Polyatheorie. Erik Verraedt

Maat: px
Weergave met pagina beginnen:

Download "Polyatheorie. Erik Verraedt 2011-2012"

Transcriptie

1

2

3 Inhoudsopgave 1 Inleiding 4 2 Enkele telproblemen Probleem Probleem Probleem Probleem Verband met acties Voorbeeld Acties Orbietstelling Toepassing orbietstelling Stelling van Burnside Toepassing: probleem Stelling van Polya Toepassing: probleem Besluit 15 6 Bronnen 15

4 1 Inleiding Op hoeveel manieren kan je de zijvlakken van een kubus kleuren met 2 kleuren? Wat als we dezelfde vraag met 3 kleuren stellen, om nog maar te zwijgen over 4, 5, 10, 100 kleuren? Kortom, hoe zit de vork in de steel als het gaat om het tellen van kleuringen van figuren (met een eindig aantal te kleuren oppervlakten) met een eindig aantal kleuren? In dit werk zullen we proberen een tipje van de sluier op te lichten. Gelukkig staan we er niet alleen voor: enkele wiskundigen hebben het ons reeds gemakkelijk gemaakt en het zware wiskundige werk gedaan. We zullen ons in de wereld van de zogenaamde Polyatheorie wagen, met als belangrijkste wiskundige vertegenwoordigers William Burnside ( ) en George Pòlya ( ). Met behulp van heel wat groepentheorie zullen we werken naar een formule om telproblemen met kleuringen eenvoudig op te lossen. We zullen echter niet alle aspecten van de Polyatheorie belichten: naast de stelling van Pòlya, waar we naartoe werken, bestaat er ook nog dezelfde stelling met gewichten, die gebruikt kan worden om complexere problemen op te lossen. Een voorbeeld van zo n probleem is: Op hoeveel manieren kan je een kubus kleuren zodat deze 3 rode vlakken en 1 geel, 1 groen en 1 blauw vlak heeft? Om zulke problemen op te lossen is nog meer wiskundig inzicht en doorzettingsvermogen nodig dan voor wat we in dit werk behandelen. Gelukkig verschafte niemand minder dan George Pòlya ons met een geldig excuus om deze problemen niet aan te snijden: If you can t solve a problem, then there is an easier problem you can solve: find it. - George Pòlya Maar genoeg onwiskundige bladvulling, over tot het echte werk. En vergeet niet: Wiskunde, dat is pure ontspanning. - Hector Mommaerts 4

5 2 Enkele telproblemen 2.1 Probleem 1 Gegeven is een vierkant verdeeld in 4 kleine vierkanten. Op hoeveel manieren kan je de 4 gebieden kleuren met hoogstens 2 kleuren? Rotaties van een bepaalde kleuring tellen niet als een aparte kleuring Met wat logisch nadenken vinden we snel dat het antwoord 6 is. We onderscheiden namelijk de volgende gevallen: Aantal vakjes met kleur 1 aantal mogelijke kleuringen Als we aan 2 vakjes kleur 1 toekennen, zijn er 2 verschillende kleuringen mogelijk. De vakjes kunnen naast elkaar of op een diagonaal liggen. De andere gevallen geven telkens slechts 1 mogelijke kleuring. 2.2 Probleem 2 Gegeven is een kubus. Op hoeveel manieren kan je de zijvlakken inkleuren met ten hoogste 2 kleuren? Ook hier vinden we eenvoudig de oplossing door een gevalsonderscheid. We vinden dat er 10 mogelijke kleuringen zijn. Aantal vakjes met kleur 1 aantal mogelijke kleuringen Bij een verdeling met 2 vakjes in een bepaalde kleur hebben we de keuze:we kunnen deze tegenover elkaar plaatsen, of laten aansluiten. Met 3 vakjes in een kleur kunnen we de 3 vakjes rond een hoekpunt nemen, of 3 aaneensluitende vakjes waarvan de 2 uiterste geen ribbe gemeen hebben.. 5

6 2.3 Probleem 3 Op hoeveel manieren kan je het vierkant van probleem 1 kleuren met ten hoogste m kleuren? We lossen dit op met een gevalsonderscheid. Juist 1 kleur: 1 mogelijke kleuring Juist 2 kleuren: 4 mogelijke kleuringen Juist 3 kleuren: 9 mogelijke kleuringen Juist 4 kleuren: 6 mogelijke kleuringen Dus voor ten hoogste m kleuren vinden we voor het aantal mogelijkheden C 1 m 1 + C 2 m 4 + C 2 m 9 + C 4 m 6. We hebben immers Cm 1 = m mogelijkheiden om onze kubus in 1 kleur te kleuren. Voor 2 kleuren nemen we alle mogelijke paren van kleuren uit onze m kleuren, dus Cm. 2 Aangezien we met 2 kleuren 4 mogelijke kleuringen kunnen maken, geeft dit Cm 2 4 mogelijkheden. Op analoge wijze vervolledigen we zo onze formule. We kunnen deze formule uitwerken en op volgende wijze schrijven: 2.4 Probleem 4 m 4 + m 2 + 2m. 4 Op hoeveel manieren kan je de kubus van probleem 2 kleuren met ten hoogste m kleuren? Dit probleem kunnen we met dezelfde strategie oplossen. Dit is echter niet efficiënt en tijdrovend. We kunnen de volgende formule vinden: m 2 24 (m4 + 3m m + 8) Later zullen we in staat zijn deze formule op eenvoudige wijze te vinden. 6

7 3 Verband met acties Terminologie 1. Een kleuring van een verzameling X met een verzameling K is een afbeelding k : X K. Notatie: k K x 3.1 Voorbeeld Om deze notatie toe te lichten, nemen we het vierkant van probleem 1 onder de loep X = {1, 2, 3, 4} K = {kleuren} We geven enkele voorbeelden van kleuringen met K = {R, G} 1 R G R G Deze kleuring wordt gegeven door de volgende afbeelding: 1 R 2 R k 1 : 3 G 4 G 2 G G R R Deze kleuring wordt gegeven door de volgende afbeelding: 1 G 2 R k 2 : 3 R 4 G 7

8 3 R G G R Deze kleuring wordt gegeven door de volgende afbeelding: 1 R 2 G k 3 : 3 R 4 G We merken op dat bepaalde kleuringen hetzelfde zijn, namelijk dat men door draaiing van een kleuring een andere bekomt. Zo merken we dat k 1 k 2 en dat k 1 k 3. Definiëren we de draaiing over 90 = (1234) 1 als a, dan geldt dat k 1 = k 2 a. Het is triviaal dat n {0, 1, 2, 3} : k 1 = k 3 a n. We definiëren als volgt: k i k j r G Id, a, a 2, a 3 S(X) : k i = k j r waarbij S(X) de permutatiegroep van de figuur is. Dit is een equivalentierelatie, dat wil zeggen dat aan de volgende eigenschappen voldaan is: Voor alle x X geldt dat x x Voor alle x, y X geldt: als x y, dan y x Voor alle x, y, z X geldt: als x y en y z, dan x z 1 Vierkant 1 komt op 2, 2 op 3, 3 op 4 en 4 op 1. Dit noemen we de cykelschrijfwijze. 8

9 3.2 Acties Definitie 3.1. Zij G, een groep en V een verzameling. Een rechtse actie van G op V is een afbeelding V G V : (v, g) v g zodat v V : v e = v v V ; g 1, g 2 G : v (g 1 g 2 ) = (v g 1 ) g 2. We illustreren dit met het voorbeeld van de kubus: Neem V = K x, de verzameling kleuringen van de kubus, en G S(X), de verzameling rotaties die we kunnen toepassen. Beschouw de rechtse actie K x G K x : (k, s) k s = k s. Hierbij is k een kleuring die wordt uitgevoerd na de rotatie s. Er geldt: k Id x = k Id x = k k (s r) = k (s r) = (k s) r = (k s) r = (k s) r We toetsen dit aan het gezond verstand: het is triviaal dat een kleuring toekennen na de identieke rotatie hetzelfde is als de kleuring toekennen aan de kubus. Het tweede punt is minder voor de hand liggend. We werken daarom een voorbeeld uit. a Beschouw de volgende rotaties: s beeld het bovenvlak op het rechtse vlak af, het rechtse op het onderste, het onderste op het linkse en het linkse op het bovenste. Het voorvlak en achtervlak blijven op hun oorspronkelijke plaats: s = (3146). r beeld het bovenvlak op het linkse vlak af, het linkse op het onderste, het onderste op het rechtse en het rechtse op het bovenste. Het voorvlak en achtervlak blijven op hun oorspronkelijke plaats: r = (1364). We beschouwen de kleuring k die het bovenvlak blauw kleurt en het rechtervlak rood. k (s r) = k, want r en s leveren ons terug de beginsituatie op. (k s) r splitsen we op. We merken dat k s de kleuring is waarbij het linkervak blauw wordt gekleurd en het bovenvlak rood. Voeren we dus eerst r uit, dan wordt het bovenvlak op het linkervlak afgebeeld en het rechtervak op het bovenvlak. Wanneer we dan de kleuring k s toepassen, wordt het bovenvlak blauw en het rechtervak rood, hetgeen gelijk is aan de kleuring k. 9

10 Eigenschap 1. Een rechtse actie implementeert een equivalentierelatie op V : v 1 v 2 g G : v 1 g = v 2 We bewijzen dit door middel van de 3 criteria van een equivalentierelatie. Bewijs. v 1 v 1 Ja, want v 1 e = v 1. v 1 v 2 v 2 v 1 Stel v 1 v 2. g zodat v 1 g = v 2. Dan geldt dat Dus v 2 v 1. Als v 1 v 2 en v 2 v 3, dan is v 1 v 3. Stel v 1, v 2, v 3 zodat v 1 v 2 en v 2 v 3. g 1 g 2 G v 1 v 3 v 2 g 1 = (v 1 g) g 1 = v 1 (g g 1 ) = v 1 e = v 1 v 1 g 1 = v 2 v 2 g 2 = v 3 v 3 = v 2 g 2 = (v 1 g 1 ) g 2 = v 1 (g 1 g 2 ) Definitie 3.2. Stel dat G een rechtse actie uitvoert op een verzameling V. Or(v) = v G = {v G g G} V is de orbiet van v V. St(v) = {g G v g = v} is de stabilisator van v V, dit is een deelgroep van g G. Nemen we als voorbeeld een kubus met het voorvlak in een andere kleur, dan is de orbiet de verzameling van draaiingen waarbij men een ander zicht verkrijgt. Het aantal elementen van Or(v), genoteerd als Or(v), is dan 6. We kunnen immers het gekleurde vak op elk van de 6 zijden afbeelden. De stabilisator is de verzameling van draaiingen waarbij het zicht niet verandert. In dit geval kunnen we de kubus kantelen, zolang het voorvlak op dezelfde plaats blijft. We vinden dat St(v) = 4. 10

11 3.3 Orbietstelling Stelling 3.3. (Orbietstelling) Stel dat een eindige groep G een actie uitvoert op een verzameling V. v V : = Or(v) St(v) Terminologie 2. Een kleurpatroon bij een kleuring van de elementen van X door K is een orbiet van de actie van G S(X) op K x Toepassing orbietstelling Wat is het aantal elementen van G S(X) bij de kubus? M.O. G = rotaties van de kubus in R 3 S 6 G voert dus een rechtse actie uit op {1, 2, 3, 4, 5, 6}, namelijk: G {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} : (s, i) s(i) Dus: = Or(1) St(1) = 6 4 = Stelling van Burnside Stelling 3.4. (Stelling van Burnside) Stel dat een eindige groep G een rechtse actie uitvoert op een eindige verzameling V. Dan is waarbij F ix(g) = {v V v g = v}. Bewijs. Noteer O = {Or(v) v V }. Dan geldt: #orbieten = 1 F ix(g) g G 1 F ix(g) = 1 # {v V v g = v} g G g G = 1 # {(v, g) V G v g = v} = 1 # {g G v g = v} = 1 = v V = o O = o O 1 v V v V St(v) 1 Or(v) v O 1 O = O = #orbieten 11

12 3.4.1 Toepassing: probleem 3 Oplossing van probleem 3 via de stelling van Burnside: # kleurpatronen van X = {1, 2, 3, 4} met K ( K = m) = # orbieten van de actie van G = { Id, a, a 2, a 3} op K x = 1 F ix(g) = 1 Ä F ix(id) + F ix(a) + F ix(a 2 ) + F ix(a 3 ) ä 4 g G = 1 Ä m 4 + m + m 2 + m ä 4 = m 4 (m3 + m + 1) 12

13 4 Stelling van Polya Afspraak In de disjuncte cykelschrijfwijze van een element σ S n, schrijven we de cykels van lengte één wel. Normaal gezien is dit niet nodig, omdat de niet vermelde vlakken op hun plaats blijven. Bij de stelling van Polya moete we echter tellen hoeveel cykels er voorkomen en welke lengte ze hebben. Om verwarring te vermijden schrijven we dus ook de cykels van lengte één. Notatie Zij σ S n. c(σ) = aantal cykels in de disjuncte schrijfwijze van σ. c i (σ) = aantal cykels van lengte i in de disjuncte schrijfwijze van σ. Nemen we bij voorbeeld de volgende draaiing bij de kubus: a = (1265)(3)(4), dan vinden we dat c(a) = 3, c 1 = 2 en c 4 = 1. a Merk op dat n c(σ) = c i (σ). i=1 Het is triviaal dat het aantal cykels gelijk is aan de som van het aantal cykels van elke mogelijke lengte. We vinden ook dat n n = i c 1 (σ). i=1 Ook dit spreekt voor zich. Bij het voorbeeld van de kubus en draaiing a geeft dit bijvoorbeeld het volgende: 6 6 = i c 1 (a) = i=1 Eigenschap 2. Zij X een eindige verzameling en G een deelgroep van S(X) die een actie uitvoert op K x met K = m. Dan geldt g G : F ix(g) = m c(g). Bewijs. Een kleuring k is vast onder g als voor elke cykel (in de disjuncte cykelschrijfwijze) van g geldt dat elk element in die cykel dezelfde kleur krijgt. Stelling 4.1. (Stelling van Polya) Zij X een eindige verzameling, K een verzameling kleuren met m elementen. Zij G een deelgroep van S(X) die een actie uitvoert op K x. Dan is #kleurpatronen = 1 m c(g). g 13

14 4.1 Toepassing: probleem 4 We lossen probleem 4 op. Op hoeveel manieren kan je de kubus kleuren met ten hoogste m kleuren? Als kubus nemen we de dobbelsteen. i We beschouwen de identieke afbeelding. i iid = (1)(2)(3)(4)(5)(6) Draaiing rond een as door het midden van 2 overstaande vlakken. i ka = (1562)(3)(4) lb = (16)(25)(3)(4) jc = (1265)(3)(4) Er zijn 3 mogelijke assen waarrond we op deze wijze kunnen draaien. Draaiing rond een as door het midden van 2 overstaande ribben. i td = (16)(24)(35) Er zijn 6 mogelijk assen waarrond we op deze wijze kunnen draaien. Draaiing rond een as door 2 hoekpunten. i ge = (145)(263) xf = (154)(236) Er zijn 4 mogelijke assen waarrond we op deze wijze kunnen draaien. Voor het aantal kleurpatronen met m kleuren kunnen we de formule nu toepassen: 1 g m c(g) = 1 24 = 1 24 = m2 24 m c(g) g î m 6 + 3(m 3 + m 4 + m 3 ) + 6m 3 + 4(m 2 + m 2 ) ó î m 4 + 3m m + 8 ó 14

15 5 Besluit We merken dat we met behulp van de stelling van Pòlya in staat zijn telproblemen, die op het eerste zicht misschien gemakkelijk zijn, op te lossen zonder alle mogelijkheden af te gaan. Met de stelling van Pòlya met gewichten, die we kunnen verkrijgen via de stelling van Burnside met gewichten, zal het mogelijk zijn nog andere telproblemen op te lossen, met name telproblemen waar het van belang is hoeveel vlakken een bepaalde kleur krijgen. We hebben dus nog maar een kleine stap gezet in het verhaal van de Polyatheorie, maar een goed begin is het halve werk... 6 Bronnen Dit eindwerk is gebaseerd op de cursus discrete wiskunde van Prof. Dr. W. Veys, docent aan de KU Leuven. Het onderdeel Polyatheorie is één van de wiskundige topics die hierin behandeld worden, naast o.a. het duivenhokprincipe en cryptografie. De cursus wordt gegeven in het laatste jaar van de bachelor wiskunde. 15

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Eindwerk wiskunde: De wiskunde achter de Rubik s kubus. Laurens Vanden Eynde 6 e jaar Latijn - Wiskunde

Eindwerk wiskunde: De wiskunde achter de Rubik s kubus. Laurens Vanden Eynde 6 e jaar Latijn - Wiskunde Eindwerk wiskunde: De wiskunde achter de Rubik s kubus Laurens Vanden Eynde 6 e jaar Latijn - Wiskunde Schooljaar 2010-2011 Inhoudsopgave 1 Inleiding 2 2 Kubusnotatie 3 2.1 Design...............................

Nadere informatie

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens Dag van de wiskunde Kortrijk 26 november 2009 Ideeën voor de klaspraktijk Spreker: E. Jennekens 1. De provincie West-Vlaanderen is 3144 km² groot. Kun je de hele wereldbevolking, 6,7 miljard, verwelkomen

Nadere informatie

TIPS: PAG. 3 DES CONSEILS: PAGE 16 HINWEISE: SEITE 29

TIPS: PAG. 3 DES CONSEILS: PAGE 16 HINWEISE: SEITE 29 TIPS: PAG. 3 DES CONSEILS: PAGE 16 HINWEISE: SEITE 29 00728 NL MILJARDEN COMBINATIES, EN MAAR ÉÉN OPLOSSING. Rubik s Cube is een verschrikkelijk verslavende, meerdimensionale uitdaging die puzzelfanaten

Nadere informatie

Veelvlakken kleuren. Dion Gijswijt

Veelvlakken kleuren. Dion Gijswijt Stel, je wilt de zijvlakken van een veelvlak kleuren, en wel zo dat aangrenzende veelvlakken verschillende kleur krijgen. Hoeveel kleuren heb je dan minimaal nodig? Veelvlakken kleuren Dion Gijswijt De

Nadere informatie

Werkwinkel Permutatiepuzzels

Werkwinkel Permutatiepuzzels Werkwinkel Permutatiepuzzels Karsten Naert UGent Vakgroep Wiskunde 6 november 2013 1 / 33 Over mij... Assistent en doctoraatsstudent Taken: Onderzoek Onderwijs Dienstverlening Karsten.Naert@UGent.be http:

Nadere informatie

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gekleurde sokken Op de planeet Swift B6 wonen de Houyhnhnms. Ze lijken sprekend op paarden;

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

Sum of Us 2014: Topologische oppervlakken

Sum of Us 2014: Topologische oppervlakken Sum of Us 2014: Topologische oppervlakken Inleiding: topologische oppervlakken en origami Een topologisch oppervlak is, ruwweg gesproken, een tweedimensionaal meetkundig object. We zullen in deze tekst

Nadere informatie

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!

Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! www.wiskundekangoeroe.be Dit initiatief kwam tot stand binnen het actieplan Wetenschapscommunicatie

Nadere informatie

HOOFDSTUK 0. = α g1 α g2

HOOFDSTUK 0. = α g1 α g2 HOOFDSTUK 0 Acties van groepen 0.1 Groep-actie Uit de cursus Meetkunde en Lineaire Algebra van 1ste jaar Bachelor Wiskunde ([KI] in de referentielijst) weten we reeds wat een permutatiegroep G op een verzameling

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . Bij een weerspiegeling in het water staat een beeld op zijn kop. ntwoord is dus zeker fout. De stand van de maan ten opzichte van de boom moet dezelfde blijven. Zo moet de holle kant van de maan het

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Eindexamen wiskunde B havo I (oude stijl)

Eindexamen wiskunde B havo I (oude stijl) Een functie Voor 0 < = x < = 2π is gegeven de functie figuur 1 f(x) = 2sin(x + 1 6 π). In figuur 1 is de grafiek van f getekend. y 1 f 4 p 1 Los op: f(x) < 1. De lijn l raakt de grafiek van f in het punt

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

1 DE STELLING VAN PYTHAGORAS

1 DE STELLING VAN PYTHAGORAS 1 DE STELLING VAN PYTHAGORAS 1.1 Verkennende opdrachten 1.1.1 Pythagoras puzzel (mozaïek van Henry Perigal 1801-1898) Open de link naar het bestand 1 Pythagoras_puzzel.htm Gegeven is een rechthoekige driehoek

Nadere informatie

Examen HAVO en VHBO. Wiskunde B

Examen HAVO en VHBO. Wiskunde B Wiskunde B Examen HAVO en VHBO Hoger Algemeen Voortgezet Onderwijs Vooropleiding Hoger Beroeps Onderwijs HAVO Tijdvak 1 VHBO Tijdvak 2 Dinsdag 23 mei 13.30 16.30 uur 00 Dit examen bestaat uit 19 vragen.

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600.

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 200-2005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Leest hij eerst de eerste kolom van boven naar beneden, dan de tweede enzovoorts, dan hoor je

Leest hij eerst de eerste kolom van boven naar beneden, dan de tweede enzovoorts, dan hoor je Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal vier vierkantjes schrijft iemand letters. In iedere rij en in iedere kolom komt zo één A, één B en één C, zodat

Nadere informatie

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β. 1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen

Nadere informatie

1 Binaire plaatjes en Japanse puzzels

1 Binaire plaatjes en Japanse puzzels Samenvatting Deze samenvatting is voor iedereen die graag wil weten waar mijn proefschrift over gaat, maar de wiskundige notatie in de andere hoofdstukken wat te veel van het goede vindt. Ga er even voor

Nadere informatie

HOOFDSTUK 2 TRANSFORMATIES

HOOFDSTUK 2 TRANSFORMATIES HOOFDSTUK 2 TRANSFORMATIES Verschuiven, roteren, spiegelen, vergroten/verkleinen zijn manieren om bij een figuur een 'beeldfiguur' te bepalen. Deze manieren noem je 'transformaties'. 2.1 LIJNSPIEGELING

Nadere informatie

WISKUNDE-ESTAFETTE 2010 Uitwerkingen

WISKUNDE-ESTAFETTE 2010 Uitwerkingen WISKUNDE-ESTAFETTE 010 Uitwerkingen 1 We tellen het aantal donkere tegels in elke rij. Rij 1 (en rij 19) bestaat uit 10 witte tegels. Rij (en rij 18) bestaat uit 11 tegels, waarvan 6 wit en 5 donker. Rij

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 006-007: tweede ronde 1 In een rechthoekige driehoek verdeelt de bissectrice uit een scherpe hoek de overstaande zijde in twee stukken met lengten 4 en 5 (zie figuur) De oppervlakte

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Kangoeroewedstrijd editie Wallabie: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Kangoeroewedstrijd editie Wallabie: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 1. Omdat2011 1 = 2011en011 = 1en1 2011 = 2011en1+2011 = 2012en1 : 2011 = 1 2011, is 1+2011 het grootst. Kangoeroewedstrijd editie Wallabie: jaargang 2011, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Homogene groepen, de balk

Homogene groepen, de balk Volgende week mag je zelf een les van ongeveer 20 minuten geven aan je medeleerlingen over de balk, cilinder of kegel. Een goede les bevat veel leerlingactiviteit. Zorg er dus voor dat je je leerlingen

Nadere informatie

De WrapSlide-puzzel algebraïsch bekeken. Dimitri Geelhoed en Lotte Meester 2013

De WrapSlide-puzzel algebraïsch bekeken. Dimitri Geelhoed en Lotte Meester 2013 De WrapSlide-puzzel algebraïsch bekeken Dimitri Geelhoed en Lotte Meester 2013 1 Inleiding Al snel nadat we besloten om onderzoek te doen naar een wiskundig vraagstuk, kregen we het idee om een puzzel

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 1005 tot 1015 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 812: gelijkvormig / vervormen pagina 813: patronen pagina 814: kubus pagina

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

De huwelijksstelling van Hall

De huwelijksstelling van Hall Thema Discrete wiskunde In de vorige twee afleveringen heb je al kennis kunnen maken met het begrip graaf en hoe grafen worden gebruikt door Google s zoekmachine en door de NS bij het maken van een optimale

Nadere informatie

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Welke ongelijkheid is juist? (A) 3 5 < 2 6 (C) 5 6 < 3 (B) 3 7 < 2 (D) 5 7 < 2 10 (E) 5 < 6 7 2 Hoeveel vierkante meter is 1600 vierkante centimeter?

Nadere informatie

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1. Het quotiënt 28 is gelijk aan 82 (A) 2 0 () 2 1 (C) 2 2 (D) 2 3 (E) 2 4 2. Het resultaat van de vermenigvuldiging 1 3 5 7 9 2011 eindigt op het cijfer

Nadere informatie

Extra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde. Transformaties en Stelling van Thales.

Extra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde. Transformaties en Stelling van Thales. Etra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde Transformaties en Stelling van Thales.. Waar of niet waar? a. Het beeld van een rechte door de projectie op

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Uitwerkingen Sum of Us

Uitwerkingen Sum of Us Instant Insanity Uitwerkingen Sum of Us Opgave A: - Opgave B: Voor elk van de vier kubussen kun je een graaf maken die correspondeert met de desbetreffende kubus. Elk van deze grafen bevat drie lijnen.

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2014 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 00 1 (20 punten) Gegeven zijn drie aan elkaar rakende cirkels met straal 1. Hoe groot is de (donkergrijze) oppervlakte

Nadere informatie

Antwoorden. Magische vierkanten Vierkant voor Wiskunde Doeboek 8

Antwoorden. Magische vierkanten Vierkant voor Wiskunde Doeboek 8 Antwoorden Magische vierkanten Vierkant voor Wiskunde Doeboek 8 1 6 1 8 7 5 3 2 9 4 2 De getallen 1 tot en met 9. 3 15. 15 en 15. De som van de getallen van elke rij is 15. 4 15. De som van de getallen

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde

1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde 1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde 1.Vantweenatuurlijkegetallenmennismevenennoneven.Welkvanvolgendegetallen is dan oneven? () m+4n () 3m+2n () mn (D) m n (E) n m 2. Welk van volgende

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1994-1995 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...

Nadere informatie

Diktaat Concrete Meetkunde Veelvlakken en alles wat daarbij komt kijken...

Diktaat Concrete Meetkunde Veelvlakken en alles wat daarbij komt kijken... Diktaat Concrete Meetkunde Veelvlakken en alles wat daarbij komt kijken... Anieke Brombacher 3230589 Auke Mollema 3233626 Patrick van Stiphout 3223604 24 april 2009 1 Inhoudsopgave 1 Inleiding 3 2 Regelmatige

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke

Nadere informatie

10 Junior Wiskunde Olympiade : eerste ronde

10 Junior Wiskunde Olympiade : eerste ronde 10 Junior Wiskunde Olympiade 2001-2002: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

PROJECTIEMETHODEN. Labine Coskun ; ; CC Naamsvermelding 3.0 Nederland licentie.

PROJECTIEMETHODEN. Labine Coskun ; ; CC Naamsvermelding 3.0 Nederland licentie. Auteurs Laatst gewijzigd Licentie Webadres Labine Coskun ; ; 30 June 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/75861 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein.

Nadere informatie

Alle opgaven tellen even zwaar, 10 punten per opgave.

Alle opgaven tellen even zwaar, 10 punten per opgave. WAT IS WISKUNDE (English version on the other side) Maandag 5 november 2012, 13.30 1.30 uur Gebruik voor iedere opgave een apart vel. Schrijf je naam en studentnummer op elk vel. Alle opgaven tellen even

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2005-2006: eerste ronde 1 Vier van de volgende figuren zijn het beeld van minstens één andere figuur door een draaiing in het vlak Voor één figuur is dit niet het geval Welke?

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

Hoofdstuk 6 Inhoud uitwerkingen

Hoofdstuk 6 Inhoud uitwerkingen Kern Prisma en cilinder a De inhoud is G h=,5 = 4,5cm. b Die inhoud is even groot. a De inhoud is G h= ( 4) 8 = 64 cm b Op iedere hoogte geldt dat de doorsnede van het rechte prisma dezelfde oppervlakte

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen.

Discrete modellen in de toegepaste wiskunde (WISB136) Uitwerkingen proeftentamen. Discrete modellen in de toegepaste wiskunde (WISB6) Uitwerkingen proeftentamen. Docent: Rob H. Bisseling april 202. Begin met een matching M = {x y, x y, x 6 y 6 } aangegeven door de vette lijnen. x De

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 10 en 13 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde Vlaamse Wiskunde Olmpiade 008-009: tweede ronde Wat is het voorschrift van deze tweedegraadsfunctie? (0, ) (, ) 0 (A) f() = ( + ) (B) f() = ( + ) + (C) f() = ( ) + (D) f() = ( ) (E) f() = ( ) + In volgend

Nadere informatie

Fractale dimensie. Eline Sommereyns 6wwIi nr.9

Fractale dimensie. Eline Sommereyns 6wwIi nr.9 Fractale dimensie Eline Sommereyns 6wwIi nr.9 Inhoudstabel Inleiding... 3 Gehele dimensie... 4 Begrip dimensie... 4 Lengte, breedte, hoogte... 4 Tijd-ruimte... 4 Fractale dimensie... 5 Fractalen... 5 Wat?...

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Stabiele koppelingen (Engelse titel: Stable Matchings)

Stabiele koppelingen (Engelse titel: Stable Matchings) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Stabiele koppelingen (Engelse titel: Stable Matchings) Verslag ten behoeve van het

Nadere informatie

START WISKUNDE-ESTAFETTE 2008 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500.

START WISKUNDE-ESTAFETTE 2008 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500. START WISKUNDE-ESTAFETTE 2008 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500. Estafette-opgave 1 (30 punten, rest 470 punten) Uitgeveegd In de cirkeltjes heeft iemand de

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Eindexamen wiskunde B1-2 havo 2007-I

Eindexamen wiskunde B1-2 havo 2007-I Eindexamen wiskunde B- havo 007-I Beoordelingsmodel Vraag Antwoord De wet van Moore maximumscore 3 Van 96 tot 975 is 4 jaar Het aantal transistors volgens de formule is dus 4 7 4 = 5, dus 5 transistors

Nadere informatie

Figuur 3 PYTHAGORAS SEPTEMBER 2016

Figuur 3 PYTHAGORAS SEPTEMBER 2016 In het juninummer zagen we hoe we met behulp van de piramidemethode en invarianten ruimtelijke figuren binnenstebuiten kunnen keren. Aan de invarianten stelden we voorwaarden, zoals dat alle vlakken zoveel

Nadere informatie

Vlaamse Wiskunde Olympiade 2014-2015: eerste ronde

Vlaamse Wiskunde Olympiade 2014-2015: eerste ronde Vlaamse Wiskunde Olympiade 20-205: eerste ronde. Tussen Suske en Wiske staan drie blauwe kopjes opeenrij.suskezietdekopjeszoalsindefiguur. Hoe ziet Wiske de kopjes? () () () () (E) 2. Een repeterend decimaal

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Projectieve Vlakken en Codes

Projectieve Vlakken en Codes Projectieve Vlakken en Codes 1. De Fanocode Foutdetecterende en foutverbeterende codes. Anna en Bart doen mee aan een spelprogramma voor koppels. De ene helft van de deelnemers krijgt elk een kaart waarop

Nadere informatie

Wiskunde Opdrachten Vlakke figuren

Wiskunde Opdrachten Vlakke figuren Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke

Nadere informatie

De stelling van Pick. Dion Gijswijt

De stelling van Pick. Dion Gijswijt Sommige wiskundige stellingen zijn zo fantastisch simpel en elegant, dat je je afvraagt: Waarom ben ik daar niet op gekomen! Dit stukje gaat over precies zo n stelling: eenvoudiger dan de stelling van

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde. Vlaamse Wiskunde Olympiade 995-996 : Tweede Ronde De tweede ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Taalbeleid in wiskunde Transformaties van het vlak

Taalbeleid in wiskunde Transformaties van het vlak Taalbeleid in wiskunde Transformaties van het vlak Leerplan: Doelgroep: Beginsituatie: Wiskunde 1 ste graad A-stroom 2 de leerjaar A De leerlingen hebben alle transformaties van het vlak (spiegeling, puntspiegeling,

Nadere informatie

wizprof 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel lezier.!! Stichting Wiskunde Kangoeroe Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be

Nadere informatie

6 - Geschiedenis van het getal Pi

6 - Geschiedenis van het getal Pi 6 - Geschiedenis van het getal Pi De opdracht omschrijving voor dit hoofdstuk bestond uit het volgende: F1 - Lees de hoofdstukken 1 t/m 4 en 9 uit het Zebra-boekje Pi. Maak uit de hoofdstukken 2 t/m 4

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar

Nadere informatie

= 3 1111 101 + 6 3 1111 101 + 2 1111 101 = (3 + 2) 1111 101 = 5 11

= 3 1111 101 + 6 3 1111 101 + 2 1111 101 = (3 + 2) 1111 101 = 5 11 . Bij A en E staan de benen van het poppetje loodrecht op elkaar. Bij C vormen de benen een scherpe hoek. Bij D vormen de benen een gestrekte hoek. Alleen bij B vormen de benen van het poppetje een stompe

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Eindexamen havo wiskunde A pilot 03-II Beoordelingsmodel Paracetamol in het bloed maximumscore 4 De eerste 0 minuten wordt er 50 mg in het bloed opgenomen (en is er nog 50 mg in maag en darmen), de volgende

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

Naam:... Nr... SPRONG 5. a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft.

Naam:... Nr... SPRONG 5. a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft. Naam:... Nr.... SPRONG 5 G G 1 Percenten T a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft. Kleur 20 % blauw. 25 % maak je geel. 50 % krijgt een groene kleur. Er blijft

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 99 99 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 009-010: tweede ronde 1 Wat is de straal van een cirkel met oppervlakte? () π π (C) π (D) π (E) π an de diagonaal [] van een vierkant met zijde 1, bouwt men links en rechts

Nadere informatie