10 log sin 20. Naam:

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "10 log sin 20. Naam:"

Transcriptie

1 10 log sin 20 Naam: 1

2 Inhoud Voorbereiding op het examen 3 Onderwerpen in grote lijnen 4-9 LOC-methode 9 Tips voor het examen 10 Vergelijkingen van parabolen 11 Planning opgaven examenbundel Differentiëren in de eindexamens 1999 t/m Vergelijkingen in de eindexamens 2009 t/m Algebra in de eindexamens 2009 t/m Examen (pilot) 2016-I Uitwerkbijlage examen 2016-I

3 Hoe kun je je voorbereiden op het examen Een hele goede samenvatting is de examenvoorbereiding in het boek (blz. 173). Hier vind je ook een aantal opgaven, oplopend van makkelijk tot moeilijk. Maak vooral examenopgaven: In dit boekje staat een planning van het tweede deel van de examenbundel (blz. 117 e.v.). Zie blz. 12 van dit boekje. Tot en met blz. 116 zijn het opgaven op onderwerp. Het pilotexamen 2016-I is opgenomen in dit boekje. Tevens de uitwerkingen hiervan. Heb je je opgegeven voor het proefexamen wiskunde A, dan maak je die dag het pilotexamen 2016-II. Wil je dat thuis maken, je vindt het examen en de uitwerkingen met norm op Kies linksboven voor 2016 en vervolgens HAVO-exacte vakken-wiskunde B havo (pilot-examen) Bekijk zo nu en dan een filmpje op In dit boekje staan opgaven over algebra, differentiëren en oplossen van vergelijkingen Eventueel begin je met de Quickscan op Maak aantekeningen van onderdelen die niet goed gaan en maak hierover nog andere opgaven. 3

4 Overzicht van de stof in grote lijnen 1. Veranderingen Toenamediagrammen Differentiequotiënten, ook de notatie 2. Kwadratische functies Kunnen werken met de drie verschillende notaties:! +#$+$!%&!' +( 3. Functies en grafieken Van de standaardfuncties ) * machtsfunctie ()=# + exponentiële functie, ()= log () logaritmische functie ()=sin()-. +()=cos () goniometrische functie De volgende eigenschappen noemen: domein en bereik stijgen en dalen asymptoten Bij machtsfunties, exponentiële functies en logaritmische functies schrijven als functie van 0. Kunnen werken met de transformaties Translatie horizontaal Translatie verticaal Vermenigvuldiging t.o.v. de x-as Vermenigvuldiging t.o.v. de y-as Hiermee het volgende uitvoeren: Een combinatie hiervan uitvoeren op grafieken Bij een functie bepalen hoe deze is ontstaan uit een grafiek Het functievoorschrift bepalen als een combinatie van transformaties wordt uitgevoerd op een standaardfunctie. 4. Exponentiële groei Algemene formule Verband tussen groeifactoren en groeipercentages Bereken van groeifactoren over grotere of kleinere tijdseenheden Kunnen werken met verdubbelingstijd en halveringstijd 4

5 5. Evenredigheidsverbanden Kunnen bepalen of er sprake is van een recht evenredig of omgekeerd evenredig verband: Recht evenredig verband: 0=! Omgekeerd evenredig verband: 0= 1 In een machtsverband 0=$ 2 tussen twee grootheden en 0 de exponent. en de evenredigheidsconstante $ bepalen. 6. Oplossen van vergelijkingen Oplossen van een stelsel lineaire vergelijkingen bijvoorbeeld: =21 30=10 Oplossen van lineaire vergelijkingen bijvoorbeeld: 2 6=5+13 Oplossen van kwadratische vergelijkingen met ontbinden in factoren of de abc-formule Vergelijkingen van de vorm $ (!+#)+7=- met een standaardfunctie Voorbeelden: = =100 : log(2 8)=3 5sin;2 <=+7=9, = 6 1 (wortelvergelijkingen) (gebroken vergelijking) = Algemene bouwschema s gebruiken: 7. Oplossen van ongelijkheden 8. Gebruik van het grafisch rekenapparaat Berekenen van snijpunten Berekenen van de helling Berekenen van coördinaten van toppen Helling in een punt berekenen 5

6 9. Afgeleide functies Weten dat je met de afgeleide de helling (richtingscoëfficiënt) van de raaklijn berekent De afgeleide functie kunnen bepalen van functies (differentiëren) De helling kunnen bepalen met de GR. De verschillende notaties voor de afgeleide herkennen en () De afgeleide functie gebruiken bij: Bestuderen van stijgen en dalen van de grafiek Bepalen van extreme waarden Bepalen van de coördinaten van de toppen Bepalen van de vergelijking van een raaklijn 10. Periodieke functies Graden omrekenen naar radialen en omgekeerd Oplossen van goniometrische vergelijkingen zoals 5sin;2 <=+7=9,5 Bij een sinusoïde het functievoorschrift opstellen De begrippen amplitude, evenwichtsstand en periode gebruiken 11. Algebra In verschillende situaties, zoals het oplossen van vergelijkingen of het herleiden van formules verschillende rekenregels toepassen: A Bewerkingen met breuken 6

7 B Wortelvormen C Bijzondere producten D Machten en logaritmen 7

8 E Herleiden van formules Door links en rechts hetzelfde te doen (wat je bij het oplossen van vergelijkingen doet) Substitutie = vervangen door Door bovenstaande rekenregels te gebruiken F Oplossen van vergelijkingen Door bovenstaande rekenregels te gebruiken. Door de volgende bouwschema s te gebruiken: 12. Meetkunde Algebraïsche methoden De twee vergelijkingen voor een rechte lijn: 0=!+# -. %+&0=' Als twee lijnen loodrecht op elkaar staan, dan is het product van de richtingscoëfficiënten gelijk aan -1 De twee vormen voor een cirkel: (!) +(0 #) =' +0 +%+&0+'=0 Weten dat de straal van en cirkel loodrecht staat op de raaklijn De vergelijking van een lijn door twee punten opstellen De vergelijking van een cirkel opstellen De hoek tussen twee lijnen berekenen Vergelijking van een loodlijn dor een gegeven punt op een lijn opstellen vergelijking van een raaklijn in een punt op de cirkel opstellen Snijpunten twee lijnen berekenen De lengte van een lijnstuk berekenen Snijpunten van een cirkel met een lijn berekenen Afstanden tussen punten, lijnen en cirkels berekenen Onderzoeken hoeveel punten een cirkel en een lijn gemeen hebben 8

9 Afstanden en hoeken Hoeken en afstanden berekenen door gebruik te maken van: sinus, cosinus en tangens in rechthoekige driehoeken stelling van Pythagoras sinus-regel cosinusregel gelijkvormige driehoeken 13. Stof van de onderbouw Hierbij moet je denken aan onderwerpen zoals: Werken met de discriminant bij een kwadratische vergelijking Stelling van Pythagoras Goniometrische verhoudingen in een rechthoekige driehoek De LOC-methode LEZEN: Lees de tekst goed door Vertel aan jezelf waar de tekst over gaat, zonder (wiskundige)details te noemen. Een kind van 8 moet het kunnen begrijpen. Lees de tekst opnieuw en onderstreep nu de belangrijke zaken, eventueel schrijf je de belangrijke dingen op: formules, getallen, korte zinnetjes, etc. OPLOSSEN VAN HET PROBLEEM: Bepaal welke wiskundige instrumenten je nodig hebt om het probleem op te lossen: lineaire groei, exponentiele groei, differentiëren, GSolve, meetkunde, etc. Let op onderzoek -vragen of toon aan -vragen. Vaak heb je datgene wat je moet aantonen nodig bij een volgend onderdeel. Los het probleem op. Probeer eventueel eerst op kladpapier het één en ander. CONTROLE: Heb je duidelijk uitleg en berekeningen opgeschreven? Heb je eenheden bij uitkomsten en bij de assen van grafieken neergezet? Heb je goed afgerond? Niet tussentijds en voldoende decimalen. Heb je antwoord gegeven op de vraag? Wordt het exacte antwoord verwacht of moet je afronden? Heb je de instructies van het rekenapparaat opgeschreven? Is je antwoord realistisch? Geen fietser die 500 km/uur fietst. 9

10 Tips voor het examen 1. Zorg dat je goed afrondt, voldoende decimalen. Als je exact moet berekenen, mag je juist niet afronden. 2. Sinds twee jaar wordt voor elke notatiefout een punt afgetrokken. Bijvoorbeeld voor breien: 3+5 = 8+2 = 10:4 = 2,5 is dus fout ()= +5 7=2+5 is dus ook fout (functie en afgeleide achter elkaar geschreven) 3. Zorg dat je lay-out in orde is. Witte regels, onder elkaar, etc. 4. Kijk heel goed af er staat bereken, bereken algebraïsch of bereken exact. 5. Begin gewoon aan een opgave, ook al zie je niet gelijk de oplossing. Je krijgt al heel snel punten voor bepaalde stappen 6. Vergeet niet een potlood, geo en passer mee te nemen. LENEN is niet toegestaan!!! (en natuurlijk je rekenapparaat). 7. Bij GSolve e.d. altijd duidelijk de instructie opschrijven. Doodzonde als je hiermee punten verspeelt!! 8. Als je iets moet aantonen, heb je dit vaak nodig bij een volgens onderdeel. 9. Aantonen moet gedetailleerd. 10. Gebruik de LOC-methode(zie hierboven). 11. In principe staat je rekenapparaat op radialen ingesteld. Houd daar rekening mee als het antwoord in graden wordt gevraagd. 12. Vergeet niet de eenheden bij het antwoord op te schrijven. Hieronder de officiële definities van algebraïsch en exact: 10

11 Vergelijkingen van parabolen (kwadratische functies) 1. Nulpunten en een punt gegeven Theorie Als =% -. =& nulpunten zijn van een parabool, dan is de vergelijking van de parabool te schrijven als: Voorbeeld 0=!( %)( &) De snijpunten met de -as en een parabool zijn: (-6, 0) en (11, 0) Tevens ligt punt A(2, 7) op de parabool. Geef een vergelijking van de parabool. Oplossing Er geldt: 0=!(+6)( 11) Invullen van =2 -. 0=7 geeft: 7=! 8 4 a= 8 Dus: 0= 8 (+6)( 11) Opgave 1 Geef een functievoorschrift van de volgende parabolen: a) Nulpunten =5 -. = 7 A(4, -12) ligt op de parabool b) Nulpunten = 2 -. =0 B(-5, 3) ligt op de parabool 2. Coördinaten top en een punt gegeven Theorie Als T(r, s) de top is van een parabool, dan is de vergelijking van de parabool te schrijven als: Opgave 2 0=!( ') +( Geef een functievoorschrift van de volgende parabolen: a) Top(3, -12) A(2,-11) ligt op de parabool b) Top(-7, 2) B(0,5) ligt op de parabool 11

12 Planning Examenbundel Opg. Blz. Onderdelen Af OPGAVE ONDERWERPEN Lijn en parabool Lengte lijnstuk Vergelijking raaklijn Punt op hyperbool Algebra Twee lijnen en driehoek Snijpunt twee lijnen Hoek tussen twee lijnen Hersengewicht Aflezen logaritmische schaal Algebra Medicijnen voorschrijven Exponentiële groei Groeifactoren Grafiek van een logaritme Logaritmische vergelijking Vergelijking rechte lijn Helling berekenen Cirkel en lijn Afstand punt lijn Straal cirkel Windenergie Groeifactoren Oplossen vergelijking Op het voetbalveld Pythagoras Cosinusregel Raaklijnen aan twee parabolen Toppen Afstand twee punten Raaklijnen Loodrechte lijnen Raaklijn aan cirkel Berekenen straal Bepalen raaklijn aan cirkel met de discriminant Wortel met raaklijn Differentiëren Raaklijn Midden twee punten Sinusoïde Goniometrische vergelijking Lijn door twee punten Fietssnelheid Formule sinusoïde Gebroken functie Berekenen snijpunten Differentiëren Productfunctie Minimum, differentiëren familie 12

13 Opg. Blz. Onderdelen Af OPGAVE ONDERWERPEN Gebroken functie met raaklijn Vergelijking raaklijn Van grafiek naar helling Behalen helling in grafiek Schetsen grafiek afgeleide Tornadoschalen Formules Herleiden formule Omvliegen Hoeken berekenen Krik Hoeken berekenen f boven g Goniometrische vergelijking Differentiëren GSolve: maximum Bissectrices Hoek tussen twee lijnen Afstand punt lijn Grafiek Raaklijn aan grafiek GSolve int Twee functies Oplossen wortelvergelijking Differentiëren De Eierland Cirkels en heel veel nadenken Functies met een wortel Familie van functies Wortelvergelijking Differentiëren Grachtenloop Hoeken en afstanden Twee cirkels Afstand punt cirkel Cirkels en lijnen Hoek tussen twee lijnen Wortel en parabool Hellingen Wortelvergelijking Afstand twee punten Derdegraadsfunctie en gebroken functie Differentiëren Olie Groeipercentage Exponentiële groei GSolve: intersect Grafiek van een cosinus Opstellen formule sinusoïde Een halve cirkel als grafiek Wortelvergelijking Randpunten wortelfunctie 13

14 Opg. Blz. Onderdelen Af OPGAVE ONDERWERPEN Debiet Formules Cosinus met lijnen Nadenken Zuinig inpakken Opstellen formules Differentiëren Kwelders GSolve: intersect Differentiëren Horizontale asymptoot Functie met logaritme Asymptoten Logaritmische vergelijking Transformatie Algebra Gevaar op zee Formules GSolve int Lijnen door punten op een cirkel Loodrechte lijnen Raaklijn aan een cirkel Zwabberende functie Goniometrische vergelijking Helling (differentiequotiënt) op een klein interval Getint glas Groeifactoren Formules toepassen Gebroken functie Gebroken vergelijking Drie punten op een lijn? Transformaties Hangar Kwadratische vergelijking GSolve int Functie met sinus GSolve int Formule sinusoïde Punten, afstand, hoek en cirkel Afstand punt cirkel Helling lijnstuk Grafiek met lijn Afstand punt lijn Raaklijn aan grafiek Geluidsbox Logaritmen Uitkomst formule bij verdubbeling van x Zijde AC Berekenen lengtes en hoeken 14

15 Opg. Blz. Onderdelen Af OPGAVE ONDERWERPEN (G)een exponentiële functie GSolve int Minimum (differentiëren) Parabool en cirkel Snijpunten cirkel en x-as Opstellen vergelijking parabool Veilig vliegen Aflezen gebied GSolve int Herleiden wortelformule Twee cirkels, één raaklijn Omgekeerde stelling van Pythagoras Snijpunt lijn en cirkel Functies met een wortel Differentiëren Wortelvergelijking Hoek tussen twee lijnen Familie van functies Vierkanten Exponentiële groei, formule stelsel vergelijkingen Niet-werkende werkzoekenden Groeipercentages Toenamediagrammen Een functie met sinus Bereken nulpunten goniometrische functie Lijn door twee punten Cirkel en punt Onderzoeken of punt op de cirkel ligt Berekenen hoek Van een rechte naar een scheve cilinder Berekenen hoeken 15

16 Differentiëren in de eindexamens 1999 t/m 2015 Differentieer de volgende functies: 1) ()=( 1) ( 2) 2) A BCB =0,75D+0,004D 3) ()= ) ()=(+4) 5) +()=(%+4) 6) h(f)=0,0008f 0,32F+32 7)!()=1 (1 ) 8) G=200 (0,0545D 0,836) 9) H=1014 ( 0,0026h+1) :,I 10) ()= ) ()= ) &=250D 1,5625D 13) ()= 16 14) +()= ( 16) 15) J = K + LK MMM 16) N=3,31+21 (F 148) 17) =43,46 5,83 18) O = 0,125F +6,33F ) P=(6 2!)(6!! ) 23) ()= ) ()= +1 25) ()=(+1)( 16) 26) =0,25Q+0,000075Q 27) ()= ) H= I,M R +0,00050D 0,033 29) ()=( 11+28) 30) ()= ) ()= +4 32) ()= ) = I < ( ) 34) =#(#+10)(50 #) 35) +()= I 36) ()= IM S 37) +()= 9 38) 0= 39) ()= 40) ()=( ) 20) N(h)=33<h+4<h <h 21) +()= M + 1,9 22) ()=

17 Vergelijkingen in de eindexamens 2009 t/m ) 22,0 T =100T 110 2) 4,95 4,50= 100=12 3) : =2 4) sin() cos; <==0 op domein U <,<V 22) !=108 23) +18=2 24) 12,0+0,00100D =0 25) 25 1,025 B =285 26) 2 5= ) 631 1,06 = ) =2 6) 2cos() (1+2sin())=0 op domein 7) W0,1 <X +1= 8) = 9) 2 =4 4 10) 6= 2 11) = 12) 6=(5 1) 5! 13) 0,8 = 14) 300=15+ Y ZY [,I \ 1,0 8, M,M8Y:M,MMB 15) =0 16) (+1)( 16)=0 17) +1600= ) < ' 10,0=200< 19) 2 0,16D+4,0=12,0 20) 0,25+0,000225Q =1 21)! (1!) 50 =17 28) =0,00995 ' ] 29) 2 4sin (2)=0 op domein U0,<V 30) ( 11+28) =0 31) ; R I, =^ 2=3,5 32) +1= +1 33) +1=3 34) 500 1,034 B =750 35) MM :I M,[: _= ) log(4+3)=0 37) +cos()= 1 op domein U0,14V 38) 50 = MM MMM M,: _ 39) 2(F 12) +64=40 40) 41) IM S =2 < ([M,M M,M h) h= ) I =0 43) 1 =0 17

18 44) log ( ) =0 54) () = 45) = +2 55) 10 log (10 )=80 46) =0 56) 2 ] =16 47) = 48) 1,5 M,: 9=0 49) 6,0(h 16,0)=3,3h 50) sin ()= op domein U0,6<V 57) 60,2 log (10D)=30 58) ( ) = 59) =1 60) (36 % 36) =36 51) 10 M, ` I =0,75 52) I +2=0 53) 0, ,6=0 61) a = IM a[m : 18

19 Algebra in de examens 2009 t/m ) Gegeven zijn de formules: 4,95 4,50) 100 7= b bc G=100 De formule van NA is te herleiden tot NA=! d+# Leid deze formule op algebraïsche wijze af en bereken! en #. 2) Gegeven : log(d)=0,075e+0,4 Deze formule kan met behulp van algebra worden omgewerkt tot d=# + f Bereken # en + in 1 decimaal nauwkeurig. 3) Gegeven: '= % +1 en % 20%+116 8'=0 Toon aan: % +20% 108=0 4) De formule P= 8MM g is met behulp van algebra om te werken tot de vorm log(p)=%+& log (T) Bereken op deze manier de waarden van % en &. 5) Gegeven de formule: log(g)=0,767 log(o) 2,097 Deze formule is te herleiden tot: G=! O h Bereken! en # in drie decimalen nauwkeurig. 6) Gegeven zijn de volgende vier formules: (1) D i =D i (2) i =< ' (3) i =< ' (4) D =ZD +19,62 j Uit deze 4 formules kan de volgende formule worden herleid: ' R = ] ' ZR ] [,I \ Voer deze herleiding uit. 7) Gegeven: log(d)= 5,5+3,1 log (T) 19

20 Werk deze formule om tot een formule van de vorm: d=! T h 8) Gegeven zijn de volgende formules: O` = k g [MM en O l = k],mn g o,pm [MM Verder geldt Q=T en N=O l O` Toon aan: N= g,mq MMM g^ [MM 9) Gegeven de twee formules: (1) J =; R I, =^ 2 (2) D=2,39 (F+4)^ De formule voor J is te herleiden tot een formule van de vorm J =! F+# Voer deze herleiding uit en bereken! en # in twee decimalen nauwkeurig. 10) Gegeven de formule h=33,3 D 1,2 Herleid deze formule zo, dat D uit gedrukt wordt in h. 20

21 Pilot examen 2016-I 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

WISKUNDE B HAVO NIEUW EXAMENPROGRAMMA VAKINFORMATIE STAATSEXAMEN 2017 V15.12.0

WISKUNDE B HAVO NIEUW EXAMENPROGRAMMA VAKINFORMATIE STAATSEXAMEN 2017 V15.12.0 WISKUNDE B HAVO NIEUW EXAMENPROGRAMMA VAKINFORMATIE STAATSEXAMEN 2017 V15.12.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk

Nadere informatie

Domein A: Vaardigheden

Domein A: Vaardigheden Examenprogramma Wiskunde A havo Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Algebra en tellen

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden

Nadere informatie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie domein subdomein in CE moet in SE mag in SE A Vaardigheden A1: Informatievaardigheden A2:

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

WISKUNDE B HAVO SYLLABUS CENTRAAL EXAMEN 2017 (BIJ HET NIEUWE EXAMENPROGRAMMA) (voor pilotscholen ook examen 2016) Nader vastgesteld

WISKUNDE B HAVO SYLLABUS CENTRAAL EXAMEN 2017 (BIJ HET NIEUWE EXAMENPROGRAMMA) (voor pilotscholen ook examen 2016) Nader vastgesteld WISKUNDE B HAVO SYLLABUS CENTRAAL EXAMEN 017 (BIJ HET NIEUWE EXAMENPROGRAMMA) (voor pilotscholen ook eamen 016) Nader vastgesteld WISKUNDE B HAVO Syllabus centraal eamen 017 (bij het nieuwe eamenprogramma)

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

WISKUNDE B HAVO CONCEPTSYLLABUS CENTRAAL EXAMEN 2017 (BIJ HET NIEUWE EXAMENPROGRAMMA)

WISKUNDE B HAVO CONCEPTSYLLABUS CENTRAAL EXAMEN 2017 (BIJ HET NIEUWE EXAMENPROGRAMMA) WISKUNDE B HAVO CONCEPTSYLLABUS CENTRAAL EXAMEN 017 (BIJ HET NIEUWE EXAMENPROGRAMMA) Versie: concept t.b.v. veldraadpleging, februari 013 WISKUNDE B HAVO CONCEPTSyllabus centraal eamen 017 Versie concept

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

De twee schepen komen niet precies op hetzelfde moment in S aan.

De twee schepen komen niet precies op hetzelfde moment in S aan. Gevaar op zee Schepen die elkaar te dicht naderen worden gewaarschuwd door de kustwacht. Wanneer schepen niet op zo n waarschuwing hebben gereageerd, stelt de Inspectie Verkeer en Waterstaat een onderzoek

Nadere informatie

WISKUNDE D HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE D HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE D HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies

Basisvormen (algebraische denkeenheden) van algebraische expressies/functies Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met

Nadere informatie

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16 Wiskunde Schooljaar 2014-2015 ( leerjaar 3 ) Theoretische en Gemengde leerweg Schoolexamen 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand 301T

Nadere informatie

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16 Wiskunde Het schoolexamen in het vierde leerjaar (2015-2016) wordt ook toegepast binnen de locatie Statenkwartier. Schooljaar 2014-2015 ( leerjaar 3 ) Kader Schoolexamen 1 SE 1 De volgende onderdelen worden

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2010 tijdvak 1 dinsdag 18 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

WISKUNDE B HAVO. Syllabus centraal examen 2015

WISKUNDE B HAVO. Syllabus centraal examen 2015 WISKUNDE B HAVO Syllabus centraal examen 015 April 013 Verantwoording: 013 College voor Examens vwo, havo, vmbo, Utrecht. Alle rechten voorbehouden. Alles uit deze uitgave mag worden verveelvoudigd, opgeslagen

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

Leerlijnen REKENEN WISKUNDE (BB)

Leerlijnen REKENEN WISKUNDE (BB) Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 19 juni 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 19 juni 13.30-16.30 uur Examen HVO 2013 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo kader Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

11 e editie. Inhoudsopgaven VWO 5

11 e editie. Inhoudsopgaven VWO 5 11 e editie Inhoudsopgaven VWO 5 Inhoudsopgave 5 vwo A 1 Formules herleiden 1-1 Lineaire formules 1-2 Gebroken formules 1-3 Wortelformules 1-4 Machtsformules 1-5 Gemengde opdrachten 2 Statistiek (op computer)

Nadere informatie

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking.

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking. G&R havo B deel Differentiaalrekening C von Schwartzenberg /0 Toets voorkennis EXTRA: Differentiëren op bladzijde 56 aan het einde van deze uitwerking a f ( ) 5 7 f '( ) 8 5 b g( ) ( 5) 5 g '( ) 6 0 c

Nadere informatie

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld.

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld. Windenergie Er wordt steeds meer gebruikgemaakt van windenergie. Hoewel de bijdrage van windenergie nu nog klein is, kan windenergie in de toekomst een grote bijdrage aan onze elektriciteitsvoorziening

Nadere informatie

Examenvoorbereiding 2016 Wiskunde A (HAVO)

Examenvoorbereiding 2016 Wiskunde A (HAVO) Examenvoorbereiding 2016 Wiskunde A (HAVO) Het examen wiskunde A havo bestaat uit twee onderdelen (elk 50%), namelijk: 1. centraal examen (schriftelijk) 2. college-examen (mondeling) centraal examen (schriftelijk)

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2012 tijdvak 2 woensdag 20 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage.. Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

WISKUNDE B VWO. Syllabus bij het conceptexamenprogramma Werkversie 2

WISKUNDE B VWO. Syllabus bij het conceptexamenprogramma Werkversie 2 WISKUNDE B VWO Syllabus bij het concepteamenprogramma Werkversie September 01 Colofonpagina: Alle rechten voorbehouden. Alles uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd

Nadere informatie

Examen HAVO. wiskunde B 1,2

Examen HAVO. wiskunde B 1,2 wiskunde 1, Examen HVO Hoger lgemeen Voortgezet Onderwijs Tijdvak Woensdag 1 juni 13.30 16.30 uur 0 06 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit 18 vragen. Voor elk vraagnummer

Nadere informatie

Examenvoorbereiding 2014-2015 Wiskunde D VWO

Examenvoorbereiding 2014-2015 Wiskunde D VWO Examenvoorbereiding 2014-2015 Wiskunde D VWO Het examen wiskunde D VWO bestaat uit één onderdeel, namelijk: Het commissie-examen (een mondeling examen van 40 min; vóór het mondeling 20 minuten voorbereiden

Nadere informatie

Exameninfo 2016 vwo Wiskunde D

Exameninfo 2016 vwo Wiskunde D Exameninfo 2016 vwo Wiskunde D Het examen wiskunde D bestaat alleen uit een mondeling college-examen, er is geen centraal examen (schriftelijk). College-examen (mondeling) datum duur tijdstip locatie meenemen

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie

Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie Wiskunde 2 september 2008 versie 1-1 - Op hoeveel verschillende manieren kun je drie zwarte pionnen verdelen over de 32 zwarte velden van een schaakbord? (Neem aan dat op elk veld hooguit één pion staat.)

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

GONIOMETRIE MAAR DAN ANDERS. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14

GONIOMETRIE MAAR DAN ANDERS. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14 GONIOMETRIE MAAR DAN ANDERS Inhoudsopgave Achtergrondinformatie... 3 Docentenhandleiding... 5 BIJLAGEN... 10 Goniometrie, leerling blad 1... 10 INTRODUCTIE sinusoïde... 11 WISKUNDIGE DENKACTIVITEIT GONIOMETRIE...

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

WISKUNDE B VWO CONCEPTSYLLABUS CENTRAAL EXAMEN 2018 (BIJ HET NIEUWE EXAMENPROGRAMMA)

WISKUNDE B VWO CONCEPTSYLLABUS CENTRAAL EXAMEN 2018 (BIJ HET NIEUWE EXAMENPROGRAMMA) WISKUNDE B VWO CONCEPTSYLLABUS CENTRAAL EAMEN 018 (BIJ HET NIEUWE EAMENPROGRAMMA) Versie concept t.b.v. veldraadpleging, februari 013 WISKUNDE B VWO Conceptsyllabus centraal eamen 018 Versie concept t.b.v.

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 008 tijdvak woensdag 18 juni 13.30-16.30 wiskunde B1, Bij dit examen hoort een uitwerkbijlage. it examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor elk

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur Examen HVO 2013 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B Centrale Commissie Voortentamen Wiskunde Syllabus voortentamen Wiskunde B Deze syllabus bevat een beschrijving van het programma van het voortentamen Wiskunde B dat wordt afgenomen door de Centrale Commissie

Nadere informatie

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A.

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Wiskunde voor het hoger onderwijs deel A Errata 00 Noordhoff Uitgevers Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Hoofdstuk. 4 Op blz. in het Theorieboek staat halverwege de

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp: Kwadraten en Wortels H1 19 De leerling leert passende wiskundetaal te gebruiken voor het ordenen van het eigen denken en voor uitleg aan anderen, en leert de wiskundetaal van anderen te begrijpen.

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B 1 Analytische meetkunde Inhoud 1.1. Coördinaten in het vlak 1.2. Vergelijkingen van lijnen 1.3. Vergelijkingen van cirkels 1.4. Snijden 1.5. Overzicht In opdracht van: Commissie

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. STAATSCOURANT Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. Nr. 7228 14 maart 2014 Regeling van de Staatssecretaris van Onderwijs, Cultuur en Wetenschap van 22 februari 2014, nr. VO/599178,

Nadere informatie

Veranderd wiskundeonderwijs

Veranderd wiskundeonderwijs Veranderd wiskundeonderwijs Gevolgen van de invoering nieuwe examenprogramma s augustus 2015 SLO nationaal expertisecentrum leerplanontwikkeling Veranderd wiskundeonderwijs Gevolgen van de invoering nieuwe

Nadere informatie

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Havo A deel 1 begint met het niet-examenonderwerp Statistiek (was hoofdstuk 4). Al snel wordt de grafische rekenmachine ingezet en ook bij de andere

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 19 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 19 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2009 tijdvak 1 dinsdag 19 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor

Nadere informatie

Inleiding goniometrie

Inleiding goniometrie Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B Analytische meetkunde Inhoud.. Coördinaten in het vlak.. Vergelijkingen van lijnen.3. Vergelijkingen van cirkels.4. Snijden.5. Overzicht In opdracht van: Commissie Toekomst Wiskunde

Nadere informatie

Voorbeeldexamen Wiskunde B Havo

Voorbeeldexamen Wiskunde B Havo Voorbeeldexamen Wiskunde B Havo Datum: Tijd: 13:00-16:00 Aantal opgaven: 6 Aantal subvragen: 18 Totaal aantal punten: 67 ) Zet uw naam op alle blaadjes die u inlevert. ) Laat bij iedere opgave door middel

Nadere informatie

1 Lineaire functies. 2 Kwadratische functies. 3 Gebroken functies. Info Wiskunde HBO

1 Lineaire functies. 2 Kwadratische functies. 3 Gebroken functies. Info Wiskunde HBO Info Wiskunde HBO Lineaire functies. Onderwerpen opgave. Formule, tabel en grafiek... Betekenis snijpunt lineaire grafieken.. t/m.. Functievoorschrift en constantes bij lineair verband.. t/m.6. Gelijkheden

Nadere informatie

Exameninfo 2015 havo wiskunde B

Exameninfo 2015 havo wiskunde B Exameninfo 2015 havo wiskunde B Het staatsexamen havo wiskunde B bestaat uit twee onderdelen (elk 50%), namelijk: 1. centraal examen (schriftelijk) 2. college-examen (mondeling) centraal examen datum woensdag

Nadere informatie

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1

Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1 Eindexamen wiskunde B havo 0 - II Beoordelingsmodel Tonregel van Kepler maximumscore 6 G = B = π 9 ( 64) (cm ) Voor de cirkel op halve hoogte geldt: πr = (met r de straal van de cirkel in cm) Hieruit volgt

Nadere informatie

Examenprogramma wiskunde D havo

Examenprogramma wiskunde D havo Examenprogramma wiskunde D havo Het eindexamen Het eindexamen bestaat uit het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Kansrekening en statistiek

Nadere informatie

Wiskunde 20 maart 2014 versie 1-1 -

Wiskunde 20 maart 2014 versie 1-1 - Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

HANDBOEK Pienter 5/6 TSO 2/3/4u Exponentiële en logaritmische functies Pienter 6 TSO 2/3/4u Integralen STUDIERICHTING

HANDBOEK Pienter 5/6 TSO 2/3/4u Exponentiële en logaritmische functies Pienter 6 TSO 2/3/4u Integralen STUDIERICHTING JAARPLANNING GRAAD 3 VAK Wiskunde LEERJAAR 2 U/W 3+1 SCHOOLJAAR 2011-2012 HANDBOEK Pienter 5/6 TSO 2/3/4u Exponentiële en logaritmische functies Pienter 6 TSO 2/3/4u Integralen STUDIERICHTING 6BV LP NR

Nadere informatie

Eindexamen wiskunde B havo 2011 - I

Eindexamen wiskunde B havo 2011 - I Overlevingstijd Als iemand in koud water terecht komt, daalt zijn lichaamstemperatuur. Als de lichaamstemperatuur is gedaald tot 30 ºC ontstaat een levensbedreigende situatie. De tijd die verstrijkt tussen

Nadere informatie

Examen HAVO 2012. wiskunde B. tijdvak 1 donderdag 24 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2012. wiskunde B. tijdvak 1 donderdag 24 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2012 tijdvak 1 donderdag 24 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Vliegende parkieten Opgave 1. Het energieverbruik van de parkiet als deze vliegt met

Nadere informatie

Voorbereiding HBO Wiskunde voor de techniek

Voorbereiding HBO Wiskunde voor de techniek Keuzedeel mbo Voorbereiding HBO Wiskunde voor de techniek behorend bij één of meerdere kwalificaties mbo Op dit moment is een wijziging van de WEB in voorbereiding waarmee de positie van keuzedelen in

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Schoolexamen 5 havo Wiskunde B

Schoolexamen 5 havo Wiskunde B Schoolexamen 5 havo Wiskunde B Dinsdag 14 januari 2014 8:30-10:30 docenten koo, vri Dit examen bestaat uit 20 vragen Er is zijn 2 uitwerkbijlagen (één vel) Geef steeds al je berekeningen en overwegingen.

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

EXAMENBOEKJE 2014 2015 BB4. Met o.a.: Tips en trucs Stofomschrijving Handige sites

EXAMENBOEKJE 2014 2015 BB4. Met o.a.: Tips en trucs Stofomschrijving Handige sites EXAMENBOEKJE 2014 2015 BB4 Met o.a.: Tips en trucs Stofomschrijving Handige sites EINDEXAMEN NEDERLANDS BB4 Te leren stof: Bij de voorbereiding van dit examen is oefenen erg belangrijk om de stof te leren.

Nadere informatie

REKENTOETS VMBO BB/KB/GL/TL

REKENTOETS VMBO BB/KB/GL/TL Wijziging op 19-01-2016 bij punt 4 Dyslexie of dyscalculie: de aangepaste rekentoets ER duurt 120 minuten in plaats van 150 minuten. Wijziging op 04-02-2016 bij punt 3: de rekentoets duurt 90 minuten in

Nadere informatie