Hoofdstuk 6. Dihedrale groepen. 6.1 Definitie

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 6. Dihedrale groepen. 6.1 Definitie"

Transcriptie

1 Hoofdstuk 6 Dihedrale groepen 6.1 Definitie Definitie 6.1. De dihaeder groep is de symmetriegroep van een regelmatige n-hoek. Dit is de verzameling van alle transformaties in het vlak die de regelmatige n-hoek op zichzelf afbeelden, uitgerust met de samenstelling van transformaties. Als notatie gebruikt men zowel D n als D n. Wij kiezen voor de eerste notatie. Een regelmatige n-hoek heeft n symmetrieën: n rotaties over de hoeken π met als centrum het middelpunt van de omgeschreven cirkel en n spiegelingen. Als n oneven is dan gaan de n symmetrieassen n door een hoekpunt en door het midden van de overstaande zijde. 63

2 Als n even is zijn er n symmetrieassen door de middens van overstaande zijden en n symmetrieassen door overstaande hoekpunten. De samenstelling van twee spiegelingen is een rotatie rond het snijpunt van de spiegelassen over een hoek gelijk aan het dubbel van de hoek tussen de spiegelassen. voorstellen door r dan zijn alle Als we de rotatie over een hoek π n rotaties van de vorm r k met 1 k n 1. De identieke transformatie kan beschouwd worden als een rotatie over 0. Als we 1 van de spiegelingen voorstellen door s dan zijn de andere spiegelingen de samenstelling van deze spiegeling en een rotatie, dus van de vorm sr k met 1 k n 1. Bovendien geldt er dat sr k = r n k s Elke spiegeling is een element van orde twee. Dus: D n = {1, r, r,, r n 1, s, sr, sr,, sr n 1 } Een andere mogelijke notatie is dat we voor een rotatie over een hoek π.k het symbool r n k gebruiken en voor een spiegeling met een as die een hoek van π.k maakt met de X-as het symbool s n k gebruiken. De dihaeder groep bestaat dan uit de elementen r 0,, r n 1, s 0,, s n 1. Voor het samenstellen van de elementen gebruiken we de volgende rekenregels: r i r j = r i+j, r i s j = s i+j, s i r j = s i j en s i s j = r i j, waarbij voor de som en het verschil van de indices modulo n wordt gewerkt. 64

3 De dihaedergroep D 1 bevat de rotatie over 0, de identieke transformatie dus, en de spiegeling s rond de X-as. Dus is D 1 = {1, s} = C. De dihaedergroep D wordt voortgebracht door de rotatie r over 180 en de spiegeling s rond de X-as. Dus is D = {1, r, s, sr} = C C. Hierbij stelt sr de spiegeling rond de Y-as voor. Dit zijn de enige twee dihaedergroepen die abels zijn. Dus: n 3 : D n is niet abels. Vanaf nu veronderstellen we dat n 3. Stelling 6.. D n = Cn C = Zn Z. Bewijs. De verzameling van de rotaties H = {1, r,, r n 1 } is een deelgroep van D n en heeft index en is dus een normaaldeler van D n. Verder is K = {1, s} ook een deelgroep van D n, H K = {1} en HK = D n. Bijgevolg is D n het semidirect product van H en K. De structuur van D n wordt bepaald door het homomorfisme ϕ : K Aut(H) met ϕ s : H H : r srs = r n 1. Dan is r i r j = (r i, 1)(r j, 1) = (r i ϕ 1 (r j ), 1) = (r i r j, 1) = r i+j. Verder is r i s.r j = (r i, s)(r j, 1) = (r i ϕ s (r j ), s) = (r i j, s) = r i j s. Uit het feit dat H = Z n en dat K = Z volgt het gestelde. Stelling 6.3. Als n oneven dan is D n = Dn C = Dn Z. Bewijs. Construeer A = {1, r,, r n, s, sr,, sr n } en B = {1, r n }. A heeft index in D n en is dus een normaaldeler. Omdat (sr k )r n (sr k ) 1 = sr n s = r n is ook B een normaaldeler van D n en omdat A = D n en B = C = Z volgt het gestelde. 6. De structuur van dihedrale groepen We bestuderen nu de structuur van D n : de ordes van de elementen, de toevoegingsklassen en de deelgroepen. 65

4 Stelling 6.4. De ordes van de elementen van D n zijn : o(r k ) = n ggd(r,n) en o(rk s) =. Bewijs. Het eerste resultaat volgt uit het feit dat de rotaties een cyclische groep van orde n vormen. Omdat de elementen r k s spiegelingen zijn, is de orde gelijk aan. Stelling 6.5. Als n even is dan heeft D n n+6 toevoegingsklassen. Bewijs. Omdat sr k s = r k zijn r k en r k toegevoegd. Verder zijn r i r k r i = r k en (r i s)r k (r i s) 1 = r k, dus zijn de enige toegevoegde elementen van r k ofwel r k ofwel r k. Om de toevoegingsklassen van s te vinden berekenen we r i sr i = r i s en (r i s)s(r i s) 1 = r i s. De andere spiegelingen zijn toegevoegd aan rs. De toevoegingsklassen zijn dus: C 1 = {1}, C = {r n }, C k = {rk, r k } met 0 < k < n, C 3 = {s, r s, r 4 s,, r n s} en C 4 = {rs, r 3 s,, r n 1 s}. Het aantal klassen is dan ( n n+6 1) =. Gevolg 6.6. Als n even is dan is Z(D n ) = {1, r n }, want het centrum bestaat uit de toevoegingsklassen met 1 element. Stelling 6.7. Als n oneven is dan heeft D n n+3 toevoegingsklassen. Bewijs. Het bewijs verloopt analoog aan het vorige bewijs buiten het feit dat alle spiegelingen nu toegevoegd zijn aan s. De toevoegingsklassen zijn: C 1 = {1}, C k = {rk, r k } met 0 < k < n, C = {s, rs, r s,, r n 1 s}. Het aantal klassen is dan 1+ n 1 +1 = n+3. Gevolg 6.8. Als n oneven dan is Z(D n ) = {1}, want het centrum bestaat uit de toevoegingsklassen met 1 element. We hebben dus gevonden dat een rotatie enkel toegevoegd is aan zijn inverse (welke een andere rotatie is tenzij voor de identieke en bij even n de rotatie r n ). De verzameling spiegelingen bestaat uit 1 of toevoegingsklassen naargelang n oneven of even is. In het laatste geval horen 66

5 de symmetrieassen door de middens van overstaande zijden bij elkaar en de symmetrieassen door overstaande hoekpunten vormen de andere klasse. Bestuderen we nu de deelgroepen van D n. Een eerste soort deelgroepen vinden we door de deelgroepen te nemen van het cyclische deel N = {1, r, r,, r n 1 }. Het aantal deelgroepen is gelijk aan het aantal delers van n, genoteerd door τ(n). Deze deelgroepen zijn allemaal cyclisch en hebben als orde n, waarbij d een deler is van n. Deze deelgroepen zijn ook d allemaal normaaldelers in D n. Stelling 6.9. Als H een deelgroep is van D n, dan is H ofwel een deelgroep van N ofwel is H N = d en H = d, met d een deler van n. Bewijs. Omdat N een normaaldeler is van D n, is HN D n HN deelt n H N deelt n. Dan is H N gelijk aan 1 of. In H N H N het eerste geval ligt H helemaal in N en is H dus een deelgroep van N. In het andere geval is H = H N = d en omdat H N N is d een deler van n. Stelling Stel m.d = n en A(i, d) = {sr i+km : 0 k < d} en 0 i < m. Dan is B(i, d) = A(i, d) r m een deelgroep van D n met orde d. Bewijs. Het aantal elementen van A(i, d) is gelijk aan d want stel dat twee elementen zouden gelijk zijn dan is sr i+km = sr i+lm r (k l)m = 1. Dan is n (k l)m d k l k = l. Omdat de orde van r m gelijk is aan d, is het aantal elementen van B(i, d) gelijk aan d. Bovendien is B(i, d) een deelgroep van D n, want sr i+km.(sr i+lm ) 1 = r (l k)m B(i, d) en sr i+km.(r pm ) 1 = sr i+(k p)m B(i, d). Gevolg Er zijn m = n van dergelijke deelgroepen B(i, d), want d B(i, d) = B(j, d) A(i, d) = A(j, d) i j mod m 67

6 Gevolg 6.1. Als deze deelgroepen B(i, d) zijn dihaedergroepen want ze worden voortgebracht door twee elementen van orde : r d en r i s. Het bewijs hiervan vinden we terug in 5.4 Stelling Het aantal deelgroepen van D n is gelijk aan τ(n) + σ(n) met σ(n) de som van het aantal delers van n.(stephan A.Cavior,1975) Bewijs. Als H een deelgroep is van D n, dan is H ofwel een deelgroep van N en zo zijn er τ(n), ofwel is H N = d en H = d, met d een deler van n. Stel n = m.d. Omdat H N < N wordt H N voortgebracht door r m. Nu bestaat er een i met 0 i < n waarvoor sr i H en omdat r km H is sr i+km H. Bijgevolg ligt A(i, d) en ook B(i, d) in H. Omdat ze evenveel elementen bevatten is H = B(i, d). Voor elke deler d van n zijn er n van dergelijke deelgroepen. Het totaal d aantal is dan n d n = d d n d = σ(n). Gevolg De deelgroepen van een dihedrale groep zijn ofwel cyclisch ofwel dihedraal. Gevolg Als n = d.m, dan heeft D n juist m deelgroepen isomorf met D d en 1 deelgroep isomorf met C d. Gevolg De maximale deelgroepen van D n zijn: N = C n de deelgroepen isomorf met D p, waarbij p een priemdeler is van n. Stelling Een echte deelgroep H is een normaaldeler van D n als en slechts als H N of als n even is en H is 1 van de volgende maximale deelgroepen met index : r, s of r, rs Bewijs. Als H een normaaldeler is van D n en H bevat een element r i s, dan bevat het de hele toevoegingsklassen van dit element. Als n oneven is, dan is er maar 1 toevoegingsklasse met spiegelingen en dus is H = D n. Als n even is en i is even dan zitten s en r s in H en dus zit ook r in H. Bijgevolg is H = r, s. Als i oneven is dan zitten rs en r 3 s in H en bijgevolg zit ook r = rsr 3 s in H. Dan is H = r, rs. 68

7 Stelling De afgeleide groep D n = r. Bewijs. [r, s] = rsr 1 s 1 = r. Dus is r een commutator en is r D n. Rest te bewijzen dat elke andere commutator een macht van r is. Nu is r een normaaldeler van D n en als n even is is Dn r = {1, r, s, rs} abels. Bijgevolg is D n r. Hieruit volgt het gestelde. Als n oneven is dan is Dn r = {1, s} en volgt dezelfde redenering. Gevolg Als n oneven is, geldt r = r en is dus D n = r. 6.3 De automorfismegroep van D n Bestuderen we tenslotte de automorfismegroep van de dihedergroepen. We hebben al informatie over de inwendige automorfismen: (a) Als n oneven is dan is Inn(D n ) = Dn Z(G) = D n. (b) Als n = k even is dan is Inn(G) = Dn r k = D k. Stelling 6.0. Aut(D n ) = Z n Z n. Bewijs. De elementen van orde n in D n zijn de elementen r i waarbij de ggd(i,n)=1. De elementen van orde zijn de elementen r j s en als n even is het element r n. De automorfismen van D n moeten die elementen onderling op elkaar afbeelden. Definieer dus de volgende automorfismen: ϕ ij met i Z n en j Z n, waarbij ϕ ij (s) = sr j en ϕ ij (r) = r i. Dan is Aut(D n ) = {ϕ ij }. De samenstelling voldoet aan de volgende regel: ϕ i1 j 1 ϕ i j = ϕ i1 i,j 1 +i 1 j. Definieer de deelgroepen N = {ϕ 1j : j Z n } en U = {ϕ i0 : i Z n }. Het is duidelijk dat N = Z n en U = Z n. Wetende dat ϕ 1 ij = ϕ i 1, ji 1, kunnen we aantonen dat N een normaaldeler is van Aut(D n ), want ϕ ij ϕ 1k ϕ 1 ij = ϕ ij ϕ i 1,k ji 1 = ϕ 1,ik N. Dan is Aut(D n ) = N Φ U voor een zekere Φ : U Aut(N). Hierbij is Φ ϕi0 (ϕ 1j ) = ϕ i0 ϕ 1j ϕ 1 i0 = ϕ 1,ij. 69

8 6.4 Enkele stellingen Een groep die eigenschappen heeft zoals D n is het homomorfe beeld van D n of is isomorf met D n : Stelling 6.1. Als G = a, b : a n = b = 1 en bab 1 = a 1 dan bestaat er een surjectief homomorfisme f : D n G en als G = n, dan is G = D n. Bewijs. Uit bab 1 = a 1 volgt dat ba j b 1 = a j. Toevoeging met b geeft b k a j b k = a ( 1)kj zodat b k a j == a ( 1)k jb k. Definieer nu f : D n G : r j s k a j b k. Het is duidelijk dat f een homomorfisme is, want f(r j.r i ) = f(r j+i ) = a j+i = a j a i = f(r j ).f(r i ). Ook is f(r j s.r i s) = f(r j i ) = a j i = a j b.a i b = f(r j s).f(r i s). Het homomorfisme f is bovendien surjectief. Hieruit volgt het gestelde. Uit deze stelling kunnen we volgend resultaat afleiden: Stelling 6.. Een eindige, niet-abelse groep voortgebracht door twee elementen van orde is isomorf met D n. Bewijs. Stel G = x, y met x = y = 1. Omdat G niet-abels is weten we dat xy yx. Omdat G eindig is bestaat er een n waarvoor geldt dat (xy) n = 1. Noteer nu a = xy en b = y. We kunnen dan stellen dat G = a, b : a n = b = 1. Omdat de orde van a gelijk is aan n en omdat b / a zal de orde van G minstens n zijn. De waarde van n is minstens 3 want als n = zou a = 1 xyxy = 1 xy = y 1 x 1 = yx en dit is onmogelijk omdat G niet-abels is. Bovendien geldt er dat bab 1 = yxyy = yx = y 1 x 1 = a 1. Volgens de vorige stelling bestaat er dan een surjectief homomorfisme tussen D n en G. Dan is de orde van G dus hoogstens n. Bijgevolg is die orde juist gelijk aan n en is G isomorf met D n. Gevolg 6.3. Het homomorfe beeld van een dihaedergroep is altijd een dihaeder groep, want dit homomorfe beeld wordt voortgebracht door twee elementen met maximale orde. Als beide elementen orde twee hebben dan geldt volgens vorig resultaat dat het beeld een dihaedergroep 70

9 is. Heeft 1 van de voortbrengende elementen echter orde 1 dan krijgen we een cyclische groep van orde en deze is isomorf met D 1. 71

Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element.

Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element. Hoofdstuk 5 Cyclische groepen 5.1 Definitie Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element. Als G wordt voortgebracht door a en a n = e, dan noteren we de groep als C n = a.

Nadere informatie

Deelgroepen en normaaldelers

Deelgroepen en normaaldelers Hoofdstuk 2 Deelgroepen en normaaldelers 2.1 Wat is een deelgroep? Definitie 2.1. Een deelverzameling H van een groep G, is een deelgroep van G als en slechts als H niet leeg is en H, zelf een groep is.

Nadere informatie

5 Inleiding tot de groepentheorie

5 Inleiding tot de groepentheorie 5 Inleiding tot de groepentheorie Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze groep de viergroep van Klein bezit als deelgroep van index 2. Oplossing

Nadere informatie

Tentamen algebra 1. 8 juni 2005, , zaal A.404

Tentamen algebra 1. 8 juni 2005, , zaal A.404 Tentamen algebra 1 8 juni 2005, 13.30 16.30, zaal A.404 Schrijf je naam en collegekaartnummer of het werk dat je inlevert. Het tentamen bestaat uit 5 opgaven. Beargumenteer telkens je antwoord. Veel succes!

Nadere informatie

Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat:

Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat: Hoofdstuk 1 Eerste begrippen 1.1 Wat is een groep? Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat: 1. a, b G : a b G 2. a, b, c G : a (b c) = (a b) c = a

Nadere informatie

Congruentie deelgroepen

Congruentie deelgroepen Congruentie deelgroepen 2 Definities Congruentie deelgroepen zijn deelgroepen van matrixgroepen met gehele elementen die bepaald worden door congruentie relaties. De eenvoudigste omgeving om die congruentie

Nadere informatie

Definitie 8.1. De groep van alle permutaties van een gegeven verzameling X is de symmetriegroep op n elementen, genoteerd als Sym(X).

Definitie 8.1. De groep van alle permutaties van een gegeven verzameling X is de symmetriegroep op n elementen, genoteerd als Sym(X). Hoofdstuk 8 Werking van een groep 8.1 Permutatiegroepen Een permutatie van een verzameling X is een bijectie van die verzameling op zichzelf. Een verzameling X met n elementen heeft juist n! permutaties.

Nadere informatie

Algebra. Oefeningen op hoofdstuk Groepentheorie Cayleytabellen van groepen van orde Cyclische groepen

Algebra. Oefeningen op hoofdstuk Groepentheorie Cayleytabellen van groepen van orde Cyclische groepen Oefeningen op hoofdstuk 5 Algebra 5.2 Groepentheorie 5.2.1 Cayleytabellen van groepen van orde 8 Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze

Nadere informatie

Definitie 4.1. Als H en K normaaldelers zijn van een groep G en H K = {e} en HK = G dan noemt men G het direct product van

Definitie 4.1. Als H en K normaaldelers zijn van een groep G en H K = {e} en HK = G dan noemt men G het direct product van Hoofdstuk 4 Groepsconstructies 4.1 Direct product We gaan nu bestuderen hoe we van 2 groepen een nieuwe groep kunnen maken of hoe we een groep kunnen schrijven als een product van 2 groepen met kleinere

Nadere informatie

5.2.4 Varia in groepentheorie

5.2.4 Varia in groepentheorie Oefeningen op hoofdstuk 5 Algebra 5.2 Groepentheorie 5.2.1 Cayleytabellen van groepen van orde 8 Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze

Nadere informatie

Velduitbreidingen. Hector Mommaerts

Velduitbreidingen. Hector Mommaerts Velduitbreidingen Hector Mommaerts 2 Hoofdstuk 1 Basisbegrippen 1.1 Definities Definitie 1.1. Een veld L is een uitbreiding van het veld K als het ontstaat door aan K één of meerdere elementen toe te voegen.

Nadere informatie

Ad(g) := (h ghg 1 ).

Ad(g) := (h ghg 1 ). Inleveropgave 7 (inleverdatum: 22 nov) Gegeven een groep G, zij de afbeelding Ad : G Aut(G) gegeven door Ad(g) := (h ghg 1 ) Laat zien dat Ad een homomorfisme is Laat zien dat ker(ad) gelijk is aan het

Nadere informatie

Opgave 1 Bepaal welke van de volgende beweringen juist zijn: = Z2 Z 6 (R >0, ) = (R, +) (Z, +) = (Q, +)

Opgave 1 Bepaal welke van de volgende beweringen juist zijn: = Z2 Z 6 (R >0, ) = (R, +) (Z, +) = (Q, +) Deeltentamen Groepentheorie (WISB221). A. Henriques, Nov 2012. Geef niet alleen anwoorden, maar bewijs al je beweringen. Opgave 1 Bepaal welke van de volgende beweringen juist zijn: [5pt] Z 5 = Z 4, Z

Nadere informatie

1 Groepen van orde 24.

1 Groepen van orde 24. 1 1 Groepen van orde 24. Als G een groep van orde 24 is, dan zeggen de stellingen van Sylov: Het aantal 2-Sylow-groepen van G is 1 modulo 2 en bovendien een deler van 24, dus bedraagt 1 of 3. Het aantal

Nadere informatie

Eenheden in groepsringen

Eenheden in groepsringen Eenheden in groepsringen 2 Hoofdstuk 1 Bicyclische eenheden 1.1 Definitie Veronderstel dat R een willekeurige ring is met eenheidselement. Een belangrijk onderzoeksproject is het zoeken naar eenheden.

Nadere informatie

Stelling 1.5 Geven isometrieën J 1 en J 2 hetzelfde beeld in drie punten die niet op één lijn liggen, dan zijn ze identiek. Bewijs. De isometrie J 1 2

Stelling 1.5 Geven isometrieën J 1 en J 2 hetzelfde beeld in drie punten die niet op één lijn liggen, dan zijn ze identiek. Bewijs. De isometrie J 1 2 Lesbrief 8 Isometrieën 1 Inleiding Een één-éénduidige afbeelding van het vlak op zichzelf heet een transformatie van het vlak. Als T 1 en T 2 transformaties zijn, wordt de transformatie T 1 gevolgd door

Nadere informatie

Tentamen algebra 1 Woensdag 24 juni 2015, 10:00 13:00 Snelliusgebouw B1 (extra tijd), B2, B3, 312

Tentamen algebra 1 Woensdag 24 juni 2015, 10:00 13:00 Snelliusgebouw B1 (extra tijd), B2, B3, 312 Tentamen algebra 1 Woensdag 24 juni 2015, 10:00 13:00 Snelliusgebouw B1 (extra tijd), B2, B3, 312 Je mag de syllabus en aantekeningen gebruiken, maar geen rekenmachine. Je mag opgaven 2.46, 2.49 en 8.13

Nadere informatie

Pijlenklokken. 1 Inleiding

Pijlenklokken. 1 Inleiding Pijlenklokken 1 Inleiding In bovenstaande tekening zie je 1 rode punten. Er staan blauwe pijlen van elk rood punt naar een ander rood punt 4 plaatsen verder op de cirkel. Een dergelijke afbeelding noemen

Nadere informatie

Platonische transformatiegroepen

Platonische transformatiegroepen Platonische transformatiegroepen Luc Van den Broeck 8 augustus 2015 Samenvatting In dit document worden de transformatiegroepen van de platonische lichamen bestudeerd. Zonder te vervallen in algebraïsche

Nadere informatie

Perfecte getallen en Leinster groepen

Perfecte getallen en Leinster groepen Faculteit Wetenschappen Departement Wiskunde Perfecte getallen en Leinster groepen Bachelorproef 1 Lukas Boelens Promotor: Dr. Andreas Bächle 29 januari 2015 Inhoudsopgave 1 Inleiding 2 2 Perfecte getallen

Nadere informatie

Inleiding tot groepentheorie

Inleiding tot groepentheorie Hoofdstuk Inleiding tot groepentheorie 1 Basisdefinities Een algebraïsche structuur bestaat meestal uit een verzameling waarop één of meerdere bewerkingen gedefinieerd zijn. Definitie Een inwendige bewerking

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Uitwerkingen tentamen Algebra 3 8 juni 2017, 14:00 17:00

Uitwerkingen tentamen Algebra 3 8 juni 2017, 14:00 17:00 Uitwerkingen tentamen Algebra 3 8 juni 207, 4:00 7:00 Je mocht zoals gezegd niet zonder uitleg naar opgaven verwijzen. Sommige berekeningen zijn hier weggelaten. Die moest je op je tentamen wel laten zien.

Nadere informatie

Men kan enkele samenstellingen berekenen en vervolgens de Cayleytabel aanvullen, wetende dat het een Latijns vierkant is. De Cayleytabel wordt:

Men kan enkele samenstellingen berekenen en vervolgens de Cayleytabel aanvullen, wetende dat het een Latijns vierkant is. De Cayleytabel wordt: Oefeningen op hoofdstuk 5 Algebra 5.2 Groepentheorie 5.2.1 Cayleytabellen van groepen van orde 8 Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

1 Introductie. 2 Oppervlakteformules

1 Introductie. 2 Oppervlakteformules Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

6 Ringen, lichamen, velden

6 Ringen, lichamen, velden 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x 2 + 2x + 2 irreducibel is in Z 3 [x]. Oplossing 6.1 Aangezien de veelterm van graad 3 is,

Nadere informatie

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license,

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, Inhoudsopgave 1 Groepen 1 1.1 Definitie en voorbeelden..................... 1 1.2 Deelgroepen en de stelling van Lagrange............ 5 1.3 Morfismen, kern, normaaldelers................. 13 1.4 Cyclische

Nadere informatie

1 Nilpotente en oplosbare groepen Groepen bouwen De correspondentiestelling Nilpotente en oplosbare groepen...

1 Nilpotente en oplosbare groepen Groepen bouwen De correspondentiestelling Nilpotente en oplosbare groepen... Inhoudsopgave 1 Nilpotente en oplosbare groepen 1 1.1 Groepen bouwen......................... 1 1.2 De correspondentiestelling.................... 7 1.3 Nilpotente en oplosbare groepen.................

Nadere informatie

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license,

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, Inhoudsopgave 1 Groepen 1 1.1 Groepen, deelgroepen en voorbeelden.............. 1 1.2 Verdere definities en eigenschappen............... 8 1.3 Groepsmorfismen......................... 15 1.4 Cyclische

Nadere informatie

IMO-selectietoets III zaterdag 3 juni 2017

IMO-selectietoets III zaterdag 3 juni 2017 IMO-selectietoets III zaterdag 3 juni 017 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Gegeven is cirkel ω met middellijn AK. Punt M ligt binnen de cirkel, niet op lijn AK. De lijn AM snijdt

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

HOOFDSTUK 0. = α g1 α g2

HOOFDSTUK 0. = α g1 α g2 HOOFDSTUK 0 Acties van groepen 0.1 Groep-actie Uit de cursus Meetkunde en Lineaire Algebra van 1ste jaar Bachelor Wiskunde ([KI] in de referentielijst) weten we reeds wat een permutatiegroep G op een verzameling

Nadere informatie

Eenheden van orders van getallenvelden

Eenheden van orders van getallenvelden Eenheden van orders van getallenvelden Hoofdstuk 1 Orders 1.1 Definities Definitie 1.1. Een order is een subring O van een ring A zodat 1. A is een ring die een eindig dimensionele algebra is over Q..

Nadere informatie

1 Symmetrieën van figuren

1 Symmetrieën van figuren 1 Symmetrieën van figuren 1.1 Het mysterie van de hoge eik Als je door een met water gevulde reageerbuis heen de woorden DIE HOHE EICHE FÄLLT LANGSAM UM leest, waarbij de eerste drie woorden rood en de

Nadere informatie

Morenaments Ornamenten met symmetrie. Werkblad vooraf met begeleidende tekst en oplossingen

Morenaments Ornamenten met symmetrie. Werkblad vooraf met begeleidende tekst en oplossingen Morenaments Ornamenten met symmetrie Fien Aelter, Liesje Knaepen en Kristien Vanhuyse, studenten SLO wiskunde KU Leuven Werkblad vooraf met begeleidende tekst en oplossingen Dit werklad is een voorbereiding

Nadere informatie

Uitwerkingen toets 12 juni 2010

Uitwerkingen toets 12 juni 2010 Uitwerkingen toets 12 juni 2010 Opgave 1. Bekijk rijen a 1, a 2, a 3,... van positieve gehele getallen. Bepaal de kleinst mogelijke waarde van a 2010 als gegeven is: (i) a n < a n+1 voor alle n 1, (ii)

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Inversie. Hector Mommaerts

Inversie. Hector Mommaerts Inversie Hector Mommaerts 2 Hoofdstuk 1 Definities en constructies 1.1 Definitie We weten hoe we een punt moeten spiegelen rond een rechte. We gaan nu kijken hoe we een punt spiegelen rond een cirkel.

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie

Permuteerbare deelgroepen en Sylow deelgroepen

Permuteerbare deelgroepen en Sylow deelgroepen WETENSCHAPPEN WISKUNDE Permuteerbare deelgroepen en Sylow deelgroepen Bachelor Project I Shaun Bundervoet Promotor : Prof. Eric Jespers 2008-2009 Inhoudsopgave Voorwoord 1 1 Permuteerbaarheid 3 1.1 Elementaire

Nadere informatie

Samenvatting. Algebra 1 - Collegejaar Dictaat algebra 1. Disclaimer

Samenvatting. Algebra 1 - Collegejaar Dictaat algebra 1. Disclaimer Samenvatting Algebra 1 - Collegejaar 2011-2012 Dictaat algebra 1 Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst mogelijke zorgvuldigheid

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

IMO-selectietoets I donderdag 1 juni 2017

IMO-selectietoets I donderdag 1 juni 2017 IMO-selectietoets I donderdag 1 juni 2017 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Zij n een positief geheel getal. Gegeven zijn cirkelvormige schijven met stralen 1, 2,..., n. Van

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Selectietoets vrijdag 22 maart 2019

Selectietoets vrijdag 22 maart 2019 Selectietoets vrijdag 22 maart 2019 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Bewijs dat er voor elke positieve gehele n hoogstens twee paren (a, b) van positieve gehele getallen bestaan

Nadere informatie

RINGEN EN LICHAMEN. Aanvullende opgaven met uitwerkingen

RINGEN EN LICHAMEN. Aanvullende opgaven met uitwerkingen RINGEN EN LICHAMEN Aanvullende opgaven met uitwerkingen Hierna volgen een aantal aanvullende opgaven die gaan over kernbegrippen uit de eerste hoofdstukken van Ringen en Lichamen. Probeer deze opgaven

Nadere informatie

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen Hoofdstuk 3 Equivalentierelaties SCHAUM 2.8: Equivalence Relations Twee belangrijke voorbeelden van equivalentierelaties in de informatica: resten (modulo rekenen) en cardinaliteit (aftelbaarheid). 3.1

Nadere informatie

Errata: Opgave 80: [[R,U2],D ] ipv [[R,U2],D] Opgave 87. Dit is een herhaling van opgave Deze kan geschrapt worden.

Errata: Opgave 80: [[R,U2],D ] ipv [[R,U2],D] Opgave 87. Dit is een herhaling van opgave Deze kan geschrapt worden. Errata: Opgave 80: [[R,U2],D ] ipv [[R,U2],D] Opgave 87. Dit is een herhaling van opgave 79-82. Deze kan geschrapt worden. UITWERKINGEN VAN GESELECTEERDE OPGAVEN. Opgave 1. Niet alle mogelijke posities

Nadere informatie

Polyatheorie. Erik Verraedt 2011-2012

Polyatheorie. Erik Verraedt 2011-2012 2011-2012 Inhoudsopgave 1 Inleiding 4 2 Enkele telproblemen 5 2.1 Probleem 1........................................ 5 2.2 Probleem 2........................................ 5 2.3 Probleem 3........................................

Nadere informatie

Selectietoets vrijdag 18 maart 2016

Selectietoets vrijdag 18 maart 2016 Selectietoets vrijdag 18 maart 016 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Voor een positief geheel getal n dat geen tweemacht is, definiëren we t(n) als de grootste oneven deler van

Nadere informatie

7.1 Het aantal inverteerbare restklassen

7.1 Het aantal inverteerbare restklassen Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van

Nadere informatie

Selectietoets vrijdag 9 maart 2018

Selectietoets vrijdag 9 maart 2018 Selectietoets vrijdag 9 maart 2018 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. We hebben 1000 ballen in 40 verschillende kleuren, waarbij er van elke kleur precies 25 ballen zijn. Bepaal

Nadere informatie

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove KU Leuven Algebra Notities Tom Sydney Kerckhove Gestart 23 september 2014 Gecompileerd 28 oktober 2014 Inhoudsopgave 1 Verzamelingen 3 1.1 Basisbegrippen....................................... 3 1.2 De

Nadere informatie

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30) Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB1002 deel 1 - Lineaire algebra 1 College 6 27 februari 2014 1 Opbouw college Vandaag behandelen we de rest van hoofdstuk 1.8 en 1.9 Voor de pauze: hoofdstuk 1.8 Na de pauze: hoofdstuk 1.9 2 Transformatie

Nadere informatie

Discrete symmetriegroepen met Schönflies

Discrete symmetriegroepen met Schönflies faculteit Wiskunde en Natuurwetenschappen Discrete symmetriegroepen met Schönflies Bacheloronderzoek Wiskunde Juli 2010 Student: J. W. Bosman Begeleider:Prof. Dr. J. Top Inhoudsopgave 1. Voorwoord 2 2.

Nadere informatie

Selectietoets vrijdag 8 maart 2013

Selectietoets vrijdag 8 maart 2013 Selectietoets vrijdag 8 maart 2013 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. In trapezium ABCD is AB CD. Zij M het midden van diagonaal AC. Neem aan dat driehoeken ABM en ACD dezelfde

Nadere informatie

Werkwinkel Permutatiepuzzels

Werkwinkel Permutatiepuzzels Werkwinkel Permutatiepuzzels Karsten Naert UGent Vakgroep Wiskunde 6 november 2013 1 / 33 Over mij... Assistent en doctoraatsstudent Taken: Onderzoek Onderwijs Dienstverlening Karsten.Naert@UGent.be http:

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Hoofdstuk 1 : Hoeken ( Zie ook : boek pag 1 tot en met pag 33)

Hoofdstuk 1 : Hoeken ( Zie ook : boek pag 1 tot en met pag 33) - 1- Hoofdstuk 1 : Hoeken ( Zie ook : boek pag 1 tot en met pag 33) Hoekeenheden (boek pag 1) Hoofdeenheid om hoeken te meten is de grootte van de rechte hoek de graad :...... notatie :... de minuut :...

Nadere informatie

D. M. van Diemen. Homotopie en Hopf. Bachelorscriptie, 7 juni Scriptiebegeleider: dr. B. de Smit. Mathematisch Instituut, Universiteit Leiden

D. M. van Diemen. Homotopie en Hopf. Bachelorscriptie, 7 juni Scriptiebegeleider: dr. B. de Smit. Mathematisch Instituut, Universiteit Leiden D. M. van Diemen Homotopie en Hopf Bachelorscriptie, 7 juni 2010 Scriptiebegeleider: dr. B. de Smit Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding 3 2 Homotopie 4 2.1 Hogere homotopiegroepen..............................

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College

Nadere informatie

ALGEBRA I. P. Stevenhagen

ALGEBRA I. P. Stevenhagen ALGEBRA I P. Stevenhagen 2015 INHOUDSOPGAVE ALGEBRA I 1. Wat is algebra? 7 Groepen, ringen en lichamen Symmetrieën van de ruit Rekenen modulo 8 Symmetrieën van het vierkant Permutaties van 4 elementen

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

IMO-selectietoets I donderdag 2 juni 2016

IMO-selectietoets I donderdag 2 juni 2016 IMO-selectietoets I donderdag juni 016 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Zij ABC een scherphoekige driehoek. Zij H het voetpunt van de hoogtelijn vanuit C op AB. Veronderstel

Nadere informatie

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2. opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal

Nadere informatie

Appendix B: Complexe getallen met Cabri Geometry II 1

Appendix B: Complexe getallen met Cabri Geometry II 1 Appendix B: Complexe getallen met Cabri Geometry II 1 1. Macro s in Cabri Indien een constructie geregeld uitgevoerd moet worden, is het interessant deze constructie op te slaan in een macro. Het definiëren

Nadere informatie

SYMMETRIEËN VAN RUIMTELIJKE FIGUREN. Prof. dr. Ronald Meester

SYMMETRIEËN VAN RUIMTELIJKE FIGUREN. Prof. dr. Ronald Meester SYMMETRIEËN VAN RUIMTELIJKE FIGUREN Prof. dr. Ronald Meester Inleiding In dit college onderzoeken we symmetrie-eigenschappen van ruimtelijke figuren zoals driehoeken, vierkanten, kubussen en andere veelvlakken

Nadere informatie

IMO-selectietoets III zaterdag 4 juni 2016

IMO-selectietoets III zaterdag 4 juni 2016 IMO-selectietoets III zaterdag 4 juni 2016 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Zij n een natuurlijk getal. In een dorp wonen n jongens en n meisjes. Voor het jaarlijkse bal moeten

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

Driehoeken. Enkele speciale topics. Arne Smeets. Trainingsweekend Februari 2008

Driehoeken. Enkele speciale topics. Arne Smeets. Trainingsweekend Februari 2008 Driehoeken Enkele speciale topics Arne Smeets Trainingsweekend Februari 2008 Trilineaire en barycentrische coördinaten Definitie van trilineaire coördinaten Beschouw (in het vlak) een driehoek ABC en een

Nadere informatie

Examen Wiskundige Basistechniek 15 oktober 2011

Examen Wiskundige Basistechniek 15 oktober 2011 Examen Wiskundige Basistechniek 15 oktober 2011 vraag 1: Gegeven is het complex getal ω = exp(i π 5 ). vraag 1.1: Als we in het complexe vlak het punt P met cartesiaanse coördinaten (x, y) vereenzelvigen

Nadere informatie

Het tellen van non-equivalente kleuringen van de n-dimensionale hyperkubus

Het tellen van non-equivalente kleuringen van de n-dimensionale hyperkubus Het tellen van non-equivalente kleuringen van de n-dimensionale hyperkubus Vincent Schmeits 14 juli 2017 Bachelorscriptie Begeleiding: dr. J. H. Brandts Korteweg-de Vries Instituut voor Wiskunde Faculteit

Nadere informatie

Inleiding tot de Problem Solving - deel 1: Combinatoriek en getaltheorie

Inleiding tot de Problem Solving - deel 1: Combinatoriek en getaltheorie Inleiding tot de Problem Solving - deel 1: Combinatoriek en getaltheorie Jan Vonk 1 oktober 2008 1 Combinatoriek Inleiding Een gebied dat vandaag de dag haast niet onderschat kan worden binnen de wiskunde

Nadere informatie

Kazhdan-Lusztig-Vogan polynomen voor gespleten E 8, een uitzonderlijke berekening voor een exceptionele groep

Kazhdan-Lusztig-Vogan polynomen voor gespleten E 8, een uitzonderlijke berekening voor een exceptionele groep Kazhdan-Lusztig-Vogan polynomen voor gespleten E 8, een uitzonderlijke berekening voor een exceptionele groep Marc van Leeuwen Laboratoire de Mathématiques et Applications Université de Poitiers 28 november

Nadere informatie

Uitwerkingen toets 18 maart 2011

Uitwerkingen toets 18 maart 2011 Uitwerkingen toets 8 maart 20 Opgave. Alle positieve gehele getallen worden rood of groen gekleurd, zodat aan de volgende voorwaarden wordt voldaan: Er zijn zowel rode als groene getallen. De som van drie

Nadere informatie

Huiswerk Hints&Tips Analyse 2, College 26

Huiswerk Hints&Tips Analyse 2, College 26 Huiswerk Hints&Tips Analyse, College 6 [K..]. Tip : Toon aan dat er punten (x, y ) en (x, y ) en scalars m, M R bestaan zo dat m = f(x, y ) f(x, y) f(x, y ) = M. Laat dan zien dat m(b a)(d c) = m f M =

Nadere informatie

Samenvatting. Algebra 1 - Collegejaar Dictaat algebra 1. Disclaimer

Samenvatting. Algebra 1 - Collegejaar Dictaat algebra 1. Disclaimer Samenvatting Algebra 1 - Collegejaar 2013-2014 Dictaat algebra 1 Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst mogelijke zorgvuldigheid

Nadere informatie

1 De Hamilton vergelijkingen

1 De Hamilton vergelijkingen 1 De Hamilton vergelijkingen Gegeven een systeem met m vrijheidsgraden, geparametriseerd door m veralgemeende coördinaten q i, i {1,, m}, met lagrangiaan L(q, q, t). Nemen we de totale differentiaal van

Nadere informatie

Vergelijkingen van cirkels en lijnen

Vergelijkingen van cirkels en lijnen Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen 1ste Bachelor Fysica en Sterrenkunde Academiejaar 014-015 1ste semester 1 oktober 014 Wiskundige Technieken 1. Beschouw een scalaire functie f : R R en een vectorveld

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

Radboud University Nijmegen

Radboud University Nijmegen Radboud University Nijmegen BachelorScriptie Lemma van Sperner en Cohomologie Auteur: Erik Bosch 4073460 Coordinator: Dr. M. Müger 9 juli 2014 Lemma van Sperner en Cohomologie Inhoudsopgave Inhoudsopgave

Nadere informatie

Hoofdstuk 8 : De Cirkel

Hoofdstuk 8 : De Cirkel - 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt

Nadere informatie

EERSTE DEELTENTAMEN ANALYSE C

EERSTE DEELTENTAMEN ANALYSE C EERSTE DEELTENTAMEN ANALYSE C 0 november 990 9.30.30 uur Zet uw naam op elk blad dat u inlevert en uw naam en adres op de enveloppe. De verschillende onderdelen van de vraagstukken zijn zoveel als mogelijk

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie Utrecht Les : Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist verzicht colleges. College. Goniometrie 2. Vectoren 2. College 2. Matrixen

Nadere informatie