Deel 3 havo. Docentenhandleiding havo deel 3 CB

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Deel 3 havo. Docentenhandleiding havo deel 3 CB"

Transcriptie

1 Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte route. Veranderingen ten opzichte van de tweede editie De invoering van ICT en natuurlijk de ervaringen van gebruikers hebben geleid tot een aantal belangrijke aanpassingen van de tweede editie. Daardoor is een evenwichtiger opbouw van de leerstof ontstaan. De vijfde kern Door gebruikers is regelmatig aangegeven dat er behoefte is aan vraagstukken die vaardigheden vragen uit voorgaande kernen of hoofdstukken. Die zijn nu opgenomen in een vijfde kern met de titel Gemengde opgaven. Deze kern bestaat uit vier pagina's en bevat dus geen nieuwe leerstof. Extra oefening in het werkboek Om leerlingen zelfstandig en met extra oefening het hoofdstuk nog eens door te laten werken, staan in het werkboek twee of meer pagina's extra vraagstukken met een verwijzing naar de kernen. U kunt deze vraagstukken natuurlijk ook gebruiken om tempoverschillen op te vangen. Planning De delen 3A en 3B bevatten in totaal 12 hoofdstukken. In deel 3B kunt u na hoofdstuk 8 kiezen uit twee stromen. De hoofdstukken 9 en 10 voor de M-profielen, de hoofdstukken 11 en 12 voor de N-profielen. De aansluiting met Wiskunde A 12 en B 12 in 4 havo zal daardoor beter verlopen. Voor 30 lesweken is dat 3 weken per hoofdstuk. De leerstoflijnen In het volgende schema vindt u een overzicht van de verdeling van de leerstof over de verschillende domeinen. Domein A Domein B Rekenen, meten en schatten In alle hoofdstukken Algebraïsche verbanden Hoofdstuk 1 Lineaire functies Hoofdstuk 3 Lineaire vergelijkingen Hoofdstuk 5 Kwadratische verbanden Hoofdstuk 6 Exponentiële groei Hoofdstuk 7 Verschillende verbanden Hoofdstuk 10 Functies en grafieken (M-profielen) Hoofdstuk 11 Parabolen (N-profielen) Domein C Meetkunde Hoofdstuk 2 Hoofdstuk 4 Hoofdstuk 12 Gelijkvormigheid Goniometrie Ruimtemeetkunde (N-profielen) Domein D Informatieverwerking en statistiek Hoofdstuk 8 Statistiek Hoofdstuk 9 Tellen en kans (M-profielen) 0

2 Hoofdstuk 1 Lineaire functies Beginniveau Geen specifieke vaardigheden of voorkennis. Kennen en kunnen - een lineair verband herkennen aan een tabel en een grafiek - het begrip beginwaarde - het begrip lineaire of eerstegraads functie - het begrip hellingsgetal - een lijn tekenen met gegeven hellingsgetal - een hellingsgetal berekenen bij een lijn door twee punten - de algemene vorm van een lineaire functie - een formule maken bij een lijn door twee punten Verkorte route : 1, 2, 3, 4, 6, 7, 8 : 11, 12, 13, 15 : 18, 19, 20, 21, 23, 24 : 25, 26, 27, 30, 31, 32 1

3 Opmerkingen Algemeen Het programma VU-Grafiek geeft een belangrijke ondersteuning aan dit hoofdstuk. Bij een lineair verband horen bij gelijke stappen van de ene variabele gelijke stappen van de andere variabele. De grafiek is een rechte lijn. Het hellingsgetal geeft de steilheid aan van de grafiek of van een rechte lijn. Het hellingsgetal wordt berekend met verticale verandering : horizontale verandering. Bij stijgende grafieken is het hellingsgetal positief, bij dalende grafieken negatief. In deze kern wordt een formule opgesteld bij een lijn door twee punten. Zowel het hellingsgetal als het snijpunt met de verticale as moeten worden berekend. De cd-rom biedt uitleg in bewegende beelden. ICT VU-Grafiek Met dit programma en de opdrachten uit het boek kunnen ze alles nog eens visualiseren. ICT De cd-rom biedt de leerlingen de mogelijkheid om de theorie nog eens te herhalen en extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 2

4 Hoofdstuk 2 Gelijkvormigheid Beginniveau De begrippen vergroten en verkleinen kennen. Weten wat F-hoeken en Z-hoeken zijn. Kennen en kunnen - het begrip gelijkvormigheid en het gelijkvormigheidsteken - de vergrotingsfactor kunnen gebruiken - wat zijn gelijkvormige driehoeken - wanneer zijn driehoeken gelijkvormig - berekeningen met gelijkvormige driehoeken - toepassingen met gelijkvormige driehoeken - de invloed van vergroten en verkleinen op afmetingen, oppervlak en inhoud Verkorte route : 1, 2, 4, 5 : 6, 7,8, 9, 10, 11 : 13, 14, 15, 16, 17, 18 : 22, 23, 24 3

5 Opmerkingen Algemeen De leerlingen hebben bij dit hoofdstuk een geodriehoek en een rekenmachine nodig. Het gaat hier om het begrip gelijkvormigheid en de daarbij horende vermenigvuldigingsfactor. Denk daarbij ook aan het schaalmodel dat ze kennen van klas 1 en 2. Het is goed om nog even de eigenschappen van F-hoeken en Z-hoeken bij evenwijdige lijnen op te halen. Leerlingen komen de gelijkvormige driehoeken in twee situaties tegen: het 'trechter' model en het 'zandloper' model. Vervolgens moeten ze de gelijkvormigheid op kunnen schrijven aan de hand van de gelijke hoeken. In twee voorbeelden wordt uitgelegd hoe je met gelijkvormigheid de lengte van lijnstukken kunt uitrekenen. Op de cd-rom staat een hele leuke animatie. Als de afmetingen van een voorwerp met een factor k worden vermenigvuldigd, dan verandert de oppervlakte met een factor k² en de inhoud met een factor k³. ICT De cd-rom biedt de leerlingen de mogelijkheid om berekeningen met gelijkvormigheid te visualiseren en extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 4

6 Hoofdstuk 3 Lineaire vergelijkingen Beginniveau Dit hoofdstuk is een vervolg op hoofdstuk 1. Kennen en kunnen - het snijpunt kunnen aflezen en controleren van een lineaire functie met een horizontale lijn - een lineaire vergelijking kunnen opstellen - werken met een balans die in evenwicht blijft als links en rechts hetzelfde wordt weggehaald - dit principe van de balans gebruiken bij het oplossen van vergelijkingen (de balansmethode) - wat betekent groter en kleiner in grafieken - hoe los je een ongelijkheid op met behulp van grafieken - hoe los je een lineaire ongelijkheid op met behulp van de balansmethode - het gevolg van links en rechts delen door een negatief getal Verkorte route : 1, 2, 3, 6, 7, 8 : 10, 11, 13, 14, 15, 17, 20 : 22, 23, 24, 25, 26, 27 : 29, 30, 31, 32, 33, 34 5

7 Opmerkingen Algemeen Het gaat hier om het oplossen van lineaire vergelijkingen en ongelijkheden. Snijpunten kun je aflezen en controleren met de formules. Bij het berekenen van het snijpunt kun je een lineaire vergelijking opstellen. Om de oplossing van een lineaire vergelijking te bepalen, gebruik je de balansmethode. Op de cd-rom staat een leuke applet voor het oplossen van vergelijkingen (zie opgave 12, 16 en 21). Hier worden de lineaire ongelijkheden behandeld. Eerst wordt uitgelegd wat groter en kleiner betekent voor de bijbehorende grafieken. Vervolgens wordt de x-waarde van het snijpunt berekend en kan de oplossing gegeven worden. Lineaire ongelijkheden kun je ook oplossen met de balansmethode maar dan kan het teken 'omklappen'. ICT De cd-rom biedt de leerlingen de mogelijkheid om extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 6

8 Hoofdstuk 4 Goniometrie Beginniveau Leerlingen moeten met verhoudingen kunnen rekenen en de hoekmaat kennen. Verder moeten ze met de geodriehoek hoeken kunnen meten en tekenen. Kennen en kunnen - de begrippen hellingshoek en hellingsgetal - de tangens van een (hellings)hoek als uitkomst van de deling hoogteverschil : horizontale afstand - de tangens van een hoek in een rechthoekige driehoek - de tangens van een gegeven hoek bepalen met de rekenmachine - als de tangens gegeven is met de rekenmachine de bijbehorende hoek bepalen - als een hoek en de aanliggende rechthoekszijde gegeven is de overstaande rechthoekszijde uitrekenen - in een rechthoekige driehoek de sinus en cosinus kunnen berekenen - de sinus of de cosinus van een gegeven hoek bepalen met de rekenmachine - als de sinus of de cosinus gegeven is met de rekenmachine de bijbehorende hoek bepalen - in rechthoekige driehoeken met sinus, cosinus of tangens de onbekende zijden berekenen Verkorte route : 1, 2, 3, 4, 5, 7, 8 : 10, 11, 12, 14, 15, 17, 18, 19, 20 : 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 : 35, 36, 37, 38, 39, 40 7

9 Opmerkingen Algemeen Leerlingen hebben bij dit hoofdstuk een geodriehoek en een rekenmachine nodig. De steilheid van een lijn kun je uitdrukken in een hellingshoek of een hellingsgetal. Daaraan wordt gekoppeld de tangens van een hoek. In een rechthoekige driehoek is dat de verhouding van overstaande rechthoekszijde : aanliggende rechthoekszijde. Met de rekenmachine moet je heen en terug kunnen rekenen. Dus bij een gegeven hoek de tangens bepalen en bij een gegeven tangens de hoek in graden laten berekenen. In deze kern wordt ook uitgelegd hoe je in een rechthoekige driehoek met de tangens de overstaande rechthoekszijde kunt uitreken. Op de cd-rom staat een animatie. In som 19 moeten ze met de hoekensom eerst de andere hoek uitrekenen om een aanliggende rechthoekszijde uit te kunnen rekenen. De andere twee goniometrische verhoudingen zijn de sinus en de cosinus. Ook daarmee moet je heen en terug kunnen rekenen. De onbekende zijden in een rechthoekige driehoek moeten ze nu met een van de goniometrische verhoudingen kunnen berekenen. De keus voor welke van de drie hangt af van de situatie. Op de cd-rom staat een animatie van een berekening met een sinus en met een cosinus. ICT De cd-rom laat berekeningen zien met de tangens, de sinus en de cosinus en er kan extra geoefend worden. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 8

10 Hoofdstuk 5 Kwadratische functies Beginniveau Leerlingen moeten nog weten dat de grafiek van een kwadratische functie een parabool is Verder moet hij kunnen rekenen met kwadraten en negatieve getallen. Kennen en kunnen - de algemene vorm van een kwadratische functie met de top op de y-as - het verschil tussen een dal- en een bergparabool - de nulpunten (x-waarden) van een functie van de vorm y = ax² + c kunnen bepalen - de algemene vorm y = ax² + bx (her)kennen - daarvan de nulpunten kunnen bepalen - de algemene vorm y = ax² + bx + c (her)kennen - de x-coördinaat van de top kunnen berekenen met de formule - de nulpunten van een kwadratische functie kunnen berekenen met de abc-formule - het minimum of maximum van een kwadratische functie kunnen bepalen Verkorte route : 1, 2, 4, 7, 8 : 9, 10, 11, 12 : 14, 15, 16, 17 : 18, 19, 20, 21, 22, 23, 24 9

11 Opmerkingen Algemeen Leerlingen moeten aan de hand van een tabel een grafiek kunnen tekenen. Het programma VU-Grafiek geeft daarbij een belangrijke ondersteuning aan dit hoofdstuk. In deze kern beperken we ons tot parabolen met de top op de y-as. Algemene vorm: y = ax² + c Nulpunten worden berekend met balansmethode en worteltrekken. In deze kern worden parabolen behandeld waarvan de grafiek door O gaat. Algemene vorm: y = ax² + bx Nulpunten worden berekend door te ontbinden in factoren. Nu komt de algemene vorm van een kwadratische functie aan bod. Algemene vorm: y = ax² + bx + c Om de x-coördinaat van de top te bepalen, kunnen de leerlingen gebruik van de methode op pagina 98 of van de formule voor x top op pagina 99. Aan bod komt de abc-formule (zonder bewijs). Op de havo is gekozen is voor de vorm zoals deze ook op de formulekaart in de bovenbouw staat vermeld. Op de cd-rom staat nog een animatie van de abc-formule. Daarbij wordt eerst x top uitgerekend en vervolgens het symmetriedeel. ICT VU-Grafiek Met dit programma en de opdrachten uit het boek kunnen ze alles nog eens visualiseren. ICT De cd-rom biedt de leerlingen de mogelijkheid om extra te oefenen. Ook is er een leuke toepassing van fractals (zie blauwvlak pagina 111). Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 10

12 Hoofdstuk 6 Exponentiële groei Beginniveau Kunnen werken met een rekenmachine Kennen en kunnen - weten wat exponentiële groei is - weten dat de beginwaarde bij t = 0 hoort - weten wat de groeifactor per tijdseenheid is en deze berekenen - de algemene vorm H = b g t (her)kennen - zelf een formule kunnen opstellen - een groeifactor kunnen omrekenen naar een andere tijdseenheid - de grafiek van een exponentieel proces kunnen tekenen - de invloed van de groeifactor op de grafiek: stijgend of dalend - het begrip verdubbelingstijd - het begrip halveringstijd Verkorte route : 1, 2, 3, 4, 5, 6, 7, 8, 9 : 11, 12, 13, 14, 15, 17, 18, 19, 21, 22 : 25, 26, 27, 28, 29, 30 : 31, 32, 34, 35, 37 11

13 Opmerkingen Algemeen Leerlingen hebben bij dit hoofdstuk een rekenmachine nodig. Het programma VU-Grafiek biedt weer een goede ondersteuning. In deze kern wordt de kennis van klas 2 opgehaald. Ook deze formule hebben de leerlingen al ik klas 2 gezien. Wijs ze er nog eens op dat de variabele hier de exponent is en niet zoals bij machtsfuncties het grondtal. Op de cd-rom staat een animatie. In deze kern wordt verband gelegd tussen groeifactor en grafiek. Er is voor gekozen om in dit hoofdstuk alleen de exponentiele verbanden aan bod te laten komen. Natuurlijk is het wel nuttig om de verschillen aan te geven met lineaire verbanden. Die hebben ze tenslotte al gehad in hoofdstuk 1. Verdubbelingstijd en halveringstijd worden berekend via grafiek en tabel. Daarna controle met de formules. ICT VU-Grafiek Met dit programma en de opdrachten uit het boek kunnen ze alles nog eens visualiseren. ICT De cd-rom biedt de leerlingen de mogelijkheid om extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 12

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB Deel 3 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo Docentenhandleiding Netwerk 3e editie deel 3B havo 0 Hoofdstuk 7 Verschillende verbanden Beginniveau Al eerder hebben de leerlingen kennis gemaakt met lineaire, kwadratische en exponentiële verbanden.

Nadere informatie

Docentenhandleiding havo vwo deel 2

Docentenhandleiding havo vwo deel 2 Deel 2 hv De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen ten

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

Docentenhandleiding vwo deel 2

Docentenhandleiding vwo deel 2 Deel 2 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen

Nadere informatie

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo kader Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp Lineaire verbanden H1 20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen 26 De leerling leert te

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Inleiding goniometrie

Inleiding goniometrie Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat

Nadere informatie

dochandl4vmbo_gt_netwerk3e.doc Deel 4 vmbo gt Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_gt_netwerk3e.doc Deel 4 vmbo gt Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo gt Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk 7 Verschillende

Nadere informatie

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B vmbo kader Inhoud deel 3A Hoofdstuk 1 Vlakke meetkunde Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Rekenen Hoofdstuk 4 Statistiek Hoofdstuk 5 Ruimtemeetkunde Hoofdstuk

Nadere informatie

klas 3 vwo Checklist VWO klas 3.pdf

klas 3 vwo Checklist VWO klas 3.pdf Checklist 3 VWO wiskunde klas 3 vwo Checklist VWO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de grafiek

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 4 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

Deel 2A vmbo basis kader

Deel 2A vmbo basis kader Deel 2A vmbo basis kader De hoeveelheid leerstof is gebaseerd op drie of vier lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken. De verkorte route kan gebruikt

Nadere informatie

Docentenhandleiding vmbo gth deel 2

Docentenhandleiding vmbo gth deel 2 Deel 2 vmbo gth De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen

Nadere informatie

Tussendoelen in MathPlus

Tussendoelen in MathPlus MALMBERG UITGEVERIJ B.V. Tussendoelen in MathPlus Versie 1 Inhoud Tussendoelen onderbouw in MathPlus... 2 Tabel tussendoelen... 2 1HVG... 7 Domein Rekenen... 7 Domein Meten en tekenen... 9 Domein Grafieken

Nadere informatie

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3, schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

Moderne wiskunde. Deel 4 vmbo gemengd theoretisch. Docentenhandleiding bij:

Moderne wiskunde. Deel 4 vmbo gemengd theoretisch. Docentenhandleiding bij: Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo gemengd theoretisch inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

Moderne wiskunde. Deel 4 vmbo kader. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21

Moderne wiskunde. Deel 4 vmbo kader. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo kader inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur Opstap

Nadere informatie

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort Eindtermen wiskunde TL en GL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en schatten Meetkunde WI/K/7

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband tussen

Nadere informatie

2.1 Gelijkvormige driehoeken[1]

2.1 Gelijkvormige driehoeken[1] 2.1 Gelijkvormige driehoeken[1] 5 25 50 100 25 125 250 x Hierboven staat een verhoudingstabel. Kruiselings vermenigvuldigen van de getallen geeft: 5 x 125 = 25 x 25 (= 625) 5 x 250 = 25 x 50 (= 1250) 25

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16 Wiskunde Het schoolexamen in het vierde leerjaar (2015-2016) wordt ook toegepast binnen de locatie Statenkwartier. Schooljaar 2014-2015 ( leerjaar 3 ) Kader Schoolexamen 1 SE 1 De volgende onderdelen worden

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Hoofdstuk 2 - Kwadratische functies

Hoofdstuk 2 - Kwadratische functies Hoofdstuk - Kwadratische functies Hoofdstuk - Kwadratische functies Voorkennis V-1a y = 3(x ) 3 x 3 6x 1 y = 6x 1 b y = 9( 4x 4) 3 4x 4 9 36x 36 y = 36x 36 c y = x( x 7) 3 x 7 x x 7x y = x 7x V-a y = (

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r 0 7-0 8 AFDELING EN LEERJAAR: B T/H 07 08 Aantal proefwerken: 8 (+ 3 in toetsweken) Aantal werkstukken: 0 of I Proefwerk

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B 1 Analytische meetkunde Inhoud 1.1. Coördinaten in het vlak 1.2. Vergelijkingen van lijnen 1.3. Vergelijkingen van cirkels 1.4. Snijden 1.5. Overzicht In opdracht van: Commissie

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort Eindtermen wiskunde BBL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en Meetkunde WI/K/7 Informatieverwerking,

Nadere informatie

TIENDE EDITIE EERSTE OPLAGE, 2015

TIENDE EDITIE EERSTE OPLAGE, 2015 TIENDE EDITIE EERSTE OPLAGE, 2015 L.A. Reichard J.H. Dijkhuis C.J. Admiraal G.J. te Vaarwerk J.A. Verbeek G. de Jong H.J. Houwing J.D. Kuis F. ten Klooster S.K.A. de Waal J. van Braak J.H.M. Liesting-Maas

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort Schoolexamen leerjaar 3, schooljaar 2015-2016 code eenheid vorm duur kansen Moderne wiskunde 9e editie deel 3 GT 90 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk min ja 2,0 Hoofdstuk

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B Analytische meetkunde Inhoud.. Coördinaten in het vlak.. Vergelijkingen van lijnen.3. Vergelijkingen van cirkels.4. Snijden.5. Overzicht In opdracht van: Commissie Toekomst Wiskunde

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

3 Pythagoras 90. 4 Statistiek 128

3 Pythagoras 90. 4 Statistiek 128 2BK1 2KGT1 Voorkennis 1 Meetkunde 6 1 Vlakke figuren 8 1.1 Namen van vlakke figuren 10 1.2 Driehoeken 15 1.3 Driehoeken tekenen 19 1.4 Vierhoeken 24 1.5 Hoeken berekenen in een vierhoek 30 1.6 Gemengde

Nadere informatie

extra oefeningen HOOFDSTUK 4 VMBO 4

extra oefeningen HOOFDSTUK 4 VMBO 4 extra oefeningen HOOFDSTUK 4 VMBO 4 1. a. Teken in één assenstelsel de grafieken bij de formules y = 4x - 3 en y = 7 - x b. Bereken de coördinaten van het snijpunt c. Teken in hetzelfde assenstelsel de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch inhoudelijke structuur dakpanconstructie planning beschrijving per hoofdstuk Moderne Wiskunde, docentenhandleiding -

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Leerlijnen REKENEN WISKUNDE (BB)

Leerlijnen REKENEN WISKUNDE (BB) Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 3 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16 Wiskunde Schooljaar 2014-2015 ( leerjaar 3 ) Theoretische en Gemengde leerweg Schoolexamen 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand 301T

Nadere informatie

Kwadratische verbanden - Parabolen klas ms

Kwadratische verbanden - Parabolen klas ms Kwadratische verbanden - Parabolen klas 01011ms Een paar basisbegrippen om te leren: - De grafiek van een kwadratisch verband heet een parabool. - Een parabool is dalparabool met een laagste punt (minimum).

Nadere informatie

TIENDE EDITIE EERSTE OPLAGE, 2013

TIENDE EDITIE EERSTE OPLAGE, 2013 3 TIENDE EDITIE EERSTE OPLAGE, 2013 L.A. Reichard J.H. Dijkhuis C.J. Admiraal G.J. te Vaarwerk J.A. Verbeek G. de Jong H.J. Houwing J.D. Kuis F. ten Klooster S.K.A. de Waal J. van Braak J.H.M. Liesting-Maas

Nadere informatie

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B basis Inhoud deel 3A Hoofdstuk 1 Plaatsbepalen Hoofdstuk 2 Grafieken en tabellen Hoofdstuk 3 Rekenen Hoofdstuk 4 Informatieverwerking Hoofdstuk 5 Tekenen en rekenen Computer

Nadere informatie

Tussendoelen havo en examenprogramma wiskunde-tl

Tussendoelen havo en examenprogramma wiskunde-tl Tussendoelen havo en examenprogramma wiskunde-tl In deze bijlage staan alle inhoudelijke tussendoelen voor de onderbouw havo met hun specificaties. Bij elke specificatie wordt vermeld of ze deel uitmaakt

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo inhoudelijke structuur dakpanconstructie planning beschrijving per hoofdstuk Moderne Wiskunde, docentenhandleiding - klas

Nadere informatie

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B Leerstof voortentamen wiskunde B In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde B op havo niveau te beginnen met het voortentamen van december 2017. Deze specificatie

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429)

Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) - een lijst met operationele en concrete doelen van de lessenserie, indien mogelijk gerelateerd

Nadere informatie

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1)

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1) Hoofdstuk 0 - De abc-formule Hoofdstuk 0 - De abc-formule Voorkennis V-a y = 5 = 8 5 = en y = ( ) 5 = 8 5 = b y = + 8 = 6 = 6 en y = + 8 = 0,6 6 8 c y = + ( ) = + = = 6 en y = ( ) + ( ) = 9 6 = 9 + 8 =

Nadere informatie

Docentenhandleiding algemeen

Docentenhandleiding algemeen Docentenhandleiding algemeen Dit algemene deel bevat informatie over het gebruik van de docentenhandleiding en algemene informatie over de verschillende delen. Daarnaast is er ook een handleiding per hoofdstuk.

Nadere informatie

TIENDE EDITIE EERSTE OPLAGE, 2013

TIENDE EDITIE EERSTE OPLAGE, 2013 3K TIENDE EDITIE EERSTE OPLAGE, 2013 L.A. Reichard J.H. Dijkhuis C.J. Admiraal G.J. te Vaarwerk J.A. Verbeek G. de Jong H.J. Houwing J.D. Kuis F. ten Klooster S.K.A. de Waal J. van Braak J.H.M. Liesting-Maas

Nadere informatie

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Havo A deel 1 begint met het niet-examenonderwerp Statistiek (was hoofdstuk 4). Al snel wordt de grafische rekenmachine ingezet en ook bij de andere

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo havo/vwo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal:

Nadere informatie

INLEIDING FUNCTIES 1. COÖRDINATEN

INLEIDING FUNCTIES 1. COÖRDINATEN INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9

Nadere informatie

H9 Exponentiële verbanden

H9 Exponentiële verbanden H9 Exponentiële verbanden Havo 5 wiskunde A Getal & Ruimte deel 3 PTA 1 Oefenmateriaal examens 2 Voorkennis Rekenen met procenten Formule van procentuele verandering Vermenigvuldigingsfactor Procent op

Nadere informatie

Paragraaf 1.1 : Lineaire functies en Modulus

Paragraaf 1.1 : Lineaire functies en Modulus Hoofdstuk 1 Functies en Grafieken (V4 Wis B) Pagina 1 van 9 Paragraaf 1.1 : Lineaire functies en Modulus Les 1 : Lineaire Formules Definities Algemene formule van een lijn : y = ax + b a = hellingsgetal

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A

Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A . Bereken zonder rekenmachine: + d. + 0 + 6 6 6 Hogeschool Rotterdam Voorbeeldeamen Wiskunde A 6 6 Oplossingen. Bereken zonder rekenmachine: + 6 b. + 6 0 + 9. Bereken zonder rekenmachine: 9 9 d.. Een supermarkt

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 vwo. inhoudelijke structuur planning beschrijving per hoofdstuk

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 vwo. inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 vwo inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde, docentenhandleiding - klas 2 vwo 1 Inhoudelijke structuur Opstap

Nadere informatie

Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B

Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B Inleiding Voor het oplossen van goniometrische vergelijkingen heb je een aantal dingen nodig:. Kennis over

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Handleiding. ict pilot Getal & Ruimte havo B algebraïsche vaardigheden

Handleiding. ict pilot Getal & Ruimte havo B algebraïsche vaardigheden Handleiding ict pilot Getal & Ruimte havo B algebraïsche vaardigheden Inhoud: 1. Aanmelden 2. Hoe werk je met de applets? a. Navigatie b. Soorten applets c. Tips bij het gebruik 3. Hoe werkt het leerlingvolgsysteem?

Nadere informatie

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 1. Lineair verband. 1a. na 1 min 36 cm, na min. 3 cm, daling 4 cm per minuut. b. h = 40 4t h in cm en t per minuut b. k: rc = -3 m: rc = 0.5 p: rc

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Moderne wiskunde. Deel 4 vmbo basis. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 16 planning 18 beschrijving per hoofdstuk 21

Moderne wiskunde. Deel 4 vmbo basis. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 16 planning 18 beschrijving per hoofdstuk 21 Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo basis inhoudelijke structuur 2 dakpanconstructie 16 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur Opstap

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

TIENDE EDITIE EERSTE OPLAGE, 2013

TIENDE EDITIE EERSTE OPLAGE, 2013 3 B 2 TIENDE EDITIE EERSTE OPLAGE, 2013 L.A. Reichard J.H. Dijkhuis C.J. Admiraal G.J. te Vaarwerk J.A. Verbeek G. de Jong H.J. Houwing J.D. Kuis F. ten Klooster S.K.A. de Waal J. van Braak J.H.M. Liesting-Maas

Nadere informatie

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1?

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Voorkennis hfst 2 ontbinden in factoren (waarom ook al weer?) kwadratische functies 1 Opening Een laatste opmerking over hfst 1 vragen over

Nadere informatie

WISNET-HBO NHL update jan. 2009

WISNET-HBO NHL update jan. 2009 Tweedegraadsfuncties Parabolen maken WISNET-HBO NHL update jan. 2009 Inleiding In deze les leer je wat systeem brengen in het snel herkennen van tweedegraadsfuncties. Een paar handige trucjes voor het

Nadere informatie

exponentiële verbanden

exponentiële verbanden exponentiële verbanden . voorkennis Procenten en vermenigvuldigingsfactoren Procentuele toename met p%: g = + p 00 p = ( g ) 00 Procentuele afname met p%: g = p 00 p = ( g) 00 De constante factor In 859

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie