Uitwerkingen oefeningen hoofdstuk 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Uitwerkingen oefeningen hoofdstuk 4"

Transcriptie

1 Uitwerkingen oefeningen hoofdstuk Basis Lijnen en hoeken 1 Het assenstelsel met genoemde lijnen ziet er als volgt uit: l k n m -4 - Hieruit volgt: a Lijn k en lijn l snijden elkaar, namelijk in punt (3,3). Dat geldt ook voor lijn l en lijn n in (0,0), lijn k en lijn n in (3, ), lijn l en lijn m in ( 3, 3) en lijn m en lijn n in (1,8, 3). b Lijn k loopt evenwijdig aan de verticale as. Dat zie je al aan de punten waardoor deze lijn gaat: bij een toenemende y-waarde blijft namelijk de x-waarde gelijk (zie coördinaten van de punten). c Lijn m loopt evenwijdig aan de horizontale as. Dat zie je al aan de punten waardoor deze lijn gaat: bij een toenemende x-waarde blijft namelijk de y-waarde gelijk (zie coördinaten van de punten). Dat maakt dat deze lijn een horizontale lijn is. d Omdat lijn k verticaal is (en daarmee evenwijdig aan de verticale as), maakt lijn k eenzelfde hoek met de horizontale as als met de verticale, namelijk: 90⁰. e Lijn l gaat precies door de punten (2,2) en (4,4) en dus ook door de punten (1,1), (0,0), ( 1, 1) enzovoort. Deze lijn snijdt dus ieder hokje precies doormidden: het is de diagonaal van elk rastervierkantje. De lijn halveert dus de hoek tussen de horizontale as 1 van 13

2 en de verticale as en maakt daarom een hoek van 4⁰ met zowel de horizontale as als de verticale as. f Zie antwoord bij e. g Omdat lijn m horizontaal is (en daarmee evenwijdig aan de horizontale as), maakt lijn m eenzelfde hoek met de verticale as als met de horizontale, namelijk: 90⁰. 2 Figuur 1 Dit is een driehoek. Van een driehoek is bekend dat de som van de drie hoeken altijd 180 is. Dus? = 180, waaruit volgt:? = = 43. Figuur 2 Dit is een vierhoek. Een vierhoek is te verdelen in twee driehoeken. Alle hoeken samen zijn dus ? +? = 360, waaruit volgt:? +? = 176 en dus? = 88. Figuur 3 Dit is een vierhoek. Een vierhoek is te verdelen in twee driehoeken. Gezamenlijk vormen alle vier de hoeken dus 360 : 2? = 360, waaruit volgt: 2? = 177, ofwel:? = 88,. 3 Als je van twee kanten iets dichtvouwt, vouw je het eigenlijk in tweeën. 180 in tweeën is 90. Dit kan als volgt getekend worden. Als je het A4 tje van bovenstaande tekening openvouwt, krijg je: α α β β De twee hoeken links zijn even groot. De twee driehoeken links zijn namelijk ook gelijk. We noemen deze hoeken α. Analoog volgen rechts twee hoeken β. Je ziet dat 2α + 2β = 180. Waaruit volgt dat a + b dan 90 is. 2 van 13

3 Veelhoeken 4 a a rechthoek of vierhoek (een rechthoek is een bijzondere vierhoek) b driehoek c vijfhoek of pentagram d ruit of vlieger e trapezium f vierkant, vierhoek of rechthoek g parallellogram h vlieger b Dat zijn de figuren c en f. Zij hebben gelijke zijden en gelijke hoeken. Figuur d heeft wel gelijke zijden, maar niet gelijke hoeken en is daardoor niet geheel regelmatig. Figuur a heeft wel gelijke hoeken, maar niet gelijke zijden. c Een trapezium is een vierhoek waarvan ten minste één paar tegenoverliggende zijden evenwijdig is. In de afbeelding geldt dat voor figuren a, d, e, f en g. d Er zijn meerdere antwoorden mogelijk. Let erop dat de figuur die je moet tekenen een vierhoek moet zijn. Een figuur dus met vier hoeken en vier zijden. Verder hebben bijzondere vierhoeken of gelijke zijden en/of gelijke hoeken. In dit geval moet dat dus juist niet zo zijn, het moet juist onregelmatig zijn. Dit antwoord is gemakkelijker te vinden wanneer je zoekt naar regelmaat. In een vierhoek kun je minimaal twee driehoeken tekenen. In een vijfhoek heb je minimaal drie driehoeken nodig om het figuur te verdelen in driehoeken. Voor een zeshoek geldt dat er minimaal vier driehoeken nodig zijn. Kennelijk is het kleinste aantal driehoeken dus het aantal hoeken 2. Voor een 37-hoek zijn dus minimaal 3 driehoeken nodig. 6 a Een diagonaal verbindt twee niet-aangrenzende hoeken in een veelhoek. In een driehoek is er dus geen diagonaal te tekenen. In een vierhoek zijn twee diagonalen te tekenen, door in beide gevallen niet de aanliggende hoeken met elkaar te verbinden, maar juist de andere twee. Vanuit elk hoekpunt van een vijfhoek kun je vier lijnstukken naar de andere punten trekken. Dat zijn in totaal ( 4)/2 = 10 lijnstukken. (We delen door 2 omdat je alle lijnstukken anders twee keer meetelt). Vijf daarvan zijn zijden van de vijfhoek zelf (en verbinden dus twee aanliggende hoeken met elkaar), er zijn dus altijd vijf diagonalen te tekenen in een vijfhoek. b Dan zijn er (10 9)/2 10 = 3. c (100 99)/2 100 = 480 d Neem a = aantal hoeken. Dan geldt (a a 1)12 a. 7 a Waar. In elk vierkant staan de aangrenzende zijden loodrecht op elkaar. b Waar. In elk vierkant zijn de zijden even lang. c Onwaar. In een ruit hoeven de aangrenzende zijden niet loodrecht op elkaar te staan. d Waar. Dit geldt in elke ruit en ook in elke vlieger. e Onwaar voor alle rechthoeken die niet ook een vierkant vormen. 3 van 13

4 8 Een praktische manier om dit te doen is drie bakstenen op een rijtje leggen en dan de middelste weghalen. Dan kun je de lichaamsdiagonaal meten met een liniaal. Je kunt het natuurlijk ook formeel uitrekenen door twee keer Pythagoras uit te voeren. Je hebt namelijk eerst de diagonaal van het voorvlak nodig, om vervolgens de diagonaal van het zo ontstane bovenvlak te berekenen. Voorvlak baksteen: schuine zijde = basis 2 + hoogte 2 hoogte basis Zo ontstane bovenvlak: basis schuine zijde voorvlak* *merk op dat deze in dit vlak loodrecht op de basis staat schuine zijde zo ontstane bovenvlak = (basis voorvlak 2 + (basis 'zo ontstane bovenvlak) 2 4 van 13

5 Dat leidt tot een lichaamsdiagonaal van schuine zijde voorvlak 2 + (hoogte voorvlak) 2 + basis 'zo ontstane bovenvlak') 2 Lokaliseren en oriënteren 9 a Nee. Zoals je ziet wordt er elke 0 meter een nieuwe kring op de kaart getekend. De kring waarbinnen de camping van Sarah zich bevindt, ligt op een hoogte tussen 400 en 40 meter. 460 meter is dus niet mogelijk. b Kijk hiervoor in de hoogtekaart. De pijl wijst het hoogste gedeelte van dit gebied aan. Dit gebied heeft een hoogte van 40 tot (maximaal) 00 meter C P Q A Z c Nee. Sarah staat dan wel op een hoogte van 30 meter, terwijl de trekkershut op een hoogte tussen de 300 en 30 meter ligt. Maar tussen punt A en de trekkershut zit nog wel een gedeelte van meer dan 30 meter. d Sarah gaat van 30 m hoogte naar 300 m hoogte. Zij zal dus in totaal 0 m dalen. De temperatuur stijgt bij elke 100 m dalen met 0,4 graden. Sarah gaat 0 m naar beneden. De temperatuur zal dus 1 0,4 graden = 0,2 graden stijgen. 2 e Martijn gaat van een hoogte van 20 m naar een hoogte van 300 m. Hij stijgt dus 0 meter. Zoals hiervoor aangegeven komt 0 m stijgen overeen met 0,2 graden. Zijn horloge gaf aan dat het in punt P 18,9 graden was. In punt Q zal het dus 18,7 graden zijn. Visualiseren en representeren 10 Francien heeft weer 4 cl verf nodig. Van de kleine kubussen zijn namelijk al drie van de zes vlakken geverfd. Dat kostte haar 4 cl verf. Nu wil zij ook de andere drie vlakken van alle kubussen blauw verven. Daar zal ze dus weer 4 cl verf voor nodig hebben. van 13

6 11 Transformeren, spiegelen en symmetrie d kustlijn c a b observatiepunt De twee driehoeken zijn gelijkvormig. Op de kant kun je alle (delen van) zijden meten. Door de verhoudingen te gebruiken kun je ook de (delen van) zijden uitrekenen die je niet kunt meten. Als a = 6 m, b = m en c = 18 m, dan kan in een verhoudingstabel de oplossing zichtbaar gemaakt worden: a = 6 c = 18 b = d = 1 Hieruit volgt d = 1 m. Er geldt dus altijd: als je de landdelen a, b en c meet en je vult de drie gevonden waarden in in de verhouding a : b = c : d, dan kun je uitrekenen hoe ver het schip uit de kust ligt. Je ziet dat de basis van de kleine driehoek (a) 6 m is. De basis van de grote driehoek (c) is drie keer zo groot. De hoogte van de grote driehoek (d) zal dus ook drie keer zo groot zijn als de hoogte van de kleine driehoek (b). 6 van 13

7 Construeren 12 Bij deze opgave kun je kiezen voor een exacte weergave. Dat wil zeggen dat we de hoogte van de driehoeken die de zijvlakken van de piramide vormen, moeten uitrekenen. Als we ons beperken tot de kern, het maken van uitslagen van een piramide, dan is dat minder noodzakelijk. Voor de volledigheid laten hier beide aanpakken zien. De hoogte van een zijvlak is: 6, = 42,2 = 6,. 6, 6, 6, 6, 13 Om dit precies te tekenen, is de omtrek van de cirkel nodig: 2 π 4 2,1. 7 van 13

8 14 Er zijn minimaal zes plakranden nodig: De plakranden kunnen ook getekend worden op een iets andere plaats, namelijk op de andere zijde die met bovenstaande plakrand verbonden wordt Repertoire Bijzondere veelvlakken 1 Aangezien hier sprake is van ruimtelijke figuren, moet je minimaal drie vlakken aan elkaar laten grenzen in één hoekpunt. Omdat deze vlakken allemaal hetzelfde moeten zijn (dat ligt besloten in de definitie van platonische figuur ) en ook nog regelmatig, zijn er een aantal opties: regelmatige driehoek regelmatige vierhoek regelmatige vijfhoek Eerst kijken we naar de regelmatige (d.w.z. gelijkzijdige) driehoek. Wanneer we er drie laten samenkomen in ieder punt kunnen we het volgende Platonische figuur maken: Wanneer we 4 regelmatige driehoeken in ieder punt laten samenkomen ontstaat het volgende Platonische figuur: 8 van 13

9 Wanneer we regelmatige driehoeken in ieder punt laten samenkomen ontstaat het volgende Platonische figuur: Je zou kunnen denken dat je ook zes regelmatige driehoeken kunt laten samenkomen in ieder punt. De hoeken binnen een regelmatige driehoek zijn echter alle drie 60⁰. Omdat iedere ruimtelijk figuur uit vlakken bestaat kan er een uitslag van gemaakt worden. Dit betekent dat als er in een punt zes van deze hoeken tegen elkaar komen te liggen. Dat zou bij elkaar 360⁰ zijn. Dan is er geen hoekpunt meer, maar er ontstaat een plat vlak. Analoog volgt met de regelmatige vierhoek (drie in ieder punt) de volgende platonische figuur: Analoog volgt ook dat het niet mogelijk is om vier regelmatige vierhoeken (4 90⁰ = 360⁰) in ieder punt te laten samen komen. Analoog volgt met de regelmatige vijfhoek (drie in ieder punt) de volgende platonische figuur: Merk op dat hier elke hoek wel 108⁰ moet zijn en dat er dus slechts drie in ieder punt kunnen samenkomen. 9 van 13

10 Voor de zekerheid proberen we ook een platonisch lichaam te maken met regelmatige zeshoeken. Een regelmatige zeshoek is opgebouwd uit regelmatige driehoeken. Hierdoor is elke hoek van een regelmatige zeshoek Drie regelmatige zeshoeken tegen elkaar aan levert weer een hoek van 360 0, dus een plat vlak. Er is dus geen Platonisch lichaam te maken uit regelmatige zeshoeken. 16 Het parallellepipidum bestaat uit zes dezelfde veelvlakken, namelijk allen pallellogrammen. Daarentegen is het parallellogram geen regelmatig veelvlak. Op zich zou ieder parallellogram wel gelijke zijden kunnen bevatten, maar de hoeken zijn nooit gelijk in een parallellogram (voor zover het geen vierkant is). Functies 17 a 6 C A B b De oppervlakte is nu het eenvoudigst te berekenen wanneer we de driehoek inkaderen. 6 F A C B D van 13

11 Zo ontstaat vierhoek CDEF van 4 cm 4 cm = 16 cm 2 Vervolgens is driehoek ABC de oppervlakte van deze vierhoek min de drie driehoeken (ABE, BDC en ACF). Zo krijgen we: Δ ABE = = 3 cm2, Δ BDC = = 4 cm2, Δ ACF = = 2 cm2. Zodat: Δ ABC = 16 cm 2 9 cm 2 = 7 cm Landelijke kennisbasis Oefeningen kennisbasistoets 18 a (gebaseerd op paragraaf 4.2.) 19 b (gebaseerd op paragraaf 4.2.1) 20 a (gebaseerd op paragraaf 4.2.2) 21 a (gebaseerd op paragraaf 4.2.1) 22 a De twee rechthoeken zijn gelijkvormig: de zijden zijn namelijk naar verhouding gelijk. De driehoeken lijken misschien gelijkvormig, maar hebben geen hoeken van dezelfde grootte en zijn daardoor juist niet gelijkvormig. b De vergrotingsfactor is , = 179,3 63, = 2,8. 23 De poster is gelijkvormig aan het glas van de deur (70 bij 126). De breedte van de poster is 20 cm smaller dan het glas en dus 0 cm breed. De verhouding breedte glas : breedte poster = 70 : 0. We zien dan dat de breedte van de poster 1,4 keer zo klein is dan de breedte van het glas (70 : 1,4 = 0). De lengte van de poster zal dus ook 1,4 keer zo klein zijn als de lengte van het glas. Hieruit volgt voor de lengte 126 : 1,4 = 90 cm. 11 van 13

12 24 De afmetingen van een baksteen zijn: mm. Hoe groot is de lengte van de lichaamsdiagonaal? De baksteen ziet er als volgt uit (de donkerblauwe stippellijn stelt de lichaamsdiagonaal voor): H G E F D 90 mm C 0 mm A 190 mm B Samen met de lijn BG vormt ABG een driehoek waarvan de lichaamsdiagonaal de schuine zijde is: G? A 190 mm B AB = 190 mm BG = schuine zijde van driehoek BCG, waarvan: BC = 0 mm en CG = 90 mm. 12 van 13

13 Dan volgt via de stelling van Pythagoras dat BG 2 = = = en AG 2 = AB 2 + BG 2 = = = Dus AG = = 216 mm. (gebaseerd op paragraaf 4.2.1) 2 De middens van ieder vlak kun je het beste (en het nauwkeurigst) bepalen door in ieder vlak de diagonalen te tekenen. Het snijpunt van de diagonalen zijn de middens van ieder vlak. Wanneer je vervolgens deze punten met elkaar verbindt, ontstaat de volgende figuur: Een octaëder dus. (gebaseerd op paragrafen en 4.3.1) 13 van 13

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

BRUGPAKKET 8: VLAKKE FIGUREN

BRUGPAKKET 8: VLAKKE FIGUREN BRUGPAKKET 8: VLAKKE FIGUREN Brugpakket 8: Vlakke figuren 1 Vlakke figuren 1.1 Vlakke figuren: Veelhoeken en niet-veelhoeken Een veelhoek is enkel begrensd door rechte lijnen. OEFENING Zet een kruisje

Nadere informatie

4 Meetkunde. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

4 Meetkunde. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 4 Meetkunde Peter Ale Martine van Schaik u i t g e v e r ij c o u t i n h

Nadere informatie

2.1 Cirkel en middelloodlijn [1]

2.1 Cirkel en middelloodlijn [1] 2.1 Cirkel en middelloodlijn [1] Hiernaast staat de cirkel met middelpunt M en straal 2½ cm In het kort: (M, 2½ cm) Op de zwarte cirkel liggen alle punten P met PM = 2½ cm In het rode binnengebied liggen

Nadere informatie

Wiskunde Leerjaar 2 - Periode 1 Meetkunde

Wiskunde Leerjaar 2 - Periode 1 Meetkunde Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant D zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier

Nadere informatie

Wiskunde Leerjaar 2 - Periode 1 Meetkunde

Wiskunde Leerjaar 2 - Periode 1 Meetkunde Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Ruimtelijke oriëntatie: plaats en richting

Ruimtelijke oriëntatie: plaats en richting Ruimtelijke oriëntatie: plaats en richting 1 Lijnen en rechten Hoe kunnen lijnen zijn? gebogen of krom gebroken recht We onthouden: Een rechte is een rechte lijn. c a b Een rechte heeft geen begin- en

Nadere informatie

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 1005 tot 1015 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 812: gelijkvormig / vervormen pagina 813: patronen pagina 814: kubus pagina

Nadere informatie

16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1

16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1 Hoofdstuk OPPERVLAKTE HAVO 5 a De rechthoeken zijn bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers.. INTRO Oppervlakte snelweg = 0 km 8 m = 0.000 m 8 m = 360.000 m. Zijde vierkant = 360. 000 = 600

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Voorkennis meetkunde (tweede graad)

Voorkennis meetkunde (tweede graad) Voorkennis meetkunde (tweede graad) 1. Vlakke meetkunde Lengten van de zijden en grootte van de hoeken van driehoeken en vierhoeken - De som van de hoeken van een driehoek is 180 - Bij een rechthoekige

Nadere informatie

handleiding pagina s 434 tot Handleiding 1.2 Huistaken huistaak 12: bladzijde Werkboek

handleiding pagina s 434 tot Handleiding 1.2 Huistaken huistaak 12: bladzijde Werkboek week 13 les 5 toets en foutenanalyse handleiding pagina s 434 tot 443 nuttige informatie 1 Handleiding 1.1 Kopieerbladen pagina s 374 en 375: vierhoeken pagina 376: eigenschappen van diagonalen in vierhoeken

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen. Instap. Een opgave uit de oefentoets:

Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen. Instap. Een opgave uit de oefentoets: Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen Instap Een opgave uit de oefentoets: Van welke verpakkingen is de vorm een prisma? A. Pak spaghetti blikje chocomel doosje

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO Hoofdstuk 1 KENNISMAKEN c 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) c Met twee latten die

Nadere informatie

Pienter 1ASO Extra oefeningen hoofdstuk 7

Pienter 1ASO Extra oefeningen hoofdstuk 7 Extra oefeningen hoofdstuk 7: Vlakke figuren 1 Teken binnen een cirkel met straal 6 cm een tweede cirkel met straal 2 cm. Wat is de kleinste en wat is de grootst mogelijke afstand tussen beide middelpunten?

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

Figuur 3 PYTHAGORAS SEPTEMBER 2016

Figuur 3 PYTHAGORAS SEPTEMBER 2016 In het juninummer zagen we hoe we met behulp van de piramidemethode en invarianten ruimtelijke figuren binnenstebuiten kunnen keren. Aan de invarianten stelden we voorwaarden, zoals dat alle vlakken zoveel

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

4 A: = 10 B: 4 C: 8 D: 8

4 A: = 10 B: 4 C: 8 D: 8 Hoofdstuk OPPERVLAKTE VWO 0 INTRO A: + 6 = 0 B: C: 8 D: 8 DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0 Daar gaan twee halve

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

PROBLEEMOPLOSSEND DENKEN MET

PROBLEEMOPLOSSEND DENKEN MET PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 008-009: tweede ronde ( 7) = (A) 7 (B) 7 (C) 7 of + 7 (D) 7 (E) onbepaald Beschouw de rij opeenvolgende natuurlijke getallen beginnend met en eindigend met Wat is het middelste

Nadere informatie

Herhalingsles 5 Meetkunde Weeroefeningen

Herhalingsles 5 Meetkunde Weeroefeningen Herhalingsles 5 Meetkunde Weeroefeningen HB1.5 1 Teken de vierhoek die aan de opgesomde eigenschappen voldoet. Geef de best passende naam. eigenschappen teken best passende naam vier gelijke vier rechte

Nadere informatie

j (11,51) k (11,-41) l (11,-1011)

j (11,51) k (11,-41) l (11,-1011) H0 COÖRDINATEN 0.1 INTRO 1 a A3, C1, C3 b 3 A3, C1 a d6 of h10 0. DE WERELD IN KAART 3 B 4 a d Zie assenstelsel opgave 6. e b Zie bovenstaande wereldbol. Zie bovenstaande wereldbol. d 90 NB 5 a 7 b b Zie

Nadere informatie

13 Vlaamse Wiskunde Olympiade : Tweede ronde.

13 Vlaamse Wiskunde Olympiade : Tweede ronde. 13 Vlaamse Wiskunde Olympiade 1999-000: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen Kern Meetkundige plaatsen a Zie afbeelding rechts. b In het niet-gearceerde deel. c Op de middenparallel. l m 2 a Teken lijn m en lijn n, beide evenwijdig aan l en op een afstand van 3 cm van l. b Punten

Nadere informatie

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Indien van toepassing: schrijf je berekening op. Tekening altijd met geodriehoek en potlood. Omtrek rechthoek

Nadere informatie

handleiding passen en meten

handleiding passen en meten handleiding passen en meten inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4 Applets 4 1 Vierhoeken 4 2 Met passer en geodriehoek 5 3 Tegelvloertjes 5 4 Onderzoek 5 tijdpad 6 materialen

Nadere informatie

Wiskunde Opdrachten Vlakke figuren

Wiskunde Opdrachten Vlakke figuren Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke

Nadere informatie

2. Antwoorden meetkunde

2. Antwoorden meetkunde 2. Antwoorden meetkunde In dit hoofdstuk zijn de antwoorden op de opgaven over Meetkunde opgenomen. Ze zijn kort en bondig per paragraaf gerangschikt. Dat betekent dat de antwoorden geen uitgebreide uitleg

Nadere informatie

Hoofdstuk 3 - Piramides - uitwerkingen

Hoofdstuk 3 - Piramides - uitwerkingen Wiskunde Leerjaar 1 - periode Ruimtemeetkunde Hoofdstuk - iramides - uitwerkingen 1. iramide Hiernaast staat een regelma/ge vierzijdige piramide met (dus) een vierkant grondvlak. e hoogte van deze piramide

Nadere informatie

REKENEN. Les Probleemoplossend Rekenen. Hoofdstuk 13 -

REKENEN. Les Probleemoplossend Rekenen. Hoofdstuk 13 - REKENEN Les 2.3.7 Probleemoplossend Rekenen Hoofdstuk 13 - VANDAAG Studiewijzer Terugblik Probleemoplossend Rekenen Tijd om te oefenen Opgaven Proefexamen STUDIEWIJZER 2.3.2 Lengte en Oppervlakte 2.3.3

Nadere informatie

Herhalingsles 2 Meetkunde 1 Weeroefeningen

Herhalingsles 2 Meetkunde 1 Weeroefeningen Herhalingsles Meetkunde Weeroefeningen HB. MK Kruis aan wat juist is. Deze figuur is een vierhoek, maar geen vierkant. een vierkant, maar geen ruit. een ruit, maar geen vierkant. een vierkant en een ruit.

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is.

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is. 1 2 1 Wiskunde, zeker duimstok Timmerman Hoe lang iets is. Blokhaak: Timmerman Of een hoek haaks is. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. Zeven munten: een van 1-eurocent, twee van 2-eurocent,

Nadere informatie

de Leuke En Uitdagende Wiskunde VEELVLAKKEN SAMENSTELLING: H. de Leuw

de Leuke En Uitdagende Wiskunde VEELVLAKKEN SAMENSTELLING: H. de Leuw SAMENSTELLING: H. de Leuw 1. VEELHOEKEN. Een veelvlak is een lichaam dat wordt begrensd door vlakke veelhoeken. Zo zijn balken en piramides wel veelvlakken, maar cilinders en bollen niet. Een veelhoek

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 07 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 4 vragen. Voor dit eamen zijn maimaal 7 punten te behalen. Voor elk vraagnummer

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

wiskunde B vwo 2017-II

wiskunde B vwo 2017-II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

handleiding pagina s 241 tot Handleiding 1.1 Kopieerbladen pagina 59: wandelplannen pagina 60: grondplannen constructies 2 Werkboek

handleiding pagina s 241 tot Handleiding 1.1 Kopieerbladen pagina 59: wandelplannen pagina 60: grondplannen constructies 2 Werkboek week 8 les 5 toets en foutenanalyse handleiding pagina s 2 tot 29 nuttige informatie Handleiding. Kopieerbladen pagina 59: wandelplannen pagina 60: grondplannen constructies.2 Huistaken huistaak 5: bladzijde

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

10 Afstanden. rood. even ver van A als van C even ver van A, van C en van E. 10 m. blauw

10 Afstanden. rood. even ver van A als van C even ver van A, van C en van E. 10 m. blauw 28 1 10 fstanden even ver van als van C even ver van, van C en van E 10 m Q ligt even ver van P als van Q, net zo. Dus is middelloodlijn van lijnstuk PQ, dus lijn staat loodrecht op lijn. 180 + = 90 2

Nadere informatie

Hoofdstuk 5 Oppervlakte uitwerkingen

Hoofdstuk 5 Oppervlakte uitwerkingen Kern Vlakke figuren a Rechthoek, parallellogram, driehoek Oppervlakte rechthoek = lengte reedte = d Oppervlakte parallellogram = lengte hoogte = d Oppervlakte driehoek = asis hoogte = d a Knip de parallellogram

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv oofdstuk 0 - oeken en afstanden Voorkennis: Verhoudingen ladzijde 78 V-a e hoeken lijven gelijk want alleen de lengte van de zijden verandert en allemaal met dezelfde factor. Zijde met lengte wordt vergroot

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 6 les 4

Wiskunde D Online uitwerking 4 VWO blok 6 les 4 Wiskunde Online uitwerking 4 VWO blok 6 les 4 Paragraaf 4 Het inproduct om hoeken te berekenen Opgave a e hoek is kleiner dan 4, want het dak zelf staat onder een hoek van 45, en de kilgoot loopt schuin

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 200-2005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Extra oefenmateriaal H10 Kegelsneden

Extra oefenmateriaal H10 Kegelsneden Deel 1 Extra oefenmateriaal H10 Kegelsneden 1. Bereken de inhoud van de volgende twee afgeknotte figuren. 2. Hiernaast zie je een afgeknot zeszijdig prisma. Het grondvlak is een regelmatige zeshoek met

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 006-007: tweede ronde 1 In een rechthoekige driehoek verdeelt de bissectrice uit een scherpe hoek de overstaande zijde in twee stukken met lengten 4 en 5 (zie figuur) De oppervlakte

Nadere informatie

PQS en PRS PS is de bissectrice van ˆP

PQS en PRS PS is de bissectrice van ˆP OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Luc Gheysens - Extremumvraagstukken p.1

Luc Gheysens - Extremumvraagstukken p.1 EXTREMUMVRAAGSTUKKEN 1 Bepaal twee getallen x en y waarvan de som 144 is en waarvoor het product maximaal is. En voor welke waarden is het product x 3. y 2 maximaal? 2 Aan de vier hoeken van een vierkantig

Nadere informatie

Wat ga jij leren?... 4 Hoofdstuk 1 - Lijnen, hoeken en driehoeken Lijnen en lijnstukken... 6 Lijn en lijnstuk... 7 Evenwijdige lijnen...

Wat ga jij leren?... 4 Hoofdstuk 1 - Lijnen, hoeken en driehoeken Lijnen en lijnstukken... 6 Lijn en lijnstuk... 7 Evenwijdige lijnen... 0 Wat ga jij leren?... 4 Hoofdstuk 1 - Lijnen, hoeken en driehoeken... 6 1.1 Lijnen en lijnstukken... 6 Lijn en lijnstuk... 7 Evenwijdige lijnen... 8 Snijdende lijnen... 8 Loodrechte lijnen... 12 1.2 Hoeken...

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Lijst van alle opdrachten versie 13 mei 2014

Lijst van alle opdrachten versie 13 mei 2014 Lijst van alle opdrachten versie 13 mei 2014 Punt Pu1 Zorg dat Toon assen aan staat. Teken een punt in het vlak. Wijzig de naam naar X (hoofdletter!) (rechtsklikken op het punt voor openen snelmenu). Sleep

Nadere informatie

INHOUDSTABEL. 1. TRANSFORMATIES (fiche 1) SYMMETRIE (fiche 2) MERKWAARDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6

INHOUDSTABEL. 1. TRANSFORMATIES (fiche 1) SYMMETRIE (fiche 2) MERKWAARDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6 INHOUDSTBEL 1. TRNSFORMTIES (fiche 1)...3 2. SYMMETRIE (fiche 2)...4 3. MERKWRDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6 4. VLKKE FIGUREN: DRIEHOEKEN (fiche 4)...7 5. VLKKE FIGUREN: BIJZONDERE VIERHOEKEN

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

Oppervlakte en inhoud van ruimtelijke figuren

Oppervlakte en inhoud van ruimtelijke figuren 4 Oppervlakte en inhoud van ruimtelijke figuren BALK EN KUBUS hoogte Figuur lengte reedte In figuur is een alk getekend. Bij een alk zijn steeds de twee tegenover elkaar liggende vlakken gelijk. Alle vlakken

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 20 juni uur Wiskunde B Profi (oude stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 20 juni 3.30 6.30 uur 20 0 Voor dit eamen zijn maimaal 78 punten te behalen; het eamen bestaat uit 4 vragen.

Nadere informatie

de Wageningse Methode Antwoorden H5 DE RUIMTE IN 1

de Wageningse Methode Antwoorden H5 DE RUIMTE IN 1 Hoofdstuk 5 DE RUIMTE IN 6 5. AANZICHTEN EN UITSLAGEN 3 a 7 a kuus ; ol ; c cilinder ; d kegel ; e vijfzijdige piramide ; f alk (vierzijdig prisma) ; g driezijdig prisma ; h zeszijdig prisma ; i alk (vierzijdig

Nadere informatie

5 abd. 6 a A(-3,5) ; B(2,4) ; C(-2,2) ; D(5,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b

5 abd. 6 a A(-3,5) ; B(2,4) ; C(-2,2) ; D(5,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b Hoofdstuk 0 COÖRDINATEN VWO 0.0 INTRO abd c 3 OL, 0 NB 0. HET PLATTE VLAK 6 a A(-3,) ; B(,4) ; C(-,) ; D(,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b cd 0. DE WERELD IN KAART 3 B 4 abc e d 90 NB de Wageningse

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

handleiding pagina s 965 tot Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 117, 123, 129, 140 en Cd-rom

handleiding pagina s 965 tot Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 117, 123, 129, 140 en Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 95 tot 974 nuttige informatie 1 Handleiding 1.1 Kopieerbladen pagina 444: tangram pagina 754: puzzel geometrische figuren pagina 837: diverse gezichtspunten

Nadere informatie

gelijkvormigheid handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek

gelijkvormigheid handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek gelijkvormigheid inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek gelijkvormigheid gelijkvormigheid 1 de grote lijn hoofdlijn de zijlijn

Nadere informatie

handleiding pagina s 687 tot Handleiding 1.1 Kopieerbladen pagina 444: tangram 2 Werkboek 3 Posters

handleiding pagina s 687 tot Handleiding 1.1 Kopieerbladen pagina 444: tangram 2 Werkboek 3 Posters week 22 les 4 toets en foutenanalyse handleiding pagina s 687 tot 695 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 444: tangram 12 Huistaken huistaak 14: bladzijde 445 (vierhoeken tekenen)

Nadere informatie

met tijdseenheden overig niet-metrisch moeten zelf bedacht of opgezocht worden a geheeltallig en < 10

met tijdseenheden overig niet-metrisch moeten zelf bedacht of opgezocht worden a geheeltallig en < 10 Meeteenheden omrekenen 1 2 3 4 5 Eenheid n n = 1 n = 2, n = 3 n > 3 Omrekeningsfactoren uitsluitend metrisch met tijdseenheden overig niet-metrisch Omrekeningsrichting van groot naar klein van klein naar

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2014 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 00 1 (20 punten) Gegeven zijn drie aan elkaar rakende cirkels met straal 1. Hoe groot is de (donkergrijze) oppervlakte

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk

Nadere informatie

1 Junior Wiskunde Olympiade: eerste ronde

1 Junior Wiskunde Olympiade: eerste ronde Junior Wiskunde Olympiade: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt

Nadere informatie

Hoofdstuk 5 : De driehoek

Hoofdstuk 5 : De driehoek Hoofdstuk 5 : De driehoek - 89 1. Congruente figuren Figuren die elkaar volkomen kunnen bedekken noemen we congruente figuren. Congruente figuren hebben dezelfde vorm (~ ) en dezelfde grootte (=). Als

Nadere informatie

7.1 Symmetrie[1] Willem-Jan van der Zanden

7.1 Symmetrie[1] Willem-Jan van der Zanden 7.1 Symmetrie[1] Al de drie figuren hierboven zijn lijnsymmetrisch; Je kunt ze op één of meerdere manieren dubbelvouwen zodat de ene helft het spiegelbeeld van de andere helft is; De vouwlijn heet de symmetrieas/spiegelas;

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-1a De oppervlakte van ABC is 12 5 : 2 = 0 m 2. zijde kwadraat AB = 12 144 AC = 5 BC = 25 169 d BC = 169 = 1 m De omtrek van ABC is 5 12 1 = 0 m. BD = 12 4 = 8 m De oppervlakte van BCD is 8

Nadere informatie

Thema: Vlakke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74267

Thema: Vlakke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74267 Auteur VO-content Laatst gewijzigd 21 October 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres https://maken.wikiwijs.nl/74267 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie