Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo"

Transcriptie

1 Docentenhandleiding Netwerk 3e editie deel 3B havo 0

2 Hoofdstuk 7 Verschillende verbanden Beginniveau Al eerder hebben de leerlingen kennis gemaakt met lineaire, kwadratische en exponentiële verbanden. Ze moeten deze verbanden kunnen herkennen aan tabel en/of grafiek. Kennen en kunnen - weten wat een periodiek verschijnsel is - de grafiek van een periodieke functie herkennen - de begrippen periode, amplitude en evenwichtslijn - weten wat een recht evenredig verband is - de formule en de evenredigheidsconstante kunnen bepalen - weten wat een omgekeerd evenredig verband is - de formule en de grafiek van een hyperbolisch verband herkennen - weten wat wordt verstaan onder een wortelverband - weten dat de wortel uit een negatief getal niet bestaat Verkorte route : 1, 2, 3, 5, 7 8, 9, 11, 12, 13 15, 16, 17, 19, 20, 22 23, 24, 25, 26, 27 1

3 Opmerkingen Algemeen Na dit hoofdstuk moeten de leerlingen alle mogelijke wiskundige verbanden kunnen herkennen. In deze kern staan geen formules van periodieke verbanden. Die komen pas in klas 4 aan bod. Het begrip recht evenredig kennen de leerlingen misschien al vanuit de natuurkunde. Let erop dat de leerlingen het onderscheid weten tussen recht evenredig en lineair verband. Ook het begrip omgekeerd evenredig komt veel in de natuurkunde voor. Bijvoorbeeld druk volume = constant. De grafiek van zo'n verband is een hyperbool. Een wortelverband wordt in deze kern geïntroduceerd met behulp van de formule. Natuurlijk is het niet verkeerd om de leerlingen ook te wijzen op de omgekeerde bewerking van het kwadrateren. ICT De cd-rom biedt de leerlingen de mogelijkheid om extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata Opgave 28: Het kijkbereik kun je berekenen met de formule k = (12,7 h). 2

4 Hoofdstuk 8 Statistiek Beginniveau In deel 1B hebben de leerlingen al eens kennis gemaakt met de statistiek. Een lijn-, staaf- of cirkeldiagram hebben ze vast al eens eerder gezien. Kennen en kunnen - wat is een steelbladdiagram - hoe verwerk je grote hoeveelheden gegevens - de begrippen lijn-, staaf- en cirkeldiagram - wanneer gebruik je deze diagrammen - hoe maak je deze diagrammen - de centrummaten zoals gemiddelde, modus en mediaan kennen - hoe bepaal je deze centrummaten - wat is een boxplot en hoe maak je een boxplot - het voordeel van een klassenindeling - rekenen met klassenmiddens Verkorte route : 1, 2 4, 5 : 6, 7, 8, 9, 10, 12 : 13, 14, 15, 16, 18, 19, 20, 21 : 22, 23, 24, 25 3

5 Opmerkingen Naar aanleiding van dit hoofdstuk is het ook aardig om leerlingen een werkstuk te laten maken en daar een presentatievorm voor te bedenken. Een plaatje zegt vaak meer dan een heleboel woorden. In de praktijk zijn genoeg voorbeelden te bedenken. Zie ook pagina 41 en 42 voor opdrachten met VU-Statistiek. De begrippen turftabel, frequentie en frequentietabel worden nog eens opgehaald, samen met het steelbladdiagram. Het is van belang om leerlingen duidelijk te maken waarom voor een bepaalde representatievorm is gekozen. Na de centrummaten is er aandacht voor de boxplots als representatievorm. Vaak zijn gegevens verdeeld in klassen. Met de klassenmiddens kun je weer allerlei berekeningen uitvoeren. ICT De cd-rom biedt de leerlingen de mogelijkheid extra te oefenen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 4

6 Hoofdstuk 9 Tellen en kans (M-profielen) Beginniveau Dit onderdeel is ook in klas 2 al aan bod geweest. Kennen en kunnen - systematisch opschrijven in een boomdiagram - systematisch opschrijven in een wegendiagram - verband leggen met een trekking met en zonder terugleggen - het begrip (theoretische) kans - kansen berekenen in een boomdiagram - de kansboom - rekenen in een kansboom - de kansboom bij een trekking met terugleggen - de kansboom bij een trekking zonder teruglegging Verkorte route : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 13, 14, 15, 16, 20 21, 22, 23, 24, 27, 28, 29 33, 34, 35, 36, 37, 38 5

7 Opmerkingen Hoewel de leerlingen al eens eerder kennis hebben gemaakt met het kansbegrip, blijven ze dit moeilijk vinden. Toch zullen de meeste M-leerlingen dit onderdeel volgend jaar weer tegenkomen. Systematisch tellen en/of opschrijven kan natuurlijk op veel verschillende manieren. Hier is gekozen voor het 'horizontale' boomdiagram omdat VU-Statistiek dezelfde layout gebruikt. De definitie van Laplace wordt gebruikt om het begrip theoretische kans in te voeren. Wijs de leerlingen op de gelijkwaardigheid van de uitkomsten in bijvoorbeeld een boomdiagram. De kansbomen zijn een opstapje voor het rekenen met kansen. Speciale aandacht is er voor trekken met en zonder terugleggen. ICT De cd-rom biedt de leerlingen de mogelijkheid om extra te oefenen. Met het programma VU-Statistiek kun je leuke animaties uitvoeren. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 6

8 Hoofdstuk 10 Functies en grafieken (M-profielen) Beginniveau Alle basisvaardigheden voor het werken met formules, tabellen en grafieken. Kennen en kunnen - lineaire en exponentiële groei - bij lineaire groei de begrippen aangroeiing en beginwaarde - bij exponentiële groei de begrippen groeifactor en beginwaarde - recht evenredig en omgekeerd evenredig - in formule, tabel en grafiek - kwadratisch verband - de bijbehorende grafiek; dalparabool of bergparabool - de abc-formule - wortelverband - lineaire vergelijkingen kunnen oplossen met de balansmethode - kwadratische vergelijkingen kunnen oplossen met ontbinden of de abc-formule - wortelvergelijkingen kunnen oplossen door te kwadrateren Verkorte route : 2, 3, 4. 5, 6, 7 : 8, 9, 10, 13, 14, 16, : 18, 19, 20, 21, 22 : 23, 24, 25 7

9 Opmerkingen Dit is het laatste hoofdstuk voor de M-leerlingen. Leg vooral de nadruk op de verschillen tussen lineaire en exponentiële groei. Deze verbanden zijn wel eerder aan bod geweest, maar veel leerlingen blijven dit moeilijk vinden. Het is de vraag of M-leerlingen later nog een abc-formule zullen gebruiken, maar ze weten nu in ieder geval dat hij bestaat. Dat geldt gedeeltelijk ook voor het oplossen van vergelijkingen. ICT Op de cd-rom staat een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 8

10 Hoofdstuk 11 Parabolen (N-profielen) Beginniveau Leerlingen moeten de algebraïsche vaardigheden kennen zoals haakjes wegwerken en ontbinden in factoren. Kennen en kunnen - de nulpunten afleiden van functies van de vorm y = a x (x n) - de nulpunten afleiden van functies van de vorm y = a (x n) (x m) - nulpunten bepalen door te ontbinden in factoren - nulpunten bepalen met de abc-formule - met de discriminant het aantal nulpunten bepalen - extreme waarden uit de formule aflezen - nulpunten bepalen met de worteltrekmethode Verkorte route : 1, 2, 3, 4, 6, 7 : 8, 9, 11, 12 : 14, 15, 17, 18 : 20, 21, 22, 23, 24, 25 9

11 Opmerkingen Leerlingen die voor de N-profielen kiezen, moeten meer algebraïsche vaardigheden beheersen dan zij die voor de M-profielen hebben gekozen. Dat komt ook tot uiting in dit hoofdstuk. Het uitgangspunt is de vorm van de formules die een parabool beschrijven. Nulpunten zijn hier direct af te leiden. Door het wegwerken van de haakjes is te zien dat het hier gaat om een kwadratische functie. Als je een kwadratische tweeterm kunt ontbinden, zijn de nulpunten ook snel te bepalen. Hetzelfde geldt voor een kwadratische drieterm (product-som-methode). Als je een drieterm niet kunt ontbinden, dan zijn de nulpunten altijd nog te vinden met de abc-formule. De discriminant geeft je meer informatie over het aantal nulpunten van de functie. Uit de standaardvorm y = a (x p)² + q is direct de extreme waarde af te leiden. Is de functie in deze vorm gegeven, dan kun je met de worteltrekmethode de nulpunten exact uitrekenen. ICT De cd-rom biedt de leerlingen de mogelijkheid om de theorie nog eens te herhalen. Op pagina 99 en 100 zijn extra oefensommen opgenomen die met behulp van de applet op de cd-rom gemaakt kunnen worden. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 10

12 Hoofdstuk 12 Ruimtemeetkunde (N-profielen) Beginniveau Kunnen rekenen met sinus, cosinus en tangens. Met de stelling van Pythagoras berekeningen kunnen maken. Kennen en kunnen - met een doorsnede en gelijkvormigheid de lengte van een lijnstuk uit kunnen rekenen - berekeningen uitvoeren met de tangens - berekeningen uitvoeren met sinus en cosinus - berekeningen uitvoeren met de stelling van Pythagoras - controleren met de stelling of een driehoek rechthoekig is Verkorte route : 1, 2 4, 4, 5, 6 : 8, 9, 10, 11 : 13, 14, 15, 16 : 17, 18, 19, 20, 21, 22, 23 11

13 Opmerkingen De N-profielen krijgen in dit laatste hoofdstuk nog wat meetkunde als voorbereiding op klas 4. Met een handige doorsnede kun je via de vlakke meetkunde afstanden of lengtes berekenen. Daarbij wordt vaak gebruik gemaakt van verhoudingen. Weet je in een rechthoekige driehoek de hoek en een rechthoekszijde, dan kun je met de tangens de andere zijde uitrekenen. Weet je in een rechthoekige driehoek de hoek en de schuine zijde, dan kun je met de sinus of de cosinus de andere zijden uitrekenen. In een rechthoekige driehoek geldt de stelling van Pythagoras. Het omgekeerde geldt ook: als de stelling van Pythagoras klopt, dan is de driehoek rechthoekig. ICT De cd-rom biedt de leerlingen de mogelijkheid om de theorie nog eens te herhalen. Op de cd-rom staat ook een diagnostische toets, vergelijkbaar met de Test jezelf uit het boek. Errata (nog) geen. 12

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB Deel 3 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 3 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

Docentenhandleiding havo vwo deel 2

Docentenhandleiding havo vwo deel 2 Deel 2 hv De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen ten

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo kader Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3, schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Docentenhandleiding vwo deel 2

Docentenhandleiding vwo deel 2 Deel 2 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen

Nadere informatie

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort Schoolexamen leerjaar 3, schooljaar 2015-2016 code eenheid vorm duur kansen Moderne wiskunde 9e editie deel 3 GT 90 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk min ja 2,0 Hoofdstuk

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp Lineaire verbanden H1 20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen 26 De leerling leert te

Nadere informatie

klas 3 vwo Checklist VWO klas 3.pdf

klas 3 vwo Checklist VWO klas 3.pdf Checklist 3 VWO wiskunde klas 3 vwo Checklist VWO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de grafiek

Nadere informatie

3 Pythagoras 90. 4 Statistiek 128

3 Pythagoras 90. 4 Statistiek 128 2BK1 2KGT1 Voorkennis 1 Meetkunde 6 1 Vlakke figuren 8 1.1 Namen van vlakke figuren 10 1.2 Driehoeken 15 1.3 Driehoeken tekenen 19 1.4 Vierhoeken 24 1.5 Hoeken berekenen in een vierhoek 30 1.6 Gemengde

Nadere informatie

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort Eindtermen wiskunde TL en GL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en schatten Meetkunde WI/K/7

Nadere informatie

dochandl4vmbo_gt_netwerk3e.doc Deel 4 vmbo gt Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_gt_netwerk3e.doc Deel 4 vmbo gt Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo gt Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk 7 Verschillende

Nadere informatie

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort Eindtermen wiskunde BBL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en Meetkunde WI/K/7 Informatieverwerking,

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16 Wiskunde Schooljaar 2014-2015 ( leerjaar 3 ) Theoretische en Gemengde leerweg Schoolexamen 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand 301T

Nadere informatie

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B vmbo kader Inhoud deel 3A Hoofdstuk 1 Vlakke meetkunde Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Rekenen Hoofdstuk 4 Statistiek Hoofdstuk 5 Ruimtemeetkunde Hoofdstuk

Nadere informatie

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16 Wiskunde Het schoolexamen in het vierde leerjaar (2015-2016) wordt ook toegepast binnen de locatie Statenkwartier. Schooljaar 2014-2015 ( leerjaar 3 ) Kader Schoolexamen 1 SE 1 De volgende onderdelen worden

Nadere informatie

Tussendoelen in MathPlus

Tussendoelen in MathPlus MALMBERG UITGEVERIJ B.V. Tussendoelen in MathPlus Versie 1 Inhoud Tussendoelen onderbouw in MathPlus... 2 Tabel tussendoelen... 2 1HVG... 7 Domein Rekenen... 7 Domein Meten en tekenen... 9 Domein Grafieken

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 4 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

VAK : : Wiskunde METHODE : Moderne Wiskunde 9de editie KLAS: : 4 NIVEAU : KADER CONTACTUREN PER WEEK 3 X 50 MINUTEN PER WEEK STUDIEJAAR :

VAK : : Wiskunde METHODE : Moderne Wiskunde 9de editie KLAS: : 4 NIVEAU : KADER CONTACTUREN PER WEEK 3 X 50 MINUTEN PER WEEK STUDIEJAAR : PROGRAMMA VAN TOETSING EN AFSLUITING VAK : : Wiskun METHODE : Morne Wiskun 9 editie KLAS: : 4 NIVEAU : KADER CONTACTUREN PER WEEK 3 X MINUTEN PER WEEK UDIEJAAR : 207-208 P Perio en datum SE C Co van T

Nadere informatie

PROGRAMMA VAN TOETSING EN AFSLUITING

PROGRAMMA VAN TOETSING EN AFSLUITING PROGRAMMA VAN TOETSING EN AFSLUITING VAK : : Wiskun METHODE : Morne Wiskun 9 editie KLAS: : 4 NIVEAU : KADER CONTACTUREN PER WEEK 4 X MINUTEN PER WEEK UDIEJAAR : 205-206 EINDCIJFER KLAS TELT ALS BEGINCIJFER

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

PROGRAMMA VAN TOETSING EN AFSLUITING

PROGRAMMA VAN TOETSING EN AFSLUITING PROGRAMMA VAN TOETSING EN AFSLUITING VAK : : Wiskun METHODE : Morne Wiskun 0 editie KLAS: : 4 NIVEAU : KADER CONTACTUREN PER WEEK X MINUTEN PER WEEK UDIEJAAR : 206-20 EINDCIJFER KLAS TELT ALS BEGINCIJFER

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Docentenhandleiding vmbo gth deel 2

Docentenhandleiding vmbo gth deel 2 Deel 2 vmbo gth De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen

Nadere informatie

STOF VOOR SCHOOLEXAMEN 5

STOF VOOR SCHOOLEXAMEN 5 STOF VOOR SCHOOLEXAMEN 5 Nederlands Hoofdstuk 1 en 2. Lezen Taalverzorging en woordenschat Grammatica en spelling Schrijfopdracht (artikel) Groene boekje (lessen 19 t/m 27) Geldt voor alle niveaus. Engels

Nadere informatie

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3 Schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand.

Nadere informatie

Tussendoelen havo en examenprogramma wiskunde-tl

Tussendoelen havo en examenprogramma wiskunde-tl Tussendoelen havo en examenprogramma wiskunde-tl In deze bijlage staan alle inhoudelijke tussendoelen voor de onderbouw havo met hun specificaties. Bij elke specificatie wordt vermeld of ze deel uitmaakt

Nadere informatie

TIENDE EDITIE EERSTE OPLAGE, 2013

TIENDE EDITIE EERSTE OPLAGE, 2013 3 TIENDE EDITIE EERSTE OPLAGE, 2013 L.A. Reichard J.H. Dijkhuis C.J. Admiraal G.J. te Vaarwerk J.A. Verbeek G. de Jong H.J. Houwing J.D. Kuis F. ten Klooster S.K.A. de Waal J. van Braak J.H.M. Liesting-Maas

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp: Kwadraten en Wortels H1 19 De leerling leert passende wiskundetaal te gebruiken voor het ordenen van het eigen denken en voor uitleg aan anderen, en leert de wiskundetaal van anderen te begrijpen.

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

10 log sin 20. Naam:

10 log sin 20. Naam: 10 log 10 80 24sin 20 Naam: 1 Inhoud Voorbereiding op het examen 3 Onderwerpen in grote lijnen 4-9 LOC-methode 9 Tips voor het examen 10 Vergelijkingen van parabolen 11 Planning opgaven examenbundel 12-15

Nadere informatie

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15 A. Schoolexamen derde leerjaar, 2013-2014 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand. 301B Algebraïsche verbanden en WI/K/4 * * * aanzichten

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

TIENDE EDITIE EERSTE OPLAGE, 2013

TIENDE EDITIE EERSTE OPLAGE, 2013 3K TIENDE EDITIE EERSTE OPLAGE, 2013 L.A. Reichard J.H. Dijkhuis C.J. Admiraal G.J. te Vaarwerk J.A. Verbeek G. de Jong H.J. Houwing J.D. Kuis F. ten Klooster S.K.A. de Waal J. van Braak J.H.M. Liesting-Maas

Nadere informatie

HAVO wiskunde B checklist 5 HAVO wiskunde B

HAVO wiskunde B checklist 5 HAVO wiskunde B Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO wiskunde B checklist 5 HAVO wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 vwo. inhoudelijke structuur planning beschrijving per hoofdstuk

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 vwo. inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 vwo inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde, docentenhandleiding - klas 2 vwo 1 Inhoudelijke structuur Opstap

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo havo/vwo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal:

Nadere informatie

TIENDE EDITIE EERSTE OPLAGE, 2015

TIENDE EDITIE EERSTE OPLAGE, 2015 TIENDE EDITIE EERSTE OPLAGE, 2015 L.A. Reichard J.H. Dijkhuis C.J. Admiraal G.J. te Vaarwerk J.A. Verbeek G. de Jong H.J. Houwing J.D. Kuis F. ten Klooster S.K.A. de Waal J. van Braak J.H.M. Liesting-Maas

Nadere informatie

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE A HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

Programma : 1. Presentatie 2. H 5.1 Statistiek zelf gegevens verzamelen en ermee werken 3. Vragen over H4, formules

Programma : 1. Presentatie 2. H 5.1 Statistiek zelf gegevens verzamelen en ermee werken 3. Vragen over H4, formules Programma : 1. Presentatie 2. H 5.1 Statistiek zelf gegevens verzamelen en ermee werken 3. Vragen over H4, formules 1 2 programma hw nagekeken en verbeterd? voorbereiden pw filmpjes wie zoekt ze op? vrijdag

Nadere informatie

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort Eindtermen wiskunde BBL WI/K/1 Oriëntatie op leren en WI/K/2 Basisvaardigheden Leervaardigheden in het WI/K/4 Algebraïsche verbanden Rekenen, meten en Meetkunde WI/K/7 Informatieverwerking, Geïntegreerde

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Havo A deel 1 begint met het niet-examenonderwerp Statistiek (was hoofdstuk 4). Al snel wordt de grafische rekenmachine ingezet en ook bij de andere

Nadere informatie

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen STATISTIEK Een korte samenvatting over: Termen Tabellen Diagrammen Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het

Nadere informatie

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r 0 7-0 8 AFDELING EN LEERJAAR: B T/H 07 08 Aantal proefwerken: 8 (+ 3 in toetsweken) Aantal werkstukken: 0 of I Proefwerk

Nadere informatie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:

Nadere informatie

INLEIDING FUNCTIES 1. COÖRDINATEN

INLEIDING FUNCTIES 1. COÖRDINATEN INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9

Nadere informatie

Kwadratische verbanden - Parabolen klas ms

Kwadratische verbanden - Parabolen klas ms Kwadratische verbanden - Parabolen klas 01011ms Een paar basisbegrippen om te leren: - De grafiek van een kwadratisch verband heet een parabool. - Een parabool is dalparabool met een laagste punt (minimum).

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 gemengd theoretisch / havo inhoudelijke structuur dakpanconstructie planning beschrijving per hoofdstuk Moderne Wiskunde, docentenhandleiding - klas

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

Leerlijnen REKENEN WISKUNDE (BB)

Leerlijnen REKENEN WISKUNDE (BB) Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij

Nadere informatie

Docentenhandleiding algemeen

Docentenhandleiding algemeen Docentenhandleiding algemeen Dit algemene deel bevat informatie over het gebruik van de docentenhandleiding en algemene informatie over de verschillende delen. Daarnaast is er ook een handleiding per hoofdstuk.

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

kwadratische vergelijkingen

kwadratische vergelijkingen kwadratische vergelijkingen In deze paragraaf: 'exact berekenen van oplossingen', 'typen kwadratische vergelijkingen' en 'de abc-formule en de discriminant'. de abc-formule Voor een tweedegraads vergelijking

Nadere informatie

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B

Leerstof voortentamen wiskunde B. 1. Het voortentamen wiskunde B Leerstof voortentamen wiskunde B In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde B op havo niveau te beginnen met het voortentamen van december 2017. Deze specificatie

Nadere informatie

Domein A: Vaardigheden

Domein A: Vaardigheden Examenprogramma Wiskunde A havo Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Algebra en tellen

Nadere informatie

LESSTOF. Verbanden 2F

LESSTOF. Verbanden 2F LESSTOF Verbanden 2F 2 Lesstof Verbanden 2F INHOUD INLEIDING... 4 DOELGROEP... 6 STRUCTUUR... 6 INHOUD... 9 Lesstof Verbanden 2F 3 INLEIDING Muiswerkprogramma s zijn programma s voor het onderwijs. De

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Handleiding. ict pilot Getal & Ruimte havo B algebraïsche vaardigheden

Handleiding. ict pilot Getal & Ruimte havo B algebraïsche vaardigheden Handleiding ict pilot Getal & Ruimte havo B algebraïsche vaardigheden Inhoud: 1. Aanmelden 2. Hoe werk je met de applets? a. Navigatie b. Soorten applets c. Tips bij het gebruik 3. Hoe werkt het leerlingvolgsysteem?

Nadere informatie

S1 STATISTIEK. Tabellen & diagrammen Centrummaten & Spreiding

S1 STATISTIEK. Tabellen & diagrammen Centrummaten & Spreiding S1 STATISTIEK Tabellen & diagrammen Centrummaten & Spreiding TABELLEN & DIAGRAMMEN WELKE AUTO VIND JIJ HET MOOISTE? Kies 1,2,3,4 of 5 NUMMER 1 NUMMER 2 NUMMER 3 NUMMER 4 NUMMER 5 VERWERKING Tabel Cirkeldiagram

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur 1 Stelling van Pythagoras bewijs paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur c a b b

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016

Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel

Nadere informatie

Moderne wiskunde. Deel 4 vmbo kader. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21

Moderne wiskunde. Deel 4 vmbo kader. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo kader inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur Opstap

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B

Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B Inleiding Voor het oplossen van goniometrische vergelijkingen heb je een aantal dingen nodig:. Kennis over

Nadere informatie

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B basis Inhoud deel 3A Hoofdstuk 1 Plaatsbepalen Hoofdstuk 2 Grafieken en tabellen Hoofdstuk 3 Rekenen Hoofdstuk 4 Informatieverwerking Hoofdstuk 5 Tekenen en rekenen Computer

Nadere informatie

Moderne wiskunde. Deel 4 vmbo gemengd theoretisch. Docentenhandleiding bij:

Moderne wiskunde. Deel 4 vmbo gemengd theoretisch. Docentenhandleiding bij: Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo gemengd theoretisch inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur

Nadere informatie

Prinsentuin Oudenbosch PTA schooljaar K S 30 minuten Cijfer 1 N. K S 50 minuten Cijfer 2 J. K S 50 minuten Cijfer 2 J

Prinsentuin Oudenbosch PTA schooljaar K S 30 minuten Cijfer 1 N. K S 50 minuten Cijfer 2 J. K S 50 minuten Cijfer 2 J Prinsentuin Oudenbosch PTA schooljaar 2015-2017 Vak: Wiskunde Leermethode: Moderne wiskunde 9 e editie 3A+3B vmbo kader / 4A+4B vmbo kader 8 juni 2015 Leerweg: Kaderberoepsgerichte leerweg Periode Toets

Nadere informatie

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras inhoudsopgave 1 de grote lijn applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek 1 de grote lijn hoofdlijn de zijlijn De oppervlakte van rechthoekige driehoeken. Van een

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 3 Deel 3 havo. inhoudelijke structuur planning beschrijving per hoofdstuk

Moderne wiskunde. Docentenhandleiding bij: Klas 3 Deel 3 havo. inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde Docentenhandleiding bij: Klas 3 Deel 3 havo inhoudelijke structuur planning beschrijving per hoofdstuk Moderne wiskunde, docentenhandleiding - klas 3 havo 1 Inhoudelijke structuur Opstap

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen Beschrijf in eigen woorden: Waar gaat de opdracht over? Welke signaalwoorden staan in de tekst? Wijst een signaalwoord naar een strategie? Welke

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a Als x 5 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 1 3 5,6 5 67, m. b De lengte is 1 meter, de totale breedte is 5 1 x meter, dus voor de oppervlakte geldt A 5 1(5 1 x).

Nadere informatie

Deel 2A vmbo basis kader

Deel 2A vmbo basis kader Deel 2A vmbo basis kader De hoeveelheid leerstof is gebaseerd op drie of vier lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken. De verkorte route kan gebruikt

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Inleiding goniometrie

Inleiding goniometrie Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch inhoudelijke structuur dakpanconstructie planning beschrijving per hoofdstuk Moderne Wiskunde, docentenhandleiding -

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

22-9-2010. Pieperproef. Praktische opdracht voor wiskunde Klas 2 Havo. 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8

22-9-2010. Pieperproef. Praktische opdracht voor wiskunde Klas 2 Havo. 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8 Pieperproef Praktische opdracht voor wiskunde Klas 2 Havo 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8 Inhoudsopgave Benodigdheden blz. 3 Pieperonderzoek, De proef blz. 4 Uitwerking & Normering

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

PROGRAMMA VAN TOETSING EN AFSLUITING

PROGRAMMA VAN TOETSING EN AFSLUITING PROGRAMMA VAN TOETSING EN AFSLUITING VAK : : Wiskun METHODE : Morne wiskun KLAS: : 3 NIVEAU : KADER CONTACTUREN PER WEEK 4 X MINUTEN PER WEEK UDIEJAAR : 205-206 EINDCIJFER KLAS 3 TELT 3 ALS BEGINCIJFER

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie