Polyatheorie. Erik Verraedt

Maat: px
Weergave met pagina beginnen:

Download "Polyatheorie. Erik Verraedt 2011-2012"

Transcriptie

1

2

3 Inhoudsopgave 1 Inleiding 4 2 Enkele telproblemen Probleem Probleem Probleem Probleem Verband met acties Voorbeeld Acties Orbietstelling Toepassing orbietstelling Stelling van Burnside Toepassing: probleem Stelling van Polya Toepassing: probleem Besluit 15 6 Bronnen 15

4 1 Inleiding Op hoeveel manieren kan je de zijvlakken van een kubus kleuren met 2 kleuren? Wat als we dezelfde vraag met 3 kleuren stellen, om nog maar te zwijgen over 4, 5, 10, 100 kleuren? Kortom, hoe zit de vork in de steel als het gaat om het tellen van kleuringen van figuren (met een eindig aantal te kleuren oppervlakten) met een eindig aantal kleuren? In dit werk zullen we proberen een tipje van de sluier op te lichten. Gelukkig staan we er niet alleen voor: enkele wiskundigen hebben het ons reeds gemakkelijk gemaakt en het zware wiskundige werk gedaan. We zullen ons in de wereld van de zogenaamde Polyatheorie wagen, met als belangrijkste wiskundige vertegenwoordigers William Burnside ( ) en George Pòlya ( ). Met behulp van heel wat groepentheorie zullen we werken naar een formule om telproblemen met kleuringen eenvoudig op te lossen. We zullen echter niet alle aspecten van de Polyatheorie belichten: naast de stelling van Pòlya, waar we naartoe werken, bestaat er ook nog dezelfde stelling met gewichten, die gebruikt kan worden om complexere problemen op te lossen. Een voorbeeld van zo n probleem is: Op hoeveel manieren kan je een kubus kleuren zodat deze 3 rode vlakken en 1 geel, 1 groen en 1 blauw vlak heeft? Om zulke problemen op te lossen is nog meer wiskundig inzicht en doorzettingsvermogen nodig dan voor wat we in dit werk behandelen. Gelukkig verschafte niemand minder dan George Pòlya ons met een geldig excuus om deze problemen niet aan te snijden: If you can t solve a problem, then there is an easier problem you can solve: find it. - George Pòlya Maar genoeg onwiskundige bladvulling, over tot het echte werk. En vergeet niet: Wiskunde, dat is pure ontspanning. - Hector Mommaerts 4

5 2 Enkele telproblemen 2.1 Probleem 1 Gegeven is een vierkant verdeeld in 4 kleine vierkanten. Op hoeveel manieren kan je de 4 gebieden kleuren met hoogstens 2 kleuren? Rotaties van een bepaalde kleuring tellen niet als een aparte kleuring Met wat logisch nadenken vinden we snel dat het antwoord 6 is. We onderscheiden namelijk de volgende gevallen: Aantal vakjes met kleur 1 aantal mogelijke kleuringen Als we aan 2 vakjes kleur 1 toekennen, zijn er 2 verschillende kleuringen mogelijk. De vakjes kunnen naast elkaar of op een diagonaal liggen. De andere gevallen geven telkens slechts 1 mogelijke kleuring. 2.2 Probleem 2 Gegeven is een kubus. Op hoeveel manieren kan je de zijvlakken inkleuren met ten hoogste 2 kleuren? Ook hier vinden we eenvoudig de oplossing door een gevalsonderscheid. We vinden dat er 10 mogelijke kleuringen zijn. Aantal vakjes met kleur 1 aantal mogelijke kleuringen Bij een verdeling met 2 vakjes in een bepaalde kleur hebben we de keuze:we kunnen deze tegenover elkaar plaatsen, of laten aansluiten. Met 3 vakjes in een kleur kunnen we de 3 vakjes rond een hoekpunt nemen, of 3 aaneensluitende vakjes waarvan de 2 uiterste geen ribbe gemeen hebben.. 5

6 2.3 Probleem 3 Op hoeveel manieren kan je het vierkant van probleem 1 kleuren met ten hoogste m kleuren? We lossen dit op met een gevalsonderscheid. Juist 1 kleur: 1 mogelijke kleuring Juist 2 kleuren: 4 mogelijke kleuringen Juist 3 kleuren: 9 mogelijke kleuringen Juist 4 kleuren: 6 mogelijke kleuringen Dus voor ten hoogste m kleuren vinden we voor het aantal mogelijkheden C 1 m 1 + C 2 m 4 + C 2 m 9 + C 4 m 6. We hebben immers Cm 1 = m mogelijkheiden om onze kubus in 1 kleur te kleuren. Voor 2 kleuren nemen we alle mogelijke paren van kleuren uit onze m kleuren, dus Cm. 2 Aangezien we met 2 kleuren 4 mogelijke kleuringen kunnen maken, geeft dit Cm 2 4 mogelijkheden. Op analoge wijze vervolledigen we zo onze formule. We kunnen deze formule uitwerken en op volgende wijze schrijven: 2.4 Probleem 4 m 4 + m 2 + 2m. 4 Op hoeveel manieren kan je de kubus van probleem 2 kleuren met ten hoogste m kleuren? Dit probleem kunnen we met dezelfde strategie oplossen. Dit is echter niet efficiënt en tijdrovend. We kunnen de volgende formule vinden: m 2 24 (m4 + 3m m + 8) Later zullen we in staat zijn deze formule op eenvoudige wijze te vinden. 6

7 3 Verband met acties Terminologie 1. Een kleuring van een verzameling X met een verzameling K is een afbeelding k : X K. Notatie: k K x 3.1 Voorbeeld Om deze notatie toe te lichten, nemen we het vierkant van probleem 1 onder de loep X = {1, 2, 3, 4} K = {kleuren} We geven enkele voorbeelden van kleuringen met K = {R, G} 1 R G R G Deze kleuring wordt gegeven door de volgende afbeelding: 1 R 2 R k 1 : 3 G 4 G 2 G G R R Deze kleuring wordt gegeven door de volgende afbeelding: 1 G 2 R k 2 : 3 R 4 G 7

8 3 R G G R Deze kleuring wordt gegeven door de volgende afbeelding: 1 R 2 G k 3 : 3 R 4 G We merken op dat bepaalde kleuringen hetzelfde zijn, namelijk dat men door draaiing van een kleuring een andere bekomt. Zo merken we dat k 1 k 2 en dat k 1 k 3. Definiëren we de draaiing over 90 = (1234) 1 als a, dan geldt dat k 1 = k 2 a. Het is triviaal dat n {0, 1, 2, 3} : k 1 = k 3 a n. We definiëren als volgt: k i k j r G Id, a, a 2, a 3 S(X) : k i = k j r waarbij S(X) de permutatiegroep van de figuur is. Dit is een equivalentierelatie, dat wil zeggen dat aan de volgende eigenschappen voldaan is: Voor alle x X geldt dat x x Voor alle x, y X geldt: als x y, dan y x Voor alle x, y, z X geldt: als x y en y z, dan x z 1 Vierkant 1 komt op 2, 2 op 3, 3 op 4 en 4 op 1. Dit noemen we de cykelschrijfwijze. 8

9 3.2 Acties Definitie 3.1. Zij G, een groep en V een verzameling. Een rechtse actie van G op V is een afbeelding V G V : (v, g) v g zodat v V : v e = v v V ; g 1, g 2 G : v (g 1 g 2 ) = (v g 1 ) g 2. We illustreren dit met het voorbeeld van de kubus: Neem V = K x, de verzameling kleuringen van de kubus, en G S(X), de verzameling rotaties die we kunnen toepassen. Beschouw de rechtse actie K x G K x : (k, s) k s = k s. Hierbij is k een kleuring die wordt uitgevoerd na de rotatie s. Er geldt: k Id x = k Id x = k k (s r) = k (s r) = (k s) r = (k s) r = (k s) r We toetsen dit aan het gezond verstand: het is triviaal dat een kleuring toekennen na de identieke rotatie hetzelfde is als de kleuring toekennen aan de kubus. Het tweede punt is minder voor de hand liggend. We werken daarom een voorbeeld uit. a Beschouw de volgende rotaties: s beeld het bovenvlak op het rechtse vlak af, het rechtse op het onderste, het onderste op het linkse en het linkse op het bovenste. Het voorvlak en achtervlak blijven op hun oorspronkelijke plaats: s = (3146). r beeld het bovenvlak op het linkse vlak af, het linkse op het onderste, het onderste op het rechtse en het rechtse op het bovenste. Het voorvlak en achtervlak blijven op hun oorspronkelijke plaats: r = (1364). We beschouwen de kleuring k die het bovenvlak blauw kleurt en het rechtervlak rood. k (s r) = k, want r en s leveren ons terug de beginsituatie op. (k s) r splitsen we op. We merken dat k s de kleuring is waarbij het linkervak blauw wordt gekleurd en het bovenvlak rood. Voeren we dus eerst r uit, dan wordt het bovenvlak op het linkervlak afgebeeld en het rechtervak op het bovenvlak. Wanneer we dan de kleuring k s toepassen, wordt het bovenvlak blauw en het rechtervak rood, hetgeen gelijk is aan de kleuring k. 9

10 Eigenschap 1. Een rechtse actie implementeert een equivalentierelatie op V : v 1 v 2 g G : v 1 g = v 2 We bewijzen dit door middel van de 3 criteria van een equivalentierelatie. Bewijs. v 1 v 1 Ja, want v 1 e = v 1. v 1 v 2 v 2 v 1 Stel v 1 v 2. g zodat v 1 g = v 2. Dan geldt dat Dus v 2 v 1. Als v 1 v 2 en v 2 v 3, dan is v 1 v 3. Stel v 1, v 2, v 3 zodat v 1 v 2 en v 2 v 3. g 1 g 2 G v 1 v 3 v 2 g 1 = (v 1 g) g 1 = v 1 (g g 1 ) = v 1 e = v 1 v 1 g 1 = v 2 v 2 g 2 = v 3 v 3 = v 2 g 2 = (v 1 g 1 ) g 2 = v 1 (g 1 g 2 ) Definitie 3.2. Stel dat G een rechtse actie uitvoert op een verzameling V. Or(v) = v G = {v G g G} V is de orbiet van v V. St(v) = {g G v g = v} is de stabilisator van v V, dit is een deelgroep van g G. Nemen we als voorbeeld een kubus met het voorvlak in een andere kleur, dan is de orbiet de verzameling van draaiingen waarbij men een ander zicht verkrijgt. Het aantal elementen van Or(v), genoteerd als Or(v), is dan 6. We kunnen immers het gekleurde vak op elk van de 6 zijden afbeelden. De stabilisator is de verzameling van draaiingen waarbij het zicht niet verandert. In dit geval kunnen we de kubus kantelen, zolang het voorvlak op dezelfde plaats blijft. We vinden dat St(v) = 4. 10

11 3.3 Orbietstelling Stelling 3.3. (Orbietstelling) Stel dat een eindige groep G een actie uitvoert op een verzameling V. v V : = Or(v) St(v) Terminologie 2. Een kleurpatroon bij een kleuring van de elementen van X door K is een orbiet van de actie van G S(X) op K x Toepassing orbietstelling Wat is het aantal elementen van G S(X) bij de kubus? M.O. G = rotaties van de kubus in R 3 S 6 G voert dus een rechtse actie uit op {1, 2, 3, 4, 5, 6}, namelijk: G {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} : (s, i) s(i) Dus: = Or(1) St(1) = 6 4 = Stelling van Burnside Stelling 3.4. (Stelling van Burnside) Stel dat een eindige groep G een rechtse actie uitvoert op een eindige verzameling V. Dan is waarbij F ix(g) = {v V v g = v}. Bewijs. Noteer O = {Or(v) v V }. Dan geldt: #orbieten = 1 F ix(g) g G 1 F ix(g) = 1 # {v V v g = v} g G g G = 1 # {(v, g) V G v g = v} = 1 # {g G v g = v} = 1 = v V = o O = o O 1 v V v V St(v) 1 Or(v) v O 1 O = O = #orbieten 11

12 3.4.1 Toepassing: probleem 3 Oplossing van probleem 3 via de stelling van Burnside: # kleurpatronen van X = {1, 2, 3, 4} met K ( K = m) = # orbieten van de actie van G = { Id, a, a 2, a 3} op K x = 1 F ix(g) = 1 Ä F ix(id) + F ix(a) + F ix(a 2 ) + F ix(a 3 ) ä 4 g G = 1 Ä m 4 + m + m 2 + m ä 4 = m 4 (m3 + m + 1) 12

13 4 Stelling van Polya Afspraak In de disjuncte cykelschrijfwijze van een element σ S n, schrijven we de cykels van lengte één wel. Normaal gezien is dit niet nodig, omdat de niet vermelde vlakken op hun plaats blijven. Bij de stelling van Polya moete we echter tellen hoeveel cykels er voorkomen en welke lengte ze hebben. Om verwarring te vermijden schrijven we dus ook de cykels van lengte één. Notatie Zij σ S n. c(σ) = aantal cykels in de disjuncte schrijfwijze van σ. c i (σ) = aantal cykels van lengte i in de disjuncte schrijfwijze van σ. Nemen we bij voorbeeld de volgende draaiing bij de kubus: a = (1265)(3)(4), dan vinden we dat c(a) = 3, c 1 = 2 en c 4 = 1. a Merk op dat n c(σ) = c i (σ). i=1 Het is triviaal dat het aantal cykels gelijk is aan de som van het aantal cykels van elke mogelijke lengte. We vinden ook dat n n = i c 1 (σ). i=1 Ook dit spreekt voor zich. Bij het voorbeeld van de kubus en draaiing a geeft dit bijvoorbeeld het volgende: 6 6 = i c 1 (a) = i=1 Eigenschap 2. Zij X een eindige verzameling en G een deelgroep van S(X) die een actie uitvoert op K x met K = m. Dan geldt g G : F ix(g) = m c(g). Bewijs. Een kleuring k is vast onder g als voor elke cykel (in de disjuncte cykelschrijfwijze) van g geldt dat elk element in die cykel dezelfde kleur krijgt. Stelling 4.1. (Stelling van Polya) Zij X een eindige verzameling, K een verzameling kleuren met m elementen. Zij G een deelgroep van S(X) die een actie uitvoert op K x. Dan is #kleurpatronen = 1 m c(g). g 13

14 4.1 Toepassing: probleem 4 We lossen probleem 4 op. Op hoeveel manieren kan je de kubus kleuren met ten hoogste m kleuren? Als kubus nemen we de dobbelsteen. i We beschouwen de identieke afbeelding. i iid = (1)(2)(3)(4)(5)(6) Draaiing rond een as door het midden van 2 overstaande vlakken. i ka = (1562)(3)(4) lb = (16)(25)(3)(4) jc = (1265)(3)(4) Er zijn 3 mogelijke assen waarrond we op deze wijze kunnen draaien. Draaiing rond een as door het midden van 2 overstaande ribben. i td = (16)(24)(35) Er zijn 6 mogelijk assen waarrond we op deze wijze kunnen draaien. Draaiing rond een as door 2 hoekpunten. i ge = (145)(263) xf = (154)(236) Er zijn 4 mogelijke assen waarrond we op deze wijze kunnen draaien. Voor het aantal kleurpatronen met m kleuren kunnen we de formule nu toepassen: 1 g m c(g) = 1 24 = 1 24 = m2 24 m c(g) g î m 6 + 3(m 3 + m 4 + m 3 ) + 6m 3 + 4(m 2 + m 2 ) ó î m 4 + 3m m + 8 ó 14

15 5 Besluit We merken dat we met behulp van de stelling van Pòlya in staat zijn telproblemen, die op het eerste zicht misschien gemakkelijk zijn, op te lossen zonder alle mogelijkheden af te gaan. Met de stelling van Pòlya met gewichten, die we kunnen verkrijgen via de stelling van Burnside met gewichten, zal het mogelijk zijn nog andere telproblemen op te lossen, met name telproblemen waar het van belang is hoeveel vlakken een bepaalde kleur krijgen. We hebben dus nog maar een kleine stap gezet in het verhaal van de Polyatheorie, maar een goed begin is het halve werk... 6 Bronnen Dit eindwerk is gebaseerd op de cursus discrete wiskunde van Prof. Dr. W. Veys, docent aan de KU Leuven. Het onderdeel Polyatheorie is één van de wiskundige topics die hierin behandeld worden, naast o.a. het duivenhokprincipe en cryptografie. De cursus wordt gegeven in het laatste jaar van de bachelor wiskunde. 15

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Eindwerk wiskunde: De wiskunde achter de Rubik s kubus. Laurens Vanden Eynde 6 e jaar Latijn - Wiskunde

Eindwerk wiskunde: De wiskunde achter de Rubik s kubus. Laurens Vanden Eynde 6 e jaar Latijn - Wiskunde Eindwerk wiskunde: De wiskunde achter de Rubik s kubus Laurens Vanden Eynde 6 e jaar Latijn - Wiskunde Schooljaar 2010-2011 Inhoudsopgave 1 Inleiding 2 2 Kubusnotatie 3 2.1 Design...............................

Nadere informatie

Werkwinkel Permutatiepuzzels

Werkwinkel Permutatiepuzzels Werkwinkel Permutatiepuzzels Karsten Naert UGent Vakgroep Wiskunde 6 november 2013 1 / 33 Over mij... Assistent en doctoraatsstudent Taken: Onderzoek Onderwijs Dienstverlening Karsten.Naert@UGent.be http:

Nadere informatie

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gekleurde sokken Op de planeet Swift B6 wonen de Houyhnhnms. Ze lijken sprekend op paarden;

Nadere informatie

Sum of Us 2014: Topologische oppervlakken

Sum of Us 2014: Topologische oppervlakken Sum of Us 2014: Topologische oppervlakken Inleiding: topologische oppervlakken en origami Een topologisch oppervlak is, ruwweg gesproken, een tweedimensionaal meetkundig object. We zullen in deze tekst

Nadere informatie

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! www.wiskundekangoeroe.be Dit initiatief kwam tot stand binnen het actieplan Wetenschapscommunicatie

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . Bij een weerspiegeling in het water staat een beeld op zijn kop. ntwoord is dus zeker fout. De stand van de maan ten opzichte van de boom moet dezelfde blijven. Zo moet de holle kant van de maan het

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

1 DE STELLING VAN PYTHAGORAS

1 DE STELLING VAN PYTHAGORAS 1 DE STELLING VAN PYTHAGORAS 1.1 Verkennende opdrachten 1.1.1 Pythagoras puzzel (mozaïek van Henry Perigal 1801-1898) Open de link naar het bestand 1 Pythagoras_puzzel.htm Gegeven is een rechthoekige driehoek

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600.

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal

Nadere informatie

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β. 1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen

Nadere informatie

HOOFDSTUK 2 TRANSFORMATIES

HOOFDSTUK 2 TRANSFORMATIES HOOFDSTUK 2 TRANSFORMATIES Verschuiven, roteren, spiegelen, vergroten/verkleinen zijn manieren om bij een figuur een 'beeldfiguur' te bepalen. Deze manieren noem je 'transformaties'. 2.1 LIJNSPIEGELING

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 1005 tot 1015 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 812: gelijkvormig / vervormen pagina 813: patronen pagina 814: kubus pagina

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Welke ongelijkheid is juist? (A) 3 5 < 2 6 (C) 5 6 < 3 (B) 3 7 < 2 (D) 5 7 < 2 10 (E) 5 < 6 7 2 Hoeveel vierkante meter is 1600 vierkante centimeter?

Nadere informatie

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1. Het quotiënt 28 is gelijk aan 82 (A) 2 0 () 2 1 (C) 2 2 (D) 2 3 (E) 2 4 2. Het resultaat van de vermenigvuldiging 1 3 5 7 9 2011 eindigt op het cijfer

Nadere informatie

Uitwerkingen Sum of Us

Uitwerkingen Sum of Us Instant Insanity Uitwerkingen Sum of Us Opgave A: - Opgave B: Voor elk van de vier kubussen kun je een graaf maken die correspondeert met de desbetreffende kubus. Elk van deze grafen bevat drie lijnen.

Nadere informatie

De huwelijksstelling van Hall

De huwelijksstelling van Hall Thema Discrete wiskunde In de vorige twee afleveringen heb je al kennis kunnen maken met het begrip graaf en hoe grafen worden gebruikt door Google s zoekmachine en door de NS bij het maken van een optimale

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde

1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde 1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde 1.Vantweenatuurlijkegetallenmennismevenennoneven.Welkvanvolgendegetallen is dan oneven? () m+4n () 3m+2n () mn (D) m n (E) n m 2. Welk van volgende

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...

Nadere informatie

Alle opgaven tellen even zwaar, 10 punten per opgave.

Alle opgaven tellen even zwaar, 10 punten per opgave. WAT IS WISKUNDE (English version on the other side) Maandag 5 november 2012, 13.30 1.30 uur Gebruik voor iedere opgave een apart vel. Schrijf je naam en studentnummer op elk vel. Alle opgaven tellen even

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen.

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen. Discrete modellen in de toegepaste wiskunde (WISB6) Uitwerkingen proeftentamen. Docent: Rob H. Bisseling april 202. Begin met een matching M = {x y, x y, x 6 y 6 } aangegeven door de vette lijnen. x De

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde Vlaamse Wiskunde Olmpiade 008-009: tweede ronde Wat is het voorschrift van deze tweedegraadsfunctie? (0, ) (, ) 0 (A) f() = ( + ) (B) f() = ( + ) + (C) f() = ( ) + (D) f() = ( ) (E) f() = ( ) + In volgend

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Vlaamse Wiskunde Olympiade 2014-2015: eerste ronde

Vlaamse Wiskunde Olympiade 2014-2015: eerste ronde Vlaamse Wiskunde Olympiade 20-205: eerste ronde. Tussen Suske en Wiske staan drie blauwe kopjes opeenrij.suskezietdekopjeszoalsindefiguur. Hoe ziet Wiske de kopjes? () () () () (E) 2. Een repeterend decimaal

Nadere informatie

Projectieve Vlakken en Codes

Projectieve Vlakken en Codes Projectieve Vlakken en Codes 1. De Fanocode Foutdetecterende en foutverbeterende codes. Anna en Bart doen mee aan een spelprogramma voor koppels. De ene helft van de deelnemers krijgt elk een kaart waarop

Nadere informatie

Wiskunde Opdrachten Vlakke figuren

Wiskunde Opdrachten Vlakke figuren Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde. Vlaamse Wiskunde Olympiade 995-996 : Tweede Ronde De tweede ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

De stelling van Pick. Dion Gijswijt

De stelling van Pick. Dion Gijswijt Sommige wiskundige stellingen zijn zo fantastisch simpel en elegant, dat je je afvraagt: Waarom ben ik daar niet op gekomen! Dit stukje gaat over precies zo n stelling: eenvoudiger dan de stelling van

Nadere informatie

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar

Nadere informatie

= 3 1111 101 + 6 3 1111 101 + 2 1111 101 = (3 + 2) 1111 101 = 5 11

= 3 1111 101 + 6 3 1111 101 + 2 1111 101 = (3 + 2) 1111 101 = 5 11 . Bij A en E staan de benen van het poppetje loodrecht op elkaar. Bij C vormen de benen een scherpe hoek. Bij D vormen de benen een gestrekte hoek. Alleen bij B vormen de benen van het poppetje een stompe

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

6 - Geschiedenis van het getal Pi

6 - Geschiedenis van het getal Pi 6 - Geschiedenis van het getal Pi De opdracht omschrijving voor dit hoofdstuk bestond uit het volgende: F1 - Lees de hoofdstukken 1 t/m 4 en 9 uit het Zebra-boekje Pi. Maak uit de hoofdstukken 2 t/m 4

Nadere informatie

Naam:... Nr... SPRONG 5. a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft.

Naam:... Nr... SPRONG 5. a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft. Naam:... Nr.... SPRONG 5 G G 1 Percenten T a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft. Kleur 20 % blauw. 25 % maak je geel. 50 % krijgt een groene kleur. Er blijft

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Combinatoriek. Oefeningen op hoofdstuk 3. 3.1 Het duivenhokprincipe. 3.2 Dubbele telling

Combinatoriek. Oefeningen op hoofdstuk 3. 3.1 Het duivenhokprincipe. 3.2 Dubbele telling Oefeningen op hoofdstuk 3 Combinatoriek 3.1 Het duivenhokprincipe Oefening 3.1. Geraldine heeft twaalf roze kousen, zes appelblauwzeegroene en tien gele allemaal door elkaar in haar lade. Het is pikdonker

Nadere informatie

Kangoeroewedstrijd editie Wallaroe: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallaroe: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . en fles bevat ongeveer liter. In een regenton is er plaats voor ongeveer 00 liter, dus die is te groot. In een glas gaat ongeveer 00 milliliter, dus dat is te klein. en eetlepel is nog kleiner en er

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 0 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor

Nadere informatie

blikken b dat nodig is voor de toren. Op de uitwerkbijlage staat een tabel, die hoort bij dit verband. Vul de tabel op de uitwerkbijlage verder in.

blikken b dat nodig is voor de toren. Op de uitwerkbijlage staat een tabel, die hoort bij dit verband. Vul de tabel op de uitwerkbijlage verder in. Blikken stapelen Sander gaat blikken stapelen op dezelfde manier als op de foto hieronder. Hierdoor krijgt hij een toren die bestaat uit een aantal lagen. Op de foto zie je een toren die bestaat uit 5

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

SMART-finale 2016 Ronde 1: 5-keuzevragen

SMART-finale 2016 Ronde 1: 5-keuzevragen SMART-finale 2016 Ronde 1: 5-keuzevragen Ronde 1 bestaat uit 16 5-keuzevragen. Bij elke vraag is precies één van de vijf antwoorden juist. Geef op het antwoordformulier duidelijk jouw keuze aan, door per

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Naam:... Nr... SPRONG 6

Naam:... Nr... SPRONG 6 Naam:... Nr.... SPRONG 6 G 1 Percenten a Bereken het percent. Schrijf de tussenuitkomsten op. 5 % van 500 = van 500 = x = 15 % van 200 = van 200 = x = 4 % van 2 000 = van 2 000 = x = 10 % van 700 = van

Nadere informatie

K 1 Symmetrische figuren

K 1 Symmetrische figuren K Symmetrische figuren * Spiegel Plaats de spiegel zó, dat je twee gelijke figuren ziet. Plaats de spiegel nu zó op het plaatje, dat je dezelfde figuur precies éénmaal ziet. Lukt dat bij alle plaatjes?

Nadere informatie

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Noteer hier eventueel je naam: Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! wwwwiskundekangoeroebe c Vlaamse Wiskunde Olympiade

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

http://www.kidzlab.nl/index2.php?option=com_content&task=vi...

http://www.kidzlab.nl/index2.php?option=com_content&task=vi... Veelvlakken De perfecte vorm Plato was een grote denker in de tijd van de Oude Grieken. Hij was een van de eerste die de regelmatige veelvlakken heel bijzonder vond. Hij hield ervan omdat ze zulke mooie,

Nadere informatie

De Hongaarse kubus ontward

De Hongaarse kubus ontward De Hongaarse kubus ontward door Dick Grune, Aug. 1981 herzien Febr. 2007 Er zijn vele manieren om een in de war geraakte kubus weer te ontwarren. De bekendste worden gegeven door David Singmaster en Donald

Nadere informatie

Kangoeroewedstrijd editie Koala: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Koala: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . onderbroeken 4 wasknijpers 4 onderbroeken 5 wasknijpers 5 onderbroeken 6 wasknijpers Papa heeft dus telkens wasknijper meer nodig dan er onderbroeken zijn. In totaal heeft papa voor 9 onderbroeken dus

Nadere informatie

Eigenschappen van driehoeken

Eigenschappen van driehoeken 5 igenschappen van driehoeken it kun je al een hoek meten de verschillende soorten driehoeken definiëren 3 de verschillende soorten hoeken definiëren 4 de eigenschappen van de verschillende soorten hoeken

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

De wiskunde van de beeldherkenning

De wiskunde van de beeldherkenning De wiskunde van de beeldherkenning Op zoek naar wat er niet verandert! In het kader van: (Bij) de Faculteit Wiskunde en Informatica van de TU/e op bezoek c Faculteit Wiskunde en Informatica, TU/e Inhoudsopgave

Nadere informatie

iii Tristan Kuijpers Claudine Lybaert december 2013

iii Tristan Kuijpers Claudine Lybaert december 2013 Voorwoord De wiskundige vorming die in de wiskundig sterke richtingen van het Vlaamse secundair onderwijs wordt aangeboden, vormt een zeer degelijke basis voor hogere studies in wetenschappelijke, technologische

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2009-2010: eerste ronde

1 Vlaamse Wiskunde Olympiade 2009-2010: eerste ronde Vlaamse Wiskunde Olympiade 009-00: eerste ronde Hoeveel is 5 % van 5 % van? (A) 6 (C) 5 (D) 5 (E) 65 Wat is de ribbe van een kubus als zijn volume 5 is? (A) 5 5 (C) 5 (D) 5 (E) 5 De oplossingen van de

Nadere informatie

Stelling van Pythagoras

Stelling van Pythagoras 1 of 6 Stelling van Pythagoras Uit Wikipedia, de vrije encyclopedie De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens

Nadere informatie

Efficientie in de ruimte - leerlingmateriaal

Efficientie in de ruimte - leerlingmateriaal Junior College Utrecht Efficientie in de ruimte - leerlingmateriaal Versie 2 September 2012 Een project (ruimte-)meetkunde voor vwo-leerlingen Geschreven voor het Koningin Wilhelmina College Culemborg

Nadere informatie

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras inhoudsopgave 1 de grote lijn applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek 1 de grote lijn hoofdlijn de zijlijn De oppervlakte van rechthoekige driehoeken. Van een

Nadere informatie

5 VWO SPELEN OP EEN SLIMME MANIER

5 VWO SPELEN OP EEN SLIMME MANIER VWO SPELEN OP EEN SLIMME MANIER Deze praktische opdracht gaat over het slim spelen van spelletjes. Kun je zo slim spelen dat je altijd wint? Of dat je in ieder geval nooit verliest? Dit geldt natuurlijk

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde 1, (nieuwe stijl) Eamen HV Hoger lgemeen Voortgezet nderwijs Tijdvak Woensdag 18 juni 1.0 16.0 uur 0 0 Voor dit eamen zijn maimaal 8 punten te behalen; het eamen bestaat uit 18 vragen. Voor elk

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Toetswijzer examen Cool 2.1

Toetswijzer examen Cool 2.1 Toetswijzer examen Cool 2.1 Cool 2.1 1 Getallenkennis: Grote natuurlijke getallen 86 a Ik kan grote getallen vlot lezen en schrijven. 90 b Ik kan getallen afronden. 91 c Ik ken de getalwaarde van een getal.

Nadere informatie

Vergelijkingen met één onbekende

Vergelijkingen met één onbekende - 89 - Hoofdstuk 3: ergelijkingen met één onbekende Opgave boek pag 67 nr. 5: Los op in R a. 3 ( + ) 4 7.................. {... }... proef : 1 e lid :... e lid :... b. ( 3 ) + 7 5 ( )........................

Nadere informatie

Het SET-spel, een toepassing op eindige meetkunde

Het SET-spel, een toepassing op eindige meetkunde Het SET-spel, een toepassing op eindige meetkunde Luc Van den Broeck 1 1 EDUGO campus De Toren, Oostakker ABSTRACT Het kaartspel SET, dat gespeeld wordt met 81 kaarten waarop verschillende geometrische

Nadere informatie

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr.

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr. Numerieke aspecten van de vergelijking van Cantor Opgedragen aan Th. J. Dekker H. W. Lenstra, Jr. Uit de lineaire algebra is bekend dat het aantal oplossingen van een systeem lineaire vergelijkingen gelijk

Nadere informatie

Vlaamse Wiskunde Olympiade 2011-2012: tweede ronde

Vlaamse Wiskunde Olympiade 2011-2012: tweede ronde Vlaamse Wiskunde Olympiade 011-01: tweede ronde 1. Op hoeveel manieren kan deze ronde van de wiskunde olympiade opgelost worden met precies één antwoord dat foutief of blanco is? () 0 () 10 (C) 150 (D)

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

Bruno Ernst Symposium

Bruno Ernst Symposium Bruno Ernst Symposium Betegelingen en behanggroepen symmetrie in wiskundige termen Jeanine Daems Universiteit Leiden Voorbeelden van symmetrische figuren: wat is symmetrie in de wiskunde? symmetrie

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam

Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam W I N G O = W I S K U N D E - B I N G O W I N G O 17 15 π

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie