dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv

Maat: px
Weergave met pagina beginnen:

Download "dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv"

Transcriptie

1 Deel 4 vmbo kader Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk 7 Verschillende verbanden Hoofdstuk 8 Sectoropdrachten Hoofdstuk 9 Examenvoorbereiding

2 1 Rekenen 1, 2, 3, 4, 6, 7, 8, 9 11, 12, 13, 14, 15, 17 18, 19, 20, 21, 24, 25, 26, 27, 28 31, 32, 33, 34, 36, 37 Algemene regels voor het gebruik van een rekenmachine zijn eigenlijk niet te geven. Bij bijna elk type rekenmachine zitten de toetsen op andere plaatsen. Ook de uitvoering van bepaalde bewerkingen kan verschillend zijn. Vaak zijn individuele aanwijzingen nodig bij het gebruik of moeten er op schoolniveau afspraken zijn t.a.v. het type dat gebruikt wordt. - in deze kern de rekenmachine; - een goed inzicht in de volgorde van bewerkingen is belangrijk; - afronden van een berekening vindt meestal aan het einde plaats en niet tussendoor; - voor erg grote of kleine getallen is de wetenschappelijke notatie te gebruiken, laat de leerling nagaan welke toets op zijn rekenmachine hiervoor noodzakelijk is. Bij berekeningen is soms gebruik te maken van verhoudingstabellen - vaak is het handig om bij een dergelijke tabel eerst naar 1 terug te werken; - bij het gebruik van de tabel komt het wel eens voor dat leerlingen vergeten het antwoord op de vraag te vermelden. Het kan geen kwaad de leerlingen hierop te wijzen. - het is handig de leerlingen eerst een schatting te laten maken van het antwoord. In deze kern komen veel voorkomende berekeningen met procenten aan bod. - procenten worden berekend met een decimale breuk als deel van 100; - een percentage erbij of eraf is ook op deze manier mogelijk; opgave 26 is belangrijk. In deze kern komt het gebruiken van eenheden aan de orde, schatten speelt hierbij een belangrijke rol. - een leerling moet enkelvoudige en eenvoudig samengestelde grootheden herkennen en gebruiken; - er wordt vooral gerekend met gangbare maten; - belangrijk is dat een leerling gegevens in dezelfde eenheid zet; - bij grote en kleine getallen is de wetenschappelijke notatie te gebruiken; - opgave 36 is belangrijk.

3 2 Lineaire verbanden 1, 2, 3, 4, 5 6, 7, 8, 9, 10, 11 12, 13, 14, 15, 16, 17 19, 20, 21, 22, 23, 26, 27 In de vier kernen komen de lineaire verbanden aan de orde. Rechte lijnen leiden naar lineaire verbanden. Vergelijkingen zijn op te lossen door aflezen uit een grafiek, via rekenschema's of door middel van de balansmethode. - in deze kern gaat het over rechte lijnen door de oorsprong. - wijs op de regelmaat in de tabel en het verband tussen hellingsgetal en grafiek; - bespreek wanneer een grafiek uit losse punten of een rechte lijn bestaat; - vervolgens komen horizontale en verticale lijnen aan de orde. Deze kern maakt het verband zichtbaar tussen tabel, grafiek en formule. - deze drie onderdelen worden toegepast op rechte lijnen die niet door de oorsprong gaan; - wijs op het verband tussen de formule en het snijpunt van de grafiek met de verticale as; - aan de hand van de grafiek zijn de getallen in de formule in te vullen; - grafiek kunnen stijgend of dalend zijn. Vergelijkingen zijn op verschillende manieren op te lossen. - de oplossing is af te lezen uit de grafiek en is met de formule te controleren; - aan de hand van de formule is een rekenschema te maken; - bij dit rekenschema is een terugrekenschema op te stellen; - het terugrekenschema is te gebruiken bij het oplossen van vergelijkingen. Veel vergelijkingen zijn op te lossen met de balansmethode. - met de balans als voorbeeld wordt de methode ingeleid; - met lettervariabelen wordt deze methode geoefend.

4 3 Vlakke meetkunde 1, 2, 3, 4, 6, 7, 8 9, 10, 11, 12, 13, 15, 16, 17 18, 19, 20, 21, 22, 23, 25 26, 27, 28, 29, 31, 32, 33, 35, 36 In dit hoofdstuk wordt veel gerekend. De rekenmachine neemt een ruime plaats in. Het is goed nog eens te kijken naar de volgorde van het intoetsen bij de verschillende generaties zakrekenmachines. - wijs de leerlingen erop dat het bij de draaihoek van draaisymmetrische figuren om de kleinste draaihoek gaat waarbij de figuur op zichzelf terecht komt; - puntsymmetrie levert hetzelfde resultaat als draaien over 180 graden. - een figuur waarin regelmaat voorkomt kun je verder tekenen. - in deze kern een herhaling van de stelling van Pythagoras; - met de stelling kun je zijden in een rechthoekige driehoek berekenen of nagaan of een driehoek rechthoekig is; - het is handig om een tabel zoals in het voorbeeld te gebruiken; - met hulplijnen (opgave 15 en 16) ontstaan in een figuur rechthoekige driehoeken. - bij vergroten en verkleinen zijn verhoudingstabellen te gebruiken; - schaal 2 : 1 wil zeggen dat er twee keer vergroot is getekend; - schaal 1 ; 2 wil zeggen dat er verkleind is getekend; - laat pas afronden aan het einde van een berekening; - belangrijk bij vergroten en verkleinen is het verband met de oppervlakte. - bij het werken met goniometrische verhoudingen is het belangrijk dat leerlingen eerst onderzoeken welk goniometrische verhouding bruikbaar is; - met behulp van goniometrische verhoudingen zijn rechthoekszijden te berekenen.

5 4 Machtsverbanden 1, 2, 3, 4, 5, 6, 7 Kern2 8, 9, 11, 12, 13, 14 15, 16, 18, 19 20, 21, 22, 23 In dit hoofdstuk komen kwadratische - en derdemachtverbanden aan de orde. - de leerling maakt tabellen bij ingewikkelder kwadratische verbanden; - de grafiek kan een dalparabool of een bergparabool zijn. - een oplossing is soms uit de grafiek af te lezen en met de formule te controleren; - een oplossing kan soms gevonden worden met rekenschema's en terugrekenschema's. - soms is het aflezen uit een grafiek niet zuiver genoeg en is een rekenschema niet mogelijk bij het oplossen van een vergelijking. In deze gevallen is de oplossing te berekenen met behulp van een inklemtabel; - wijs de leerling erop hoe de oplossing uit de tabel is af te lezen; - de inklemtabel is ook bruikbaar om het snijpunt van twee grafieken te bepalen; - met een inklemtabel is ook te bepalen, wanneer de ene grafiek een grotere of kleinere waarde geeft dan een andere grafiek. - met behulp van een rekenschema is een tabel bij een derdemachts verband in te vullen; - bij de tabel is een grafiek te tekenen.

6 5 Statistiek 1, 2, 3, 4 5, 6, 7, 9, 10, 11 12, 13, 14, 16, 17, 18, 19 20, 21, 22, 23 Bij dit hoofdstuk hebben leerlingen niet alleen een rekenmachine nodig, maar ook goed tekengereedschap: een passer, een geodriehoek en kleurpotloden. In deze kern komen de drie centrummaten aan de orde. - het gemiddelde wordt berekend met behulp van een frequentietabel; - wijs op de veel voorkomende fout die bij opgave 2 gemaakt wordt; - de mediaan wordt bepaald bij een oneven en een even aantal getallen. Deze kern gaat over het lezen en tekenen van een boxplot. - bij het lezen is het belangrijk dat de leerlingen inzien dat een boxplot een reeks getallen verdeelt in vier groepen van 25%; - meestal gaat het om reeksen van gehele getallen; - het kan gebeuren dat niet alle getallen met dezelfde waarde in hetzelfde deel van de box zitten zo zitten in het voorbeeld twee achten in de laatste 25% en twee achten in de voorlaatste 25% (leerlingen vinden dat vaak erg lastig). In deze kern komen de verschillende manieren om gegevens in beeld te brengen aan de orde. - wijs erop welke functie de verschillende diagrammen hebben; - het steelbladdiagram en het cirkeldiagram verdienen extra aandacht. Geef bij deze kern voorbeelden van steekproeven uit de praktijk. - met behulp van steekproeven is het mogelijk kansen te schatten; - kansen kun je omrekenen naar procenten.

7 6 Ruimtemeetkunde 1, 2, 3, 5, 6, 7 8, 9, 10, 11, 12, 13, 14 16, 17, 18 20, 21, 22, 24, 25, 27, 28, 29 Veel leerlingen blijven moeite houden met "het zich kunnen voorstellen" van een ruimtelijke figuur die in het platte vlak is afgebeeld. Concreet materiaal in het klaslokaal is daarom aan te bevelen. Ook kunnen houten of kunststofmodellen dienst doen. Leerlingen kunnen zelf een maquette bouwen. - hoogtelijnen zijn zichtbaar te maken op bijvoorbeeld een zelfgemaakte kleiberg. - ook een doorsnede is daarvan af te leiden. - bij coördinaten in de ruimte is de volgorde belangrijk. - leg in de formule voor de inhoudsberekening de nadruk op de betekenis van de oppervlakte van het grondvlak, daarop kunnen als het ware zoveel 'eenheids' kubusjes uitgelegd worden; - bij vergroten en verkleinen is het belangrijk in te zien welke gevolgen dit heeft voor de inhoud. - ook bij deze kern veel concreet materiaal gebruiken; - bouwtekeningen, een doorgesneden zuiger uit een bromfietsmotor, een doorgesneden spaarlamp enz. - bij figuren in de ruimte is de stelling van Pythagoras te gebruiken om afmetingen te berekenen; - ook rekenen met verhoudingen is hiervoor bruikbaar.

8 7 Verschillende verbanden 1, 2, 3, 4, 7, 8, 9, 10, 11 12, 13, 14, 15 16, 17, 18, 19 21, 22, 23, 24, 25, 26 In dit hoofdstuk krijgen de leerlingen te maken met verschillende verbanden. Bedoeling is dat ze deze verbanden 'herkennen en kunnen gebruiken'. De verschillende verbanden worden op eenvoudige wijze uitgewerkt. - beginwaarde en groeifactor komen eerst aan de orde; - bij een groeiwaarde groter dan 1 is er exponentiële toename bij een groeiwaarde kleiner dan 1 exponentiële afname; - belangrijk is dat de leerling leert inzien dat er sprake is van exponentiële groei als er per tijdseenheid steeds met eenzelfde getal vermenigvuldigd wordt; - vervolgens komen de formule en de grafiek aan de orde; - het is belangrijk dat de leerlingen op hun rekenmachine met de formules kunnen werken; - ook het verband tussen procenten en de groeifactor komen aan de orde. - de formule voor een hyperbolisch verband is op verschillende manieren te schrijven; - wijs erop dat delen door 0 niet mogelijk is. - bij wortelverbanden is het belangrijk aan te geven wat er onder het wortelteken staat; - ook belangrijk is het feit, dat worteltrekken uit een negatief getal niet mogelijk is; - bij de formules worden grafieken getekend. - bij diverse verbanden komen periodieke verbanden aan de orde; - bij deze verbanden horen de begrippen periode, frequentie en amplitude. - via tabellen zijn som - en verschilverbanden te berekenen.

9 8 Sectoropdrachten Aan de orde komen: - de Agrarische sector - de Economische sector - de Technische sector - de sector Zorg en welzijn In de sectoropdrachten wordt geen nieuwe leerstof behandeld. De opdrachten bieden een aantal gebruiksmogelijkheden. * De opdrachten zijn per sector opgenomen. De leerlingen ontdekken dat wiskunde in hun eigen sector belangrijk is. Ook ontdekken ze welke onderwerpen en wiskundige vaardigheden in hun sector voorkomen. * De sectoropdrachten kunnen gebruikt worden als herhaling of verdieping bij bepaalde onderwerpen. * Hoewel de opdrachten per sector zijn gegroepeerd, is een aantal sectoropdrachten sectoroverstijgend en kan dus in andere sectoren gebruikt worden. Voorbeeld: Van je schuld afkomen is opgenomen bij de economische sector maar kan zijn dienst bewijzen in andere sectoren. In het volgende overzicht staan de mogelijkheden tot gebruik aangegeven. agrarisch economisch technisch zorg en welzijn beregenen ** zaaien en maaien ** bloemen uit de kiosk ** * * een enkeltje Parijs * ** * * van je schuld afkomen * ** * * sparen of beleggen * ** * * kozijnen maken ** met formules werken * ** een boog metselen ** verstandig eten * * * ** het budget bewaken * ** een kapsalon runnen * ** Toelichting. ** Gebruik in de eigen sector. * Zeer bruikbaar in genoemde sector.

10 Hoofdstuk 9 Examenvoorbereiding In dit hoofdstuk is het examen van 2004, eerste tijdvak, opgenomen. Op de rechter pagina's van dit hoofdstuk staan de vragen van het examen. Deze vragen kunnen in het werkboek beantwoord worden. Op de linker pagina's staan aanwijzingen bij de diverse examenvragen. De aanwijzingen worden meestal vergezeld door opgaven. De antwoorden van deze opgaven kunnen de leerlingen in hun schrift maken. Na dit hoofdstuk volgt nog een computerprogramma met VU - grafiek.

dochandl4vmbo_gt_netwerk3e.doc Deel 4 vmbo gt Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_gt_netwerk3e.doc Deel 4 vmbo gt Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo gt Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk 7 Verschillende

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo

Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo Docentenhandleiding Netwerk 3e editie deel 3B havo 0 Hoofdstuk 7 Verschillende verbanden Beginniveau Al eerder hebben de leerlingen kennis gemaakt met lineaire, kwadratische en exponentiële verbanden.

Nadere informatie

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B vmbo kader Inhoud deel 3A Hoofdstuk 1 Vlakke meetkunde Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Rekenen Hoofdstuk 4 Statistiek Hoofdstuk 5 Ruimtemeetkunde Hoofdstuk

Nadere informatie

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 basis docentenhandleiding. Docentenhandleiding deel 3A en 3B basis. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B basis Inhoud deel 3A Hoofdstuk 1 Plaatsbepalen Hoofdstuk 2 Grafieken en tabellen Hoofdstuk 3 Rekenen Hoofdstuk 4 Informatieverwerking Hoofdstuk 5 Tekenen en rekenen Computer

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3, schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk

Nadere informatie

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16 Wiskunde Het schoolexamen in het vierde leerjaar (2015-2016) wordt ook toegepast binnen de locatie Statenkwartier. Schooljaar 2014-2015 ( leerjaar 3 ) Kader Schoolexamen 1 SE 1 De volgende onderdelen worden

Nadere informatie

3 Pythagoras 90. 4 Statistiek 128

3 Pythagoras 90. 4 Statistiek 128 2BK1 2KGT1 Voorkennis 1 Meetkunde 6 1 Vlakke figuren 8 1.1 Namen van vlakke figuren 10 1.2 Driehoeken 15 1.3 Driehoeken tekenen 19 1.4 Vierhoeken 24 1.5 Hoeken berekenen in een vierhoek 30 1.6 Gemengde

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp: Kwadraten en Wortels H1 19 De leerling leert passende wiskundetaal te gebruiken voor het ordenen van het eigen denken en voor uitleg aan anderen, en leert de wiskundetaal van anderen te begrijpen.

Nadere informatie

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort Schoolexamen leerjaar 3, schooljaar 2015-2016 code eenheid vorm duur kansen Moderne wiskunde 9e editie deel 3 GT 90 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk min ja 2,0 Hoofdstuk

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ

INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ INHOUDSOPGAVE BLZ HOOFDSTUK 1 DOMEIN A: GETALLEN 15 1.1. Inleiding 15 1.2. Cijfers en getallen 15 1.3. Gebroken getallen 16 1.4. Negatieve getallen 17 1.5. Symbolen en vergelijken van getallen 19 HOOFDSTUK

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort Eindtermen wiskunde TL en GL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en schatten Meetkunde WI/K/7

Nadere informatie

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16 Wiskunde Schooljaar 2014-2015 ( leerjaar 3 ) Theoretische en Gemengde leerweg Schoolexamen 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand 301T

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Deel 2A vmbo basis kader

Deel 2A vmbo basis kader Deel 2A vmbo basis kader De hoeveelheid leerstof is gebaseerd op drie of vier lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken. De verkorte route kan gebruikt

Nadere informatie

Docentenhandleiding havo vwo deel 2

Docentenhandleiding havo vwo deel 2 Deel 2 hv De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen ten

Nadere informatie

Rekenen en wiskunde ( bb kb gl/tl )

Rekenen en wiskunde ( bb kb gl/tl ) Tussendoelen Rekenen en wiskunde Rekenen en wiskunde ( bb kb gl/tl ) vmbo = Basis Inzicht en handelen Vaktaal wiskunde Vaktaal wiskunde gebruiken voor het ordenen van het eigen denken en voor uitleg aan

Nadere informatie

Tussendoelen in MathPlus

Tussendoelen in MathPlus MALMBERG UITGEVERIJ B.V. Tussendoelen in MathPlus Versie 1 Inhoud Tussendoelen onderbouw in MathPlus... 2 Tabel tussendoelen... 2 1HVG... 7 Domein Rekenen... 7 Domein Meten en tekenen... 9 Domein Grafieken

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort Eindtermen wiskunde BBL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en Meetkunde WI/K/7 Informatieverwerking,

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

Docentenhandleiding vwo deel 2

Docentenhandleiding vwo deel 2 Deel 2 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB

Deel 3 vwo. Docentenhandleiding vwo deel 3 TvB Deel 3 vwo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort Eindtermen wiskunde BBL WI/K/1 Oriëntatie op leren en WI/K/2 Basisvaardigheden Leervaardigheden in het WI/K/4 Algebraïsche verbanden Rekenen, meten en Meetkunde WI/K/7 Informatieverwerking, Geïntegreerde

Nadere informatie

Docentenhandleiding vmbo gth deel 2

Docentenhandleiding vmbo gth deel 2 Deel 2 vmbo gth De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof door te werken, eventueel met de verkorte route. Veranderingen

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

extra oefeningen HOOFDSTUK 4 VMBO 4

extra oefeningen HOOFDSTUK 4 VMBO 4 extra oefeningen HOOFDSTUK 4 VMBO 4 1. a. Teken in één assenstelsel de grafieken bij de formules y = 4x - 3 en y = 7 - x b. Bereken de coördinaten van het snijpunt c. Teken in hetzelfde assenstelsel de

Nadere informatie

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3 Schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand.

Nadere informatie

REKENTOETS VMBO BB/KB/GL/TL

REKENTOETS VMBO BB/KB/GL/TL Wijziging op 19-01-2016 bij punt 4 Dyslexie of dyscalculie: de aangepaste rekentoets ER duurt 120 minuten in plaats van 150 minuten. Wijziging op 04-02-2016 bij punt 3: de rekentoets duurt 90 minuten in

Nadere informatie

Kwadratische verbanden - Parabolen klas ms

Kwadratische verbanden - Parabolen klas ms Kwadratische verbanden - Parabolen klas 01011ms Een paar basisbegrippen om te leren: - De grafiek van een kwadratisch verband heet een parabool. - Een parabool is dalparabool met een laagste punt (minimum).

Nadere informatie

REKENTOETS VMBO BB/KB/GL/TL INFORMATIE STAATSEXAMEN 2017 V16.8.1

REKENTOETS VMBO BB/KB/GL/TL INFORMATIE STAATSEXAMEN 2017 V16.8.1 REKENTOETS VMBO BB/KB/GL/TL INFORMATIE STAATSEXAMEN 2017 V16.8.1 De informatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

INSIGHT Rekentoets. Spoorboekje. Tijd voor rekenen!

INSIGHT Rekentoets. Spoorboekje. Tijd voor rekenen! INSIGHT Rekentoets Spoorboekje Tijd voor rekenen! Colofon Titel: Subtitel: Uitgave door: Adres: Insight Rekentoets Spoorboekje AMN b.v. Arnhem Oude Oeverstraat 120 6811 Arnhem Tel. 026-3557333 info@amn.nl

Nadere informatie

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15 A. Schoolexamen derde leerjaar, 2013-2014 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand. 301B Algebraïsche verbanden en WI/K/4 * * * aanzichten

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

PROGRAMMA VAN TOETSING EN AFSLUITING

PROGRAMMA VAN TOETSING EN AFSLUITING PROGRAMMA VAN TOETSING EN AFSLUITING VAK : : Wiskun METHODE : Morne Wiskun 9 editie KLAS: : 4 NIVEAU : KADER CONTACTUREN PER WEEK 4 X MINUTEN PER WEEK UDIEJAAR : 205-206 EINDCIJFER KLAS TELT ALS BEGINCIJFER

Nadere informatie

REKENTOETS HAVO INFORMATIE STAATSEXAMEN 2017 V

REKENTOETS HAVO INFORMATIE STAATSEXAMEN 2017 V REKENTOETS HAVO INFORMATIE STAATSEXAMEN 2017 V16.12.1 De informatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de staatsexamens

Nadere informatie

Rekentoetswijzer 2F. Eindversie

Rekentoetswijzer 2F. Eindversie Rekentoetswijzer 2F Eindversie Voorwoord De rekentoetswijzer stelt docenten in staat zich een beeld te vormen van wat er in de rekentoetsen rekenen 2F voor het voortgezet onderwijs wel en niet gevraagd

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

WISKUNDE VMBO KB VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE VMBO KB VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE VMBO KB VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Leerlijnen groep 8 Wereld in Getallen

Leerlijnen groep 8 Wereld in Getallen Leerlijnen groep 8 Wereld in Getallen 1 2 3 4 REKENEN Boek 8a: Blok 1 - week 1 Oriëntatie - uitspreken en schrijven van getallen rond 1 miljoen - introductie miljard - helen uit een breuk halen 5/4 = -

Nadere informatie

PROGRAMMA VAN TOETSING EN AFSLUITING

PROGRAMMA VAN TOETSING EN AFSLUITING PROGRAMMA VAN TOETSING EN AFSLUITING VAK : : Wiskun METHODE : Morne Wiskun 0 editie KLAS: : 4 NIVEAU : KADER CONTACTUREN PER WEEK X MINUTEN PER WEEK UDIEJAAR : 206-20 EINDCIJFER KLAS TELT ALS BEGINCIJFER

Nadere informatie

REKENTOETS HAVO/VWO INFORMATIE STAATSEXAMEN 2016 V15.11.2

REKENTOETS HAVO/VWO INFORMATIE STAATSEXAMEN 2016 V15.11.2 REKENTOETS HAVO/VWO INFORMATIE STAATSEXAMEN 2016 V15.11.2 De informatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

WISKUNDE D HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE D HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE D HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

Bijlage 11 - Toetsenmateriaal

Bijlage 11 - Toetsenmateriaal Bijlage - Toetsenmateriaal Toets Module In de eerste module worden de getallen behandeld: - Natuurlijke getallen en talstelsels - Gemiddelde - mediaan - Getallenas en assenstelsel - Gehele getallen met

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen STATISTIEK Een korte samenvatting over: Termen Tabellen Diagrammen Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het

Nadere informatie

Begin situatie Wiskunde/Rekenen. VMBO BB leerling

Begin situatie Wiskunde/Rekenen. VMBO BB leerling VMBO BB leerling Verbanden en Hoge -bewerkingen onder 100 -tafels t/m 10 (x:) -bewerkingen met eenvoudige grote en -makkelijk rekenen -vergelijken/ordenen op getallenlijn -makkelijke breuken omzetten -deel

Nadere informatie

Programma : 1. Presentatie 2. H 5.1 Statistiek zelf gegevens verzamelen en ermee werken 3. Vragen over H4, formules

Programma : 1. Presentatie 2. H 5.1 Statistiek zelf gegevens verzamelen en ermee werken 3. Vragen over H4, formules Programma : 1. Presentatie 2. H 5.1 Statistiek zelf gegevens verzamelen en ermee werken 3. Vragen over H4, formules 1 2 programma hw nagekeken en verbeterd? voorbereiden pw filmpjes wie zoekt ze op? vrijdag

Nadere informatie

Antwoordmodel - Kwadraten en wortels

Antwoordmodel - Kwadraten en wortels Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch

Moderne wiskunde. Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch Moderne wiskunde Docentenhandleiding bij: Klas 2 Deel 2 kader / gemengd theoretisch inhoudelijke structuur dakpanconstructie planning beschrijving per hoofdstuk Moderne Wiskunde, docentenhandleiding -

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

TIENDE EDITIE EERSTE OPLAGE, 2013

TIENDE EDITIE EERSTE OPLAGE, 2013 3K TIENDE EDITIE EERSTE OPLAGE, 2013 L.A. Reichard J.H. Dijkhuis C.J. Admiraal G.J. te Vaarwerk J.A. Verbeek G. de Jong H.J. Houwing J.D. Kuis F. ten Klooster S.K.A. de Waal J. van Braak J.H.M. Liesting-Maas

Nadere informatie

TIENDE EDITIE EERSTE OPLAGE, 2013

TIENDE EDITIE EERSTE OPLAGE, 2013 3 TIENDE EDITIE EERSTE OPLAGE, 2013 L.A. Reichard J.H. Dijkhuis C.J. Admiraal G.J. te Vaarwerk J.A. Verbeek G. de Jong H.J. Houwing J.D. Kuis F. ten Klooster S.K.A. de Waal J. van Braak J.H.M. Liesting-Maas

Nadere informatie

Moderne wiskunde. Deel 4 vmbo kader. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21

Moderne wiskunde. Deel 4 vmbo kader. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo kader inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur Opstap

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

REKENTOETSWIJZER 2F 2015 REKENTOETS VO 2015

REKENTOETSWIJZER 2F 2015 REKENTOETS VO 2015 REKENTOETSWIJZER 2F 2015 REKENTOETS VO 2015 pagina 2 van 18 Inhoud Voorwoord 5 Vooraf 6 1 Inleiding 7 1.1 Wat is een rekentoetswijzer? 7 1.2 De rekentoets 2F 7 1.3 Uitgangspunten bij de constructie van

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen.

Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen. Statistiek Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het meeste (driemaal) voor, dus de modus is 5. (Kijk maar:

Nadere informatie

Onderwijsbehoeften: - Korte instructie - Afhankelijk van de resultaten Test jezelf toevoegen Toepassing en Verdieping

Onderwijsbehoeften: - Korte instructie - Afhankelijk van de resultaten Test jezelf toevoegen Toepassing en Verdieping Verdiepend Basisarrange ment Naam leerlingen Groep BBL 1 Wiskunde Leertijd; 5 keer per week 45 minuten werken aan de basisdoelen. - 5 keer per week 45 minuten basisdoelen toepassen in verdiepende contexten.

Nadere informatie

WISKUNDE VMBO KB VAKINFORMATIE STAATSEXAMEN 2017 V16.6.1

WISKUNDE VMBO KB VAKINFORMATIE STAATSEXAMEN 2017 V16.6.1 WISKUNDE VMBO KB VAKINFORMATIE STAATSEXAMEN 2017 V16.6.1 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van

Nadere informatie

Overzicht statistiek 5N4p

Overzicht statistiek 5N4p Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...

Nadere informatie

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. xamen VMO-GL en TL 2013 tijdvak 2 dinsdag 18 juni 13.30-15.30 uur wiskunde CS GL en TL ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Paragraaf 9.1 : Twee soorten groei

Paragraaf 9.1 : Twee soorten groei Hoofdstuk 9 Exponentiële Verbanden (H5 Wis A) Pagina 1 van 9 Paragraaf 9.1 : Twee soorten groei Les 1 Lineaire en exponentiele groei Definitie Lijn = LINEAIRE GROEI Algemene formule van een lijn : y =

Nadere informatie

Rekentoetswijzer 2F. Voortgezet onderwijs. SLO nationaal expertisecentrum leerplanontwikkeling

Rekentoetswijzer 2F. Voortgezet onderwijs. SLO nationaal expertisecentrum leerplanontwikkeling Rekentoetswijzer 2F Voortgezet onderwijs SLO nationaal expertisecentrum leerplanontwikkeling Rekentoetswijzer 2F voortgezet onderwijs December 2011 Verantwoording 2011 SLO (nationaal expertisecentrum

Nadere informatie

Rekentoetswijzer 3F. Eindversie

Rekentoetswijzer 3F. Eindversie Rekentoetswijzer 3F Eindversie Voorwoord De rekentoetswijzer stelt docenten in staat zich een beeld te vormen van wat er in de rekentoetsen rekenen 3F voor het voortgezet onderwijs wel en niet gevraagd

Nadere informatie

INLEIDING FUNCTIES 1. COÖRDINATEN

INLEIDING FUNCTIES 1. COÖRDINATEN INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9

Nadere informatie

4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6

4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 1: 1 miljoen = 1.000.000 4.1 Cijfermateriaal In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 2: 1 miljard = 1.000.000.000 In dit getal komen negen nullen voor.

Nadere informatie

Moderne wiskunde. Deel 4 vmbo basis. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 16 planning 18 beschrijving per hoofdstuk 21

Moderne wiskunde. Deel 4 vmbo basis. Docentenhandleiding bij: inhoudelijke structuur 2 dakpanconstructie 16 planning 18 beschrijving per hoofdstuk 21 Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo basis inhoudelijke structuur 2 dakpanconstructie 16 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur Opstap

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Inleiding tot de natuurkunde

Inleiding tot de natuurkunde OBC Inleiding tot de Natuurkunde 01-09-2009 W.Tomassen Pagina 1 Inhoud Hoofdstuk 1 Rekenen.... 3 Hoofdstuk 2 Grootheden... 5 Hoofdstuk 3 Eenheden.... 7 Hoofdstuk 4 Evenredig.... 10 Inleiding... 10 Uitleg...

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

Reken je wijs. De kunst van het leren rekenen. Benito Kaarsbaan. aantal x 1000. tijd in jaren 15000 4,5

Reken je wijs. De kunst van het leren rekenen. Benito Kaarsbaan. aantal x 1000. tijd in jaren 15000 4,5 Reken je wijs De kunst van het leren rekenen Niveau 1F 2F 3F aantal x 1000 18000 20 15000 12000 4,5 9000 6000 3000 0 0 1960 1970 1980 1990 2000 tijd in jaren inen: 5 = 24 k Benito Kaarsbaan ij k ex e m

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 0 tijdvak woensdag 0 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage.. Dit eamen bestaat uit 0 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

REKENTOETSWIJZER 3F 2015 REKENTOETS VO 2015

REKENTOETSWIJZER 3F 2015 REKENTOETS VO 2015 REKENTOETSWIJZER 3F 2015 REKENTOETS VO 2015 pagina 2 van 16 Inhoud Voorwoord 5 Vooraf 6 1 Inleiding 7 1.1 Wat is een rekentoetswijzer? 7 1.2 De rekentoets 3F 7 1.3 Uitgangspunten bij de constructie van

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met

Nadere informatie

Moderne wiskunde. Deel 4 vmbo gemengd theoretisch. Docentenhandleiding bij:

Moderne wiskunde. Deel 4 vmbo gemengd theoretisch. Docentenhandleiding bij: Moderne wiskunde Docentenhandleiding bij: Deel 4 vmbo gemengd theoretisch inhoudelijke structuur 2 dakpanconstructie 17 planning 18 beschrijving per hoofdstuk 21 Wolters-Noordhoff bv 1 Inhoudelijke structuur

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 0 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor

Nadere informatie

Correctievoorschrift VBO-MAVO-C. Wiskunde

Correctievoorschrift VBO-MAVO-C. Wiskunde Wiskunde Correctievoorschrift VBO-MAVO-C Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs 20 02 Tijdvak 1 Inzenden scores Uiterlijk op 29 mei de scores van de alfabetisch eerste

Nadere informatie

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van

Nadere informatie

WISKUNDE VMBO BB VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE VMBO BB VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE VMBO BB VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van

Nadere informatie

Examen HAVO. Wiskunde B (oude stijl)

Examen HAVO. Wiskunde B (oude stijl) Wiskunde B (oude stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1330 1630 uur 20 02 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit 18 vragen

Nadere informatie

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur 1 Stelling van Pythagoras bewijs paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur c a b b

Nadere informatie

Product Informatie Blad - Rekentoets

Product Informatie Blad - Rekentoets Product Informatie Blad - Rekentoets PIB240-2010-Rekentoets Context In opdracht van het Ministerie van Onderwijs, Cultuur en Wetenschap (OCW) heeft de commissie Meijerink onderzoek gedaan naar wat leerlingen

Nadere informatie