3 ) Theoretische en Gemengde leerweg Schoolexamen 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand 301T

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch inhoudelijke structuur dakpanconstructie planning beschrijving per hoofdstuk Moderne Wiskunde, docentenhandleiding -

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B 1 Analytische meetkunde Inhoud 1.1. Coördinaten in het vlak 1.2. Vergelijkingen van lijnen 1.3. Vergelijkingen van cirkels 1.4. Snijden 1.5. Overzicht In opdracht van: Commissie

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B basis Inhoud deel 3A Hoofdstuk 1 Plaatsbepalen Hoofdstuk 2 Grafieken en tabellen Hoofdstuk 3 Rekenen Hoofdstuk 4 Informatieverwerking Hoofdstuk 5 Tekenen en rekenen Computer

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo inhoudelijke structuur dakpanconstructie planning beschrijving per hoofdstuk Moderne Wiskunde, docentenhandleiding - klas

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A . Bereken zonder rekenmachine: + d. + 0 + 6 6 6 Hogeschool Rotterdam Voorbeeldeamen Wiskunde A 6 6 Oplossingen. Bereken zonder rekenmachine: + 6 b. + 6 0 + 9. Bereken zonder rekenmachine: 9 9 d.. Een supermarkt

Nadere informatie

Docentenhandleiding algemeen

Docentenhandleiding algemeen Docentenhandleiding algemeen Dit algemene deel bevat informatie over het gebruik van de docentenhandleiding en algemene informatie over de verschillende delen. Daarnaast is er ook een handleiding per hoofdstuk.

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 vwo. inhoudelijke structuur planning beschrijving per hoofdstuk

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 vwo. inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 vwo inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde, docentenhandleiding - klas 2 vwo 1 Inhoudelijke structuur Opstap

Nadere informatie

Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429)

Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) - een lijst met operationele en concrete doelen van de lessenserie, indien mogelijk gerelateerd

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Moderne wiskunde. Deel 4 vmbo basis. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 16 planning 18 beschrijving per hoofdstuk 21

Moderne wiskunde. Deel 4 vmbo basis. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 16 planning 18 beschrijving per hoofdstuk 21 Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo basis inhoudelijke structuur 2 dakpanconstructie 16 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur Opstap

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

WISNET-HBO NHL update jan. 2009

WISNET-HBO NHL update jan. 2009 Tweedegraadsfuncties Parabolen maken WISNET-HBO NHL update jan. 2009 Inleiding In deze les leer je wat systeem brengen in het snel herkennen van tweedegraadsfuncties. Een paar handige trucjes voor het

Nadere informatie

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Havo A deel 1 begint met het niet-examenonderwerp Statistiek (was hoofdstuk 4). Al snel wordt de grafische rekenmachine ingezet en ook bij de andere

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 3 Deel 3 havo. inhoudelijke structuur planning beschrijving per hoofdstuk

Moderne wiskunde. Docentenhandleiding bij: Klas 3 Deel 3 havo. inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde Docentenhandleiding bij: Klas 3 Deel 3 havo inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde, docentenhandleiding - klas 3 havo 1 Inhoudelijke structuur Opstap

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

Goniometrische functies

Goniometrische functies Goniometrische functies gonè (Grieks) = hoek metron (Grieks) = maat Goniometrie, afkomstig van de Griekse woorden voor hoek en maat, betekent letterlijk hoekmeetkunde. Daarmee wordt aangegeven dat het

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 3 Deel 3 vwo. inhoudelijke structuur planning beschrijving per hoofdstuk

Moderne wiskunde. Docentenhandleiding bij: Klas 3 Deel 3 vwo. inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde Docentenhandleiding bij: Klas 3 Deel 3 vwo inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde, docentenhandleiding - klas 3 vwo 1 Inhoudelijke structuur Opstap

Nadere informatie

klas 3 wiskunde Wi BASIS

klas 3 wiskunde Wi BASIS examenar: 2017 schoolar: 2015-2016 klas 3 BASIS moderne wiskunde 3-basis 9e editie hfdst leerstofomschrijving eind toet soort tijd periode weging cijfer herk. 1 Plaatsbepalen K6 1 s 1 1 1 2 Grafieken K4

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Als x = 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 3 5,6 = 67, m. b De lengte is meter, de totale breedte is 5 + x meter, dus voor de oppervlakte geldt A = (5 + x). Dus

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

PROGRAMMA VAN TOETSING EN AFSLUITING

PROGRAMMA VAN TOETSING EN AFSLUITING PROGRAMMA VAN TOETSING EN AFSLUITING VAK : : Wiskun METHODE : Morne Wiskun 9 editie KLAS: : 4 NIVEAU : KADER CONTACTUREN PER WEEK 4 X MINUTEN PER WEEK UDIEJAAR : 205-206 EINDCIJFER KLAS TELT ALS BEGINCIJFER

Nadere informatie

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras inhoudsopgave 1 de grote lijn applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek 1 de grote lijn hoofdlijn de zijlijn De oppervlakte van rechthoekige driehoeken. Van een

Nadere informatie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15 A. Schoolexamen derde leerjaar, 2013-2014 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand. 301B Algebraïsche verbanden en WI/K/4 * * * aanzichten

Nadere informatie

WISKUNDE B HAVO NIEUW EXAMENPROGRAMMA VAKINFORMATIE STAATSEXAMEN 2017 V15.12.0

WISKUNDE B HAVO NIEUW EXAMENPROGRAMMA VAKINFORMATIE STAATSEXAMEN 2017 V15.12.0 WISKUNDE B HAVO NIEUW EXAMENPROGRAMMA VAKINFORMATIE STAATSEXAMEN 2017 V15.12.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp: Kwadraten en Wortels H1 19 De leerling leert passende wiskundetaal te gebruiken voor het ordenen van het eigen denken en voor uitleg aan anderen, en leert de wiskundetaal van anderen te begrijpen.

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. 7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde

Nadere informatie

10e editie Inhoudsopgave leerjaar 5

10e editie Inhoudsopgave leerjaar 5 10e editie Inhoudsopgave leerjaar 5 2 Inhoud 5 havo A Blok 1 Analyse Hoofdstuk 1 Allerlei formules 10 Voorkennis 12 1-1 Recht evenredig en omgekeerd evenredig 14 1-2 Formules met breuken 16 1-3 Formules

Nadere informatie

Elde college Schijndel. Kernteam Techniek

Elde college Schijndel. Kernteam Techniek Elde college Schijndel Kernteam Techniek Wiskunde lesstof stapelaars docent: Joost van Veghel Voorwoord Gefeliciteerd! Als je dit leest, heb je het schooljaar afgesloten met een diploma voor de basisberoepsgerichte

Nadere informatie

F3 Formules: Formule rechte lijn opstellen 1/3

F3 Formules: Formule rechte lijn opstellen 1/3 F3 Formules: Formule rechte lijn opstellen 1/3 Inleiding Bij Module F1 heb je geleerd dat Formule, Verhaal, Tabel, Grafiek en Vergelijking altijd bij elkaar horen. Bij Module F2 heb je geleerd wat een

Nadere informatie

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van

Nadere informatie

Noorderpoortcollege school voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 periode 3. M. van der Pijl. Transfer Database

Noorderpoortcollege school voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 periode 3. M. van der Pijl. Transfer Database Noorderpoortcollege school voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 periode 3 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet

Nadere informatie

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A.

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Wiskunde voor het hoger onderwijs deel A Errata 00 Noordhoff Uitgevers Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Hoofdstuk. 4 Op blz. in het Theorieboek staat halverwege de

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA Startrekenen Wiskit Leerwerkboek deel 1 Functies Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELE FOLKERSMA JASPER VAN ABSWOUDE CYRIEL KLUIERS RIEKE WYNIA Inhoudsopgave evagposduohni Deel 1

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk

Nadere informatie

Wiskunde 20 maart 2014 versie 1-1 -

Wiskunde 20 maart 2014 versie 1-1 - Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

met tijdseenheden overig niet-metrisch moeten zelf bedacht of opgezocht worden a geheeltallig en < 10

met tijdseenheden overig niet-metrisch moeten zelf bedacht of opgezocht worden a geheeltallig en < 10 Meeteenheden omrekenen 1 2 3 4 5 Eenheid n n = 1 n = 2, n = 3 n > 3 Omrekeningsfactoren uitsluitend metrisch met tijdseenheden overig niet-metrisch Omrekeningsrichting van groot naar klein van klein naar

Nadere informatie

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want ANALYTISCHE MEETKUNDE: HERHALING DERDE JAAR OEFENINGEN Lees eerst de formules op het andere blad, en los vervolgens de oefeningen van het bijbehorende deel op. Wanneer je alles hebt opgelost, maak je de

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: juli 00 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 8. M. van der Pijl. Transfer Database

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 8. M. van der Pijl. Transfer Database Noorderpoortcollege School voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 Periode 8 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

WISKUNDE D HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE D HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE D HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden Hoofdstuk : Formules en grafieken.. Lineaire verbanden Opgave : in 0 minuten daalt het water 40 cm, dus 4 cm per minuut dus na minuut geldt: h 40 4 6 cm en na minuten geldt: h 40 4 cm b. formule II Opgave

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 1 2012-2013. M. van der Pijl.

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 1 2012-2013. M. van der Pijl. Noorderpoortcollege School voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 Periode 1 2012-2013 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen

Nadere informatie