Getaltheorie I. c = c 1 = 1 c (1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Getaltheorie I. c = c 1 = 1 c (1)"

Transcriptie

1 Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk onder de verzameling van de natuurlijke getallen te verstaan de verzameling N = {1, 2,...}, 0 wordt dan dus niet tot N gerekend. Voor de gehele getallen schrijven we: Z = {..., 2, 1, 0, 1, 2,...} 1 Priemgetallen Er zijn natuurlijke getallen die geschreven kunnen worden als product van twee of meer kleinere natuurlijke getallen, bijvoorbeeld 6 = 2 3 of 30 = 2 3 5, terwijl dit bij andere getallen, zoals 3, 13 of 29 niet mogelijk is. In het algemeen, als c = a b het product is van twee natuurlijke getallen a en b, heten a en b delers of factoren van c. Ook heet c dan een veelvoud van a (en van b). Elk natuurlijk getal heeft de volgende vanzelfsprekende ontbinding in factoren: c = c 1 = 1 c (1) Definitie 1.1 Een natuurlijk getal c > 1 dat slechts als in (1) in twee factoren ontbonden kan worden, heet een priemgetal. Elk natuurlijk getal c > 1 dat geen priemgetal is, heet een samengesteld getal. Het getal 1 is dus per definitie noch priemgetal noch samengesteld. 1.1 De zeef van Eratosthenes Om alle priemgetallen kleiner dan een gegeven getal N te bepalen, moet men uit de rij 2, 3,..., N alle samengestelde getallen verwijderen. Dit kan men systematisch doen door achtereenvolgens alle veelvouden van 2, van 3, enz. te schrappen. Hierbij kan men natuurlijk alle veelvouden van n overslaan zodra n zelf al geschrapt is (want dan zijn de veelvouden van n ook al geschrapt). Bovendien kan men bij het schrappen van de veelvouden van p beginnen bij p 2, omdat de kleinere veelvouden al eerder zijn geschrapt. De rij van getallen die niet geschrapt worden, is de rij van alle priemgetallen kleiner dan N: 2, 3, 4, 5, 6, 7, 8, 9,.... Deze methode is voor het eerst beschreven door de Griekse wiskundige Eratosthenes (±200 v. Chr.), en staat bekend als de zeef van Eratosthenes. Elke priemgetallentabel is op deze wijze gemaakt. De Griekse wiskundige Euclides (±300 v. Chr.) schreef een boek, Elementen, waarin hij op systematische wijze de gehele op dat moment bekende wiskunde behandelde. Dit boek bevat ook een gedeelte over getaltheorie. Hierin komt al de volgende stelling voor: 1

2 Stelling 1.2 Er zijn oneindig veel priemgetallen. Bewijs. Stel dat er slechts eindig veel priemgetallen waren: 2, 3, 5,..., p k. Vorm dan het product van alle priemgetallen: P = p k. Het getal P + 1 is groter dan elk van de priemgetallen, en moet dus een samengesteld getal zijn. P + 1 is echter niet deelbaar door 2, want het eerste getal na P dat door 2 deelbaar is, is P + 2. Om dezelfde reden is P + 1 niet deelbaar door 3, 5 of één van de andere priemgetallen. Tegenspraak. 1.2 De hoofdstelling van de rekenkunde Elk samengesteld getal kan geschreven worden als product van twee kleinere factoren. Als minstens één van beide samengesteld is, kan men die ook weer schrijven als product van kleinere factoren. Zo kan men doorgaan tot er slechts priemgetallen als factoren overblijven. Hieruit blijkt: elk getal groter dan 1 is een priemgetal of het product van priemgetallen. Men kan een samengesteld getal in het algemeen op verschillende manieren via een aantal tussenstappen in priemgetallen ontbinden. Iedereen weet echter dat het uiteindelijke resultaat, de ontbinding in priemfactoren, steeds hetzelfde is (afgezien van de volgorde). Deze bekende eigenschap van de natuurlijke getallen lijkt nauwelijks nadere beschouwing waard, totdat men ontdekt dat in vergelijkbare getalsystemen waarin men ook een ontbinding in priemfactoren kan definiëren de eenduidigheid van de ontbinding niet geldt. Voorbeeld: Beschouw de even getallen (2, 4, 6,...). Sommige ervan kan men schrijven als product van even factoren, bijvoorbeeld 20 = Bij andere is dit niet mogelijk. We noemen even getallen die niet het product zijn van even factoren even-priemgetallen. Dit zijn precies de even getallen die geen viervoud zijn. (Ga dit na.) Elk even getal is te schrijven als product van even-priemgetallen, maar zo n ontbinding hoeft niet eenduidig te zijn. Het getal 420 bijvoorbeeld heeft onder andere de ontbindingen 420 = 6 70 = Opgave 1.1 Bepaal alle even-priemontbindingen van 360. Opgave 1.2 Wanneer heeft een even getal een eenduidige ontbinding in evenpriemgetallen? Het feit dat de gewone ontbinding in priemfactoren wèl eenduidig is, is blijkbaar toch iets bijzonders. Het staat zelfs bekend als de hoofdstelling van de rekenkunde: Stelling 1.3 De ontbinding in priemfactoren van een natuurlijk getal is eenduidig bepaald. Bewijs. Stel dat de ontbinding niet voor alle natuurlijke getallen eenduidig is. Laat c het kleinste natuurlijke getal zijn dat op (minstens) twee verschillende manieren in priemfactoren kan worden ontbonden: c = p 1 p 2 p k = q 1 q 2 q l met p 1 p 2 p k en q 1 q 2 q k. Geen van de priemfactoren p i kan gelijk zijn aan een priemfactor q j, want dan zou men c door deze factor kunnen delen en zou er een kleiner natuurlijk getal zijn dan c met twee ontbindingen. Dit zou in tegenspraak zijn met de keuze van c. Men kan nu veronderstellen p 1 < q 1. Dan geldt 2

3 p 1 q 1 < q 1 q 1 q 1 q 2 q 1 q 2 q l = c. Het getal c = c p 1 q 1 = q 1 (q 2 q 3 q l p 1 ) heeft volgens de aannames een eenduidige priemontbinding. p 1 is een priemfactor van c en van p 1 q 1, dus ook van c. p 1 is echter geen factor van q 2 q 3 q l, dus ook niet van q 2 q 3 q l p 1. Tegenspraak. Opgave 1.3 Waarom is het bovenstaande bewijs niet overdraagbaar op het geval van de even-priemgetallen? Opgave 1.4 Gegeven is een positief geheel getal n, n > 2. V n is de verzameling getallen van de vorm kn + 1, waarin k een positief geheel getal is. Een getal m V n heet onontbindbaar in V n als er geen getallen p, q V n bestaan met m = pq. Bewijs dat er een getal in V n bestaat dat op meer dan één manier te schrijven is als het product van in V n onontbindbare elementen. (Schrijfwijzen die slechts in de volgorde van de factoren verschillen worden als gelijk beschouwd.) (IWO 1977) 2 Ggd s en kgv s Gegeven zijn twee natuurlijke getallen a en b. Het grootste natuurlijke getal dat zowel een deler is van a als van b heet de grootste gemene deler van a en b. Notatie: ggd(a, b) of kortweg (a, b). Het kleinste getal dat zowel een veelvoud van a als van b is, heet het kleinste gemene veelvoud van a en b. Notatie: (a, b) of kortweg [a, b]. a is een deler van b korten we af tot a b. Bewijs met behulp van de hoofdstelling van de rekenkunde: Opgave 2.1 Elke gemeenschappelijke deler van a en b is ook een deler van ggd(a, b). Opgave 2.2 Elk gemeenschappelijk veelvoud van a en b is ook een veelvoud van (a, b). Opgave 2.3 ggd(a, b) (a, b) = a b. Opgave 2.4 Als d = ggd(a, b) dan geldt ggd( a d, b d ) = 1. Stelling 2.1 Bij elk tweetal natuurlijke getallen a en b bestaan er gehele getallen q (voor quotiënt) en r (voor rest) zo, dat b = qa + r en 0 r < a. Bewijs. Noem het kleinste veelvoud van a dat groter is dan b (q + 1)a, en noem r = b qa. q en r voldoen dan aan de gevraagde eigenschappen. Men kan de ggd van twee getallen bepalen door beide in priemfactoren te ontbinden. Vooral bij grote getallen kan dit echter een omvangrijk werk zijn. Er is een veel snellere methode. Deze berust op het volgende feit: als b = qa + r, q Z, dan geldt ggd(a, b) = ggd(a, r). Elke deler van a en b is immers ook een deler van r = b qa en omgekeerd is elke deler van a en r een deler van b = qa + r. Om de ggd(a, b) te 3

4 bepalen kan men daarom het volgende algoritme gebruiken: b = q 1 a + r 1 (0 r 1 < a) a = q 2 r 1 + r 2 (0 r 2 < r 1 ) r 1 = q 3 r 2 + r 3 (0 r 3 < r 2 ) r 2 = q 4 r 3 + r 4 (0 r 4 < r 3 ).. r k 2 = q k r k 1 + r k (0 r k < r k 1 ) r k 1 = q k+1 r k + r k+1 (r k+1 = 0) We weten zeker dat er een k N is waarvoor r k+1 = 0, want anders zou de rij a, b, r 1, r 2,... een oneindige, strikt dalende rij natuurlijke getallen zijn, en zo n rij bestaat niet. (Bewijs dit.) Hieruit blijkt vervolgens dat r k = ggd(r k, r k 1 ) = ggd(r k 1, r k 2 ) = = ggd(r 1, a) = ggd(a, b). Een voorbeeld: bepaal ggd(1970, 1066) = = = = = = = = = = = De ggd van deze twee getallen is dus 2. Het bovenstaande algoritme voor het berekenen van ggd s staat al beschreven in Euclides Elementen en heet daarom het algoritme van Euclides. Opgave 2.5 Bepaal ggd(30444, 11868), ggd(16913, 16949) en ggd(9597, 4841). Opgave 2.6 Bewijs: als ggd(a, b) = 1, dan ggd(a + b, a b) {1, 2}. Opgave 2.7 Bewijs: als ggd(a, b) = 1, dan ggd(a + b, a 2 ab + b 2 ) {1, 3}. Opgave 2.8 Bewijs de volgende varianten van stelling 2.1: (1) als a en b gehele getallen zijn en a 0, bestaan er gehele getallen q en r met 0 r < a en b = qa + r. (2) als a en b gehele getallen zijn en a 0, bestaan er gehele getallen q en r met 1 2 a < r 1 2 a en b = qa + r. Opgave 2.9 Op variant (2) uit de vorige opgave kan men een algoritme baseren analoog aan het algoritme van Euclides. Omdat de hierbij optredende resten in het algemeen kleiner zijn dan bij Euclides algoritme, werkt dit algoritme meestal sneller. Ga dit na voor de ggd s uit opgave 2. Opgave 2.10 a is een natuurlijk getal met de volgende eigenschappen: (1) a 100 geeft bij deling door 73 rest 2. (2) a 101 geeft bij deling door 73 rest 69. Bepaal de rest bij deling van a door 73 Stelling 2.2 Bij elk tweetal natuurlijke getallen a en b zijn er gehele getallen m en n zo, dat ggd(a, b) = ma + nb. Bewijs. De verzameling S van alle getallen van de vorm xa + yb met x en y geheel heeft een kleinste positieve element. Stel dat dit ma + nb is. Elke deler van a en 4

5 b is ook een deler van ma + nb. In het bijzonder is dus ggd(a, b) een deler van ma + nb. Anderzijds is het voor zekere gehele q en r zo, dat a = q(ma + nb) + r met 0 r < ma + nb. Dit betekent dat r = (1 qm)a qnb, dus r behoort tot S. Maar ma + nb is het kleinste positieve element van S, dus r = 0. Bijgevolg is ma + nb een deler van a. Evenzo bewijst men dat ma + nb een deler is van b, dus ma + nb (a, b). Er was al bewezen dat ggd(a, b) een deler van ma + nb is, dus moet gelden ma + nb = ggd(a, b). Een ander bewijs van deze stelling kan men uit het algoritme van Euclides afleiden: kijk nog eens naar de algemene techniek en merk op dat ggd(a, b) = r k, dus dat uit de voorlaatste vergelijking volgt ggd(a, b) = r k 2 q k r k 1 en uit de vergelijking daarvoor ggd(a, b) = r k 2 q k (r k 3 q k 1 r k 2 ). Zo voortgaande kan men ggd(a, b) uitdrukken in r i s met steeds lagere rangnummers, en uiteindelijk in a en b. Dit geeft dus ook een methode om zulke getallen m en n daadwerkelijk te bepalen. Opgave 2.11 Bepaal getallen m en n als boven voor de getallenparen uit opgave 2. Opgave 2.12 Bepaal gehele getallen x en y zo, dat 91x + 221y = Opgave 2.13 Bewijs dat elk geheel getal n te schrijven is in de vorm n = 29x+13y waarbij x en y geheel zijn. Opgave 2.14 Bepaal het kleinste natuurlijke getal N zo, dat elk natuurlijk getal n > N geschreven kan worden als n = 29x + 13y met x en y natuurlijk. 3 Volledige Inductie Om de geldigheid te bewijzen van een uitspraak van de vorm Voor ieder natuurlijk getal n geldt P (n), waarbij P (n) staat voor een bewering (propositie) waarin n voorkomt, maakt men vaak gebruik van de volgende methode: 1. Men bewijst P (1). 2. Men bewijst dat als P (1), P (2),..., P (k) gelden, dan ook P (k + 1) geldt. Hieruit volgt de geldigheid van P (n) voor alle natuurlijke n. Immers, zou P (n) niet voor alle natuurlijke getallen n gelden, dan zou er een kleinste natuurlijke waarde n 0 zijn waarvoor P (n 0 ) niet geldt. n 0 is niet gelijk aan 1 wegens (1) en omdat P (1) tot en met P (n 0 1) wel gelden, geldt P (n 0 ) ook op grond van (2). Tegenspraak. Voorbeeld: voor elk natuurlijk getal n geldt n 2 = 1 6n(n + 1)(2n + 1). Bewijs. de geldigheid van de formule voor n = 1 is duidelijk. Stel dat de formule ook voor alle n k geldt. Dan volgt: k 2 +(k+1) 2 = ( k 2 )+ (k+1) 2 = 1 6 k(k+1)(2k+1)+(k+1)2 = 1 6 (k+1)(2k2 +7k+6) = 1 6 (k+1)(k+2)(2k+3) en dit is precies de formule voor n = k

6 Opgave 3.1 Bewijs de volgende beweringen met volledige inductie voor alle natuurlijke n: (1) (2n 1) = n 2 ; (2) n = 1 2n(n + 1); (3) n 3 = ( n) 2 ; (4) a n b n is deelbaar door a b; (5) 3 3n n 1 is deelbaar door 11. Opmerking: in plaats van f(1) + f(2) + + f(n) gebruikt men vaak de korte notatie n i=1 f(i). Zo kan men bijvoorbeeld de derde formule uit de vorige opgave schrijven als n i=1 i3 = ( n k=1 k) 2. 4 Gemengde opgaven Opgave 4.1 Bewijs dat men uit elke verzameling van 52 gehele getallen er twee kan kiezen waarvan de som of het verschil een veelvoud is van 100. Opgave 4.2 Er zijn paren priemgetallen die verschil twee hebben, zoals (5, 7) en (29, 31). Bestaan er ook priemgetallen p 1, p 2, p 3 zo, dat p 3 p 2 = p 2 p 1 = 2? Opgave 4.3 p 1 en p 2 zijn priemgetallen groter dan 3 met verschil 2. Bewijs dat p 1 + p 2 deelbaar is door 12. Opgave 4.4 Bewijs dat voor elk natuurlijk getal n, 9 n + 63 deelbaar is door 72. Opgave 4.5 Bewijs dat n 3 + n2 2 + n3 6 voor alle natuurlijke n een natuurlijk getal is. Opgave 4.6 Bepaal vier verschillende paren natuurlijke getallen zo, dat het verschil van hun kwadraten gelijk is aan 105. Opgave 4.7 Bewijs dat geen priemgetal is en geef minstens drie priemfactoren ervan. Opgave 4.8 Bewijs dat er precies één derdemacht van de vorm 2p + 1 is, waarin p priem is. Opgave 4.9 Bewijs dat ggd(n 3 + 2n, n 4 + 3n 2 + 1) = 1 voor elke n N. Opgave 4.10 Bewijs dat 3n 2 1 voor geen enkel natuurlijk getal n een kwadraat is. Opgave 4.11 Bepaal gehele x en y zo, dat 101x + 753y = Opgave 4.12 n wordt in het tientallig stelsel geschreven met 300 enen en een aantal nullen. Is n een kwadraat? 6

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Priemontbinding en ggd s

Priemontbinding en ggd s Hoofdstuk 3 Priemontbinding en ggd s 3.1 Priemgetallen Een getal > 1 dat alleen 1 en zichzelf als positieve deler heeft noemen we een priemgetal. De rij priemgetallen begint als volgt, 2, 3, 5, 7, 11,

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Bewijs door inductie

Bewijs door inductie Bewijs door inductie 1 Bewijs door inductie Vaak bestaat een probleem erin aan te tonen dat een bepaalde eigenschap geldt voor elk natuurlijk getal. Als je wilt weten of iets waar is voor alle natuurlijke

Nadere informatie

7.1 Het aantal inverteerbare restklassen

7.1 Het aantal inverteerbare restklassen Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65,

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, GETALTHEORIE 1 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, SAMENSTELLING: H. de Leuw - 1 - 1. NATUURLIJKE GETALLEN. Als kind hebben we allemaal leren tellen: 1,

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

Oefening: Markeer de getallen die een priemgetal zijn.

Oefening: Markeer de getallen die een priemgetal zijn. Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Finaletraining Nederlandse Wiskunde Olympiade

Finaletraining Nederlandse Wiskunde Olympiade NEDERLANDSE W I S K U N D E OLYMPIADE Finaletraining Nederlandse Wiskunde Olympiade Met uitwerkingen Birgit van Dalen, Julian Lyczak, Quintijn Puite Dit trainingsmateriaal is deels gebaseerd op materiaal

Nadere informatie

Extra oefeningen hoofdstuk 4: Deelbaarheid

Extra oefeningen hoofdstuk 4: Deelbaarheid Extra oefeningen hoofdstuk 4: Deelbaarheid 4.1 Delers en veelvouden 1 Bepaal door opsomming. a) del 84 =... b) del 13 =... c) del 44 =... d) del 89 =... e) del 1 =... f) del 360 =... 2 Bepaal de eerste

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties Hoofdstuk 6 Congruentierekening 6.1 Congruenties We hebben waarschijnlijk allemaal wel eens opgemerkt dat bij vermenigvuldigen van twee getallen de laatste cijfers als het ware meevermenigvuldigen. Stel

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

handleiding ontbinden

handleiding ontbinden handleiding ontbinden inhoudsopgave inhoudsopgave de grote lijn 3 Bespreking per paragraaf 4 Applets 4 1 met gegeven product 4 ontbinden van getallen 4 3 vergelijkingen 5 4 onderzoek 6 tijdpad 9 materialen

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

Uitwerking Puzzel 93-1, Doelloos

Uitwerking Puzzel 93-1, Doelloos Uitwerking Puzzel 93-1, Doelloos Wobien Doyer Lieke de Rooij Volgens de titel is deze puzzel zonder doel, dus zonder bekende toepassing. Het doel is echter nul en dat is zeker in de wiskunde niet niks.

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 1

Uitwerkingen oefeningen hoofdstuk 1 Uitwerkingen oefeningen hoofdstuk 1 1.4.1 Basis Oefeningen Romeinse cijfers 1 Op deze zonnewijzer staan achtereenvolgens de getallen: I (= 1) II (= 2) III (= 3) IV (= 4) V (= 5) VI (= 6) VII (= 7) VIII

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

De Chinese reststelling

De Chinese reststelling De Chinese reststelling 1 Inleiding 1. De Chinese reststelling is een stelling binnen de getaltheorie. De stelling werd voor het eerst beschreven in de vierde eeuw na Chr. door de Chinese wiskundige Sunzi

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen Een praktische opdracht voor leerlingen van 5VWO met wiskunde B DE TELDUIVEL Inleiding Wiskunde? Hou op zeg! Voor

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn :

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn : HOOFDSTUK. VERZAMELINGEN, RELATIES EN FUNCTIES Opgaven verzamelingen, relaties en functies. Toon aan : a) (A B) C = A (B C) b) A (B C) = (A B) (A C) c) (A B) c = A c B c d) A B B c A c. Ga voor volgende

Nadere informatie

De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen

De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen Een praktische opdracht voor leerlingen van 5 VWO met wiskunde B DE TELDUIVEL Inleiding Wiskunde? Hou op zeg!

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

7 Deelbaarheid. 7.1 Deelbaarheid WIS7 1

7 Deelbaarheid. 7.1 Deelbaarheid WIS7 1 WIS7 1 7 Deelbaarheid 7.1 Deelbaarheid Deelbaarheid Voor geheeltallige d en n met d > 0 zeggen we dat d een deler is van n, en ook dat n deelbaar is door d, als n d een geheel getal is. Notatie: d\n k

Nadere informatie

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade Katernen voor de regionale training ten behoeve van de tweede ronde van de Nederlandse Wiskunde Olympiade NEDERLANDSE WISKUNDE OLYMPIADE Birgit van Dalen Julian Lyczak Quintijn Puite Inhoudsopgave Katern

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 +

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 + I Getall 0 e π 8 9 Dit deel gaat over het rek met getall. Ze kom in allerlei soort voor: positieve getall, negatieve getall, gehele getall, rationale irrationale getall. De getall, π e zijn voorbeeld van

Nadere informatie

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten Hoofdstuk 12 Sommen van kwadraten 12.1 Sommen van twee kwadraten In Hoofdstuk 11 hebben we gezien dat als p een oneven priemdeler van a 2 + b 2 is, en p deelt niet zowel a als b, dan is p gelijk aan 1

Nadere informatie

Spookgetallen. Jan van de Craats en Janina Müttel

Spookgetallen. Jan van de Craats en Janina Müttel Spookgetallen Jan van de Craats en Janina Müttel leadtekst In de serie Open Problemen deze keer drie beroemde onopgeloste raadsels. Je kunt er geen miljoen dollar mee winnen, maar wel onsterfelijke roem.

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 Extremenprincipe 6 3 Ladenprincipe 11 1 Bewijs uit het ongerijmde In Katern hebben we de volgende rekenregel bewezen, als onderdeel van

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Gehelen van Gauss. Hector Mommaerts

Gehelen van Gauss. Hector Mommaerts Gehelen van Gauss Hector Mommaerts 2 Hoofdstuk 1 Definities Gehelen van Gauss zijn complexe getallen van de vorm a + bi waarbij a, b Z. De verzameling van alle gehelen van Gauss noteren we met Z(i). Dus

Nadere informatie

Hoofdstuk 4. Delers. 4.1 Delers (op)tellen

Hoofdstuk 4. Delers. 4.1 Delers (op)tellen Hoofdstuk 4 Delers 4. Delers (op)tellen Ieder getal heeft zijn delers. Van oudsher heeft het onvoorspelbare gedrag van delers van getallen een aantrekkingskracht uitgeoefend op mensen. Zozeer zelfs dat

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Les C-01: Algoritmen. 2005 David Lans

Les C-01: Algoritmen. 2005 David Lans 2005 David Lans Les C-01: Algoritmen 1.0 Inleiding Moeilijke problemen pakken we vaak stapsgewijs aan: Een olifant eet je met kleine hapjes. Het is van belang om de stappen waarmee we een probleem oplossen

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato Algebra voor Informaticastudenten Getallen Jean Delville: de school van Plato Ernic Kamerich januari 2007 Inhoud 1 De gehele getallen..........................................................................

Nadere informatie

WISKUNDE-ESTAFETTE 2010 Uitwerkingen

WISKUNDE-ESTAFETTE 2010 Uitwerkingen WISKUNDE-ESTAFETTE 010 Uitwerkingen 1 We tellen het aantal donkere tegels in elke rij. Rij 1 (en rij 19) bestaat uit 10 witte tegels. Rij (en rij 18) bestaat uit 11 tegels, waarvan 6 wit en 5 donker. Rij

Nadere informatie

Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element.

Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element. Hoofdstuk 5 Cyclische groepen 5.1 Definitie Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element. Als G wordt voortgebracht door a en a n = e, dan noteren we de groep als C n = a.

Nadere informatie

IMO-selectietoets III zaterdag 3 juni 2017

IMO-selectietoets III zaterdag 3 juni 2017 IMO-selectietoets III zaterdag 3 juni 017 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Gegeven is cirkel ω met middellijn AK. Punt M ligt binnen de cirkel, niet op lijn AK. De lijn AM snijdt

Nadere informatie

PRIJEN en PRIPRIJEN Werkblad Rationale rechthoekige driehoeken

PRIJEN en PRIPRIJEN Werkblad Rationale rechthoekige driehoeken PRIJEN en PRIPRIJEN Werkblad Rationale rechthoekige driehoeken Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk

Nadere informatie

6 Ringen, lichamen, velden

6 Ringen, lichamen, velden 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x 2 + 2x + 2 irreducibel is in Z 3 [x]. Oplossing 6.1 Aangezien de veelterm van graad 3 is,

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

1 Kettingbreuken van rationale getallen

1 Kettingbreuken van rationale getallen Kettingbreuken van rationale getallen Laten we eens starten met een breuk bijvoorbeeld 37/3 Laten we hier ons kettingbreuk algoritme op los, We concluderen hieruit dat 37 3 3 + 3 + + 37 3 + + + hetgeen

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 BEWIJZEN Discrete Structuren Week1 : Bewijzen Onderwerpen Puzzels

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle  holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/20310 holds various files of this Leiden University dissertation. Author: Jansen, Bas Title: Mersenne primes and class field theory Date: 2012-12-18 Samenvatting

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

Perfecte getallen en Leinster groepen

Perfecte getallen en Leinster groepen Faculteit Wetenschappen Departement Wiskunde Perfecte getallen en Leinster groepen Bachelorproef 1 Lukas Boelens Promotor: Dr. Andreas Bächle 29 januari 2015 Inhoudsopgave 1 Inleiding 2 2 Perfecte getallen

Nadere informatie

Syllabus Algebra I. Prof. Dr G. van der Geer

Syllabus Algebra I. Prof. Dr G. van der Geer Algebra I -1 1 Syllabus Algebra I voorlopige versie Prof. Dr G. van der Geer Faculteit Wiskunde en Informatica Universiteit van Amsterdam Science Park 94248 1090 GE Amsterdam Versie: 2013 Algebra I -2

Nadere informatie

Ontwerp van Algoritmen: opgaven weken 3 en 4

Ontwerp van Algoritmen: opgaven weken 3 en 4 0 Ontwerp van Algoritmen: opgaven weken 3 en 4 Voor alle volgende opgaven over programmaatjes geldt de spelregel: formuleer altijd eerst alle bewijsverplichtingen. selectie 45. (tail distribution)(prima

Nadere informatie

Uitwerkingen eerste serie inleveropgaven

Uitwerkingen eerste serie inleveropgaven Uitwerkingen eerste serie inleveropgaven (1) Gegeven het 4 4 grid bestaande uit de 16 punten (i, j) met i, j = 0,..., 3. Bepaal het aantal driehoeken dat je kunt vinden zodanig dat ieder hoekpunt samenvalt

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Groepen, ringen en velden

Groepen, ringen en velden Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:

Nadere informatie

priemgetallen en verzamelingen Jaap Top

priemgetallen en verzamelingen Jaap Top priemgetallen en verzamelingen Jaap Top IWI-RuG & DIAMANT j.top@rug.nl 21 april 2009 (Collegecaroussel, Groningen) 1 In de biografie Gauss zum Gedächtnis (1862, door de Duitse geoloog Wolfgang Sartorius

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

W i s k u n d e. voor de eerste klas van het gymnasium UITWERKINGEN AUTEUR: JOHANNES SUPIT

W i s k u n d e. voor de eerste klas van het gymnasium UITWERKINGEN AUTEUR: JOHANNES SUPIT W i s k u n d e voor de eerste klas van het gymnasium UITWERKINGEN UTEUR: JOHNNES SUPIT COSMICUS MONTESSORI LYCEUM MSTERDM, 200 Inhoudsopgave Getallen. Van de één naar de nul................................

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

Algoritmen en programmeren: deel 2 - basis

Algoritmen en programmeren: deel 2 - basis Algoritmen en programmeren: deel 2 - basis Ruud van Damme Creation date: 25 april 2005 Update: 16 november 2006, 9 september 2007 Overzicht 1 Basisbenodigdheden voor alle problemen 2 Alles in stukjes op

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie

Discrete Structuren voor Informatici

Discrete Structuren voor Informatici Discrete Structuren voor Informatici 1 Eenvoudige telproblemen Dit zijn aantekeningen voor het college Discrete Structuren voor Informatici, Blok A, herfst 2008. We behandelen een aantal telproblemen,

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

Public Key Cryptography. Wieb Bosma

Public Key Cryptography. Wieb Bosma Public Key Cryptography de wiskunde van het perfecte kopje koffie Wieb Bosma Radboud Universiteit Nijmegen Bachelordag 2 april 2011 Nijmegen, 6 november 2010 0 Nijmegen, 6 november 2010 1 cryptografie

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

Projectieve Vlakken en Codes

Projectieve Vlakken en Codes Projectieve Vlakken en Codes 1. De Fanocode Foutdetecterende en foutverbeterende codes. Anna en Bart doen mee aan een spelprogramma voor koppels. De ene helft van de deelnemers krijgt elk een kaart waarop

Nadere informatie

Priemgetallen. van nutteloos tot staatsgevaarlijk? Wieb Bosma. Nijmeegse Tweedaagse Radboud Universiteit

Priemgetallen. van nutteloos tot staatsgevaarlijk? Wieb Bosma. Nijmeegse Tweedaagse Radboud Universiteit Priemgetallen van nutteloos tot staatsgevaarlijk? Wieb Bosma Nijmeegse Tweedaagse Radboud Universiteit Nijmegen oktober 2008 Priemgetallen 2 Voorwoord Dit zijn de aantekeningen bij één van de twee onderwerpen

Nadere informatie

Wiskundige Structuren voor Informatici Opgavenbundel

Wiskundige Structuren voor Informatici Opgavenbundel Wiskundige Structuren voor Informatici Opgavenbundel Wim Gielen Engelbert Hubbers 9 juli 04 Inhoudsopgave Inhoudsopgave Getallen 3. Natuurlijke getallen....................................... 3. Ontbinding

Nadere informatie

Functievergelijkingen

Functievergelijkingen Functievergelijkingen Trainingsweek juni 2008 Basistechnieken Je mag alle getallen in het domein invullen in je functievergelijking. Wat er precies handig is, hangt af van het domein en van de functievergelijking.

Nadere informatie

Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras

Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras Bart Zevenhek 0 februari 008 Samenvatting In deze vier artikelen wordt ingegaan op enkele getaltheoretische eigenschappen

Nadere informatie

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495.

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495. Bij vermenigvuldigen van twee grote getallen onder elkaar staan de rijen onder de streep elk voor een tussenstap. De eerste rij staat voor het vermenigvuldigen met het cijfer dat de eenheden van het onderste

Nadere informatie

Rekenen aan wortels Werkblad =

Rekenen aan wortels Werkblad = Rekenen aan wortels Werkblad 546121 = Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk zijn hoe de antwoorden

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie