OPLOSSINGEN VAN DE OEFENINGEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "OPLOSSINGEN VAN DE OEFENINGEN"

Transcriptie

1 OPLOSSINGEN VAN DE OEFENINGEN Er zijn 42 mogelijke vercijferingen De uitkomsten zijn 0, 4 en 4 1 = Omdat 10 = 1 in Z 9 vinden we dat x = c c m = c c m. Het getal x is deelbaar door 9 als en slechts als x = 0 in Z 9, dus als en slechts als c c m deelbaar is door De laatste kaart blijft steeds op dezelfde positie liggen, dus die kunnen we buiten beschouwing laten. Als we de posities 0, 1,..., 50 interpreteren als elementen in Z 51, dan belandt de kaart op positie i na een perfect shuffle op positie 2 i. Het getal dat we zoeken is dus het kleinste strikt positief geheel getal N zodat 2 N 1 modulo 51. Door opeenvolgende waarden van N uit te proberen vinden we dat N = 8. Alternatief: Je kan de opgave ook oplossen door op te merken dat door een perfect shuffle een kaart met waarde i in Z 52 vervangen wordt door de kaart met waarde 26 i Eerst voeren we het algoritme van Euclides uit: 202 = , 142 = , 60 = , 22 = , 16 = , 6 = , 4 = 2 2. De grootste gemene deler van 202 en 142 is dus gelijk aan 2. Via het uitgebreide algoritme van Euclides vinden we de volgende tabel: = = = = = = = = Uit de laatste regel kunnen we aflezen dat 2 =

2 2 OPLOSSINGEN VAN DE OEFENINGEN (1) Stel dat p een priemgetal is dat x en yz deelt. Uit het lemma van Euclides volgt dat p ook een deler moet zijn van y of z. Maar x en y hebben geen gemeenschappelijke priemdelers, en x en z evenmin. (2) Als xy een deler is van z, dan zullen x en y ook delers zijn van z. We hoeven dus enkel de omgekeerde implicatie aan te tonen. Veronderstel dat x en y delers zijn van z. We beschouwen de priemontbindingen x = p a pam m, y = q b qbn n. Omdat x een deler is van z zal de priemfactor p i minstens met een macht a i voorkomen in de priemontbinding van z, voor elke i in {1,..., m}. Analoog zal q j minstens met een macht b j voorkomen, voor elke j in {1,..., n}. Aangezien x en y relatief priem zijn, is er geen enkele priemfactor die zowel voorkomt in de ontbinding van x als in die van y. We kunnen dus besluiten dat xy = p a pam m q b qbn n een deler is van z. (3) Het is duidelijk dat x een deler is van yz als x een deler is van z. Veronderstel dus dat x het product yz deelt, en beschouw de priemontbinding x = p a pam m. We bekomen de priemontbinding van yz door die van y en z met elkaar te vermenigvuldigen en de priemfactoren te rangschikken van klein naar groot. Omdat x een deler is van yz moet elke factor p i minstens met een macht a i voorkomen in de priemontbinding van yz. Maar p i kan niet voorkomen in de priemontbinding van y, omdat x en y relatief priem zijn. Dus p i komt minstens met een macht a i voor in de priemontbinding van z, voor elke i {1,..., m}. Hieruit volgt dat x een deler is van z De natuurlijke delers van x zijn precies de getallen van de vorm p a q b met a en b natuurlijke getallen zodat a 8 en b 13. Al deze getallen zijn verschillend omdat ze een verschillende priemfactorisatie hebben. Dus het aantal delers is gelijk aan 9 14 = We beschouwen de priemontbinding n + 1 = p a pam m. Door herhaaldelijk Oefening 2.5.4(2) toe te passen, zien we dat het volstaat aan te tonen dat p ai i een deler is van n!, voor elke i in {1,..., m}. Als p ai i n, dan komt p ai i zeker voor als factor in n!. We hoeven dus enkel nog het geval te bekijken waar p ai i = n+1. Per veronderstelling is n+1 geen priemgetal, en ook niet het kwadraat van een priemgetal, waaruit we kunnen besluiten dat a i > 2. Dan zijn p i en p ai 1 i twee verschillende factoren van n!, zodat p ai i een deler is van n! Het element 5 is geen eenheid in Z 35 omdat ggd(35, 5) = 5. De andere elementen zijn wel eenheden. Om het invers te berekenen van 6 kan je meteen opmerken dat 6 6 = 1

3 OPLOSSINGEN VAN DE OEFENINGEN 3 in Z 35, zodat 6 zichzelf als invers heeft. Het invers van 8 vinden we door het uitgebreide algoritme van Euclides toe te passen op 35 en 8. Zo vinden we dat 1 = en dus dat 13 = 22 het invers is van 8 in modulo 35. Het invers van 34 vinden we door op te merken dat 34 = 1, zodat het invers van 34 gelijk is aan (1) Omwille van de associativiteit en de commutativiteit van de vermenigvuldiging in Z M, geldt dat (r s) (r 1 s 1 ) = (r r 1 ) (s s 1 ) = 1. Dus r s is een eenheid, met invers r 1 s 1. (2) Door beide leden van de gelijkheid r u = r v te vermenigvuldigen met r 1, vinden we dat en dus dat u = v. (r r 1 ) u = (r r 1 ) v We beschouwen de congruentieklassen x en y modulo 100. Gegeven is dat x = 13 en x y = 52. Omdat 13 een eenheid is in Z 100 kunnen we uit Oefening 2.7.4(2) besluiten dat y = De elementen van {0,..., M 1} die niet relatief priem zijn met M zijn de veelvouden van p en q. Dit zijn de getallen 0, p, 2p,..., (q 1)p, q, 2q,..., (p 1)q. Merk op dat al deze getallen verschillend zijn, omdat een geheel getal dat deelbaar is door p en q ook deelbaar moet zijn door het product pq (Oefening 2.5.4(2)). Onze lijst bevat dus precies verschillende elementen. verzameling E M precies elementen bevat. 1 + (q 1) + (p 1) = p + q 1 Door dit aantal af te trekken van M zien we dat de pq p q + 1 = (p 1)(q 1) Om het laatste cijfer van 7 (2n) te vinden, berekenen we de congruentieklasse van 7 (2n) modulo 10. Het Eulergetal ϕ(10) is gelijk aan (2 1) (5 1) = 4, zodat 2 n 0 mod ϕ(10). Aangezien 7 en 10 relatief priem zijn, kunnen we Gevolg toepassen, en besluiten dat 7 (2n) mod 10. Om aan te tonen dat 2 (2n) + 1 eindigt op een 7, volstaat het te bewijzen dat 2 (2n) eindigt op een 6. Ditmaal kunnen we Gevolg niet meer rechtstreeks toepassen, omdat 2 en 10 niet relatief priem zijn. In plaats daarvan berekenen we de congruentieklasse van 2 (2n) modulo 5. Omdat ϕ(5) = 4 en ggd(5, 2) = 1 vinden we net als in de vorige oefening dat 2 (2n) 1 mod 5.

4 4 OPLOSSINGEN VAN DE OEFENINGEN Dit betekent dat 2 (2n) 1 een veelvoud is van 5. Het getal 2 (2n) kan dus enkel eindigen op 1 of 6. Eindigen op 1 is echter onmogelijk, omdat 2 (2n) even is. De laatste twee cijfers van 39 (412011) kunnen we bepalen door te rekenen modulo 100. We merken eerst op dat ϕ(100) = 40. Omdat 41 1 modulo 40 vinden we meteen dat mod 40. Omdat 39 en 100 relatief priem zijn, mogen we Gevolg toepassen, waaruit we afleiden dat 39 (412011) 39 mod 100. Het getal 39 (412011) eindigt dus op Het codewoord is D Bring it on! Dit volgt meteen uit de definitie van de binaire schrijfwijze: als a = 1 2 n + a n 1 2 n a 0, met a i {0, 1}, dan is de uitkomst van onze berekening gelijk aan g 2n g an 1 2n 1... g a0 = g a Het getal a is minstens Het aantal bewerkingen met de eerste methode is a Door dit getal te vermenigvuldigen met 10 6 zien we dat de totale berekening met de eerste methode minstens seconden kost; dat is meer dan jaar. De leeftijd van het universum wordt geschat op ongeveer jaar. Volgens de tweede methode moeten we de 799 binaire cijfers van a afgaan. We veronderstellen dat we hierin 400 keer 0 en 399 keer 1 vinden (het eerste cijfer is steeds een 1). Bij een 0 moeten we één bewerking uivoeren, bij een 1 twee. Het totaal aantal bewerkingen is dus = Door dit getal te vermenigvuldigen met 10 6 zien we dat de totale berekening slechts 0, seconden in beslag neemt We zullen meermaals gebruik maken van de volgende eigenschap: als a en a congruent zijn modulo p 1, dan zal g a = g a. Dit kan je meteen afleiden uit Gevolg Veronderstel eerst dat a een geheel getal is dat relatief priem is met p 1. Omdat g een generator is van Z p, kunnen we elk element x van Z p schrijven als g c met c {0,..., p 2}. Omdat a een eenheid is modulo p 1, kunnen we een element b in {0,..., p 2} vinden zodat (kies b zo dat b = a 1 c). Dan zal ab c mod p 1 (g a ) b = g c = x in Z p. Dus g a is ook een generator van Z p. Veronderstel nu dat a een geheel getal is zodat g a een generator is van Z p. Dan bestaat er een geheel getal b zodat (g a ) b = g.

5 OPLOSSINGEN VAN DE OEFENINGEN 5 Zij nu c het unieke element in {0,..., p 2} zodat Dan zal ab c mod p 1. g = g ab = g c in Z p. Dit is enkel mogelijk als c = 1, vermits g een generator is van Z p. Dus a is een eenheid in Z p 1, met invers b. We kunnen daarom besluiten dat de generatoren van Z p precies de elementen zijn van de vorm g a, met a een element van {0,..., p 2} dat relatief priem is met p 1. Al deze machten van g zijn verschillend, want g is een generator. Er zijn dus precies ϕ(p 1) generatoren in Z p Stel q = (p 1)/2. Als p = 5, dan is ϕ(p 1) = 2 en dus ϕ(p 1) p 1 = 1 2. Als p 5, dan is q 2 en dus zijn 2 en q relatief priem. Uit Propositie volgt dan dat ϕ(p 1) = q 1 p 1 2q. Deze kans ligt dicht bij 1/2 als q voldoende groot is Als er zo n d bestaat, kan g duidelijk geen generator zijn, omdat g d gelijk is aan g p 1 = 1. Veronderstel nu omgekeerd dat g geen generator is. Dan bestaan er elementen i en j in {0,..., p 2} zodat i > j en g i = g j, of dus g i j = 1. Zij d de grootste gemene deler van i j en p 1. Dit is een deler van p 1, verschillend van p 1 omdat i j p 2. Omwille van de stelling van Bézout-Bachet kunnen we gehele getallen a en b vinden zodat Daaruit volgt dat a(i j) + b(p 1) = d. g d = (g i j ) a (g p 1 ) b = Voor elk geheel getal i > 0 geldt dat p 1 i (x g d ) e = x e (g p 1 ) ie d = x e waarbij de laatste gelijkheid volgt uit het feit dat g p 1 = 1 omwille van de kleine stelling van Fermat We hebben dat x = x ae+b(p 1) = (x e ) a (x p 1 ) b = (x e ) a waarbij de laatste gelijkheid volgt uit het feit dat x p 1 = 1 omwille van de kleine stelling van Fermat Als we pq en ϕ(n) = (p 1)(q 1) kennen, dan kunnen we ook p + q = pq (p 1)(q 1) + 1 bepalen. De priemgetallen p en q zijn dan de oplossingen van de vierkantsvergelijking x 2 (p + q)x + pq = 0.

6 6 OPLOSSINGEN VAN DE OEFENINGEN Veronderstel eerst dat x en n relatief priem zijn. Omdat y d = x de en de 1 mod n besluiten we meteen uit Gevolg dat y d = x. Stel nu dat x en n niet relatief priem zijn. Dan is x deelbaar door p of q. Merk op dat de 1 modulo ϕ(p) = p 1 en modulo ϕ(q) = q 1, omdat de 1 deelbaar is door ϕ(n) = (p 1)(q 1) en dus zeker ook door p 1 en q 1. Als x niet deelbaar is door p, dan zegt Gevolg dat x x de modulo p. Als x wel deelbaar is door p, dan geldt ook dat x x de modulo p aangezien beide leden deelbaar zijn door p. Analoog vinden we dat x x de modulo q. Dus p en q delen allebei x x de, en omdat p en q relatief priem zijn kunnen we daaruit besluiten dat x x de modulo pq = n (zie Oefening 2.5.4(2)).

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element.

Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element. Hoofdstuk 5 Cyclische groepen 5.1 Definitie Definitie 5.1. Cyclische groepen zijn groepen voortgebracht door 1 element. Als G wordt voortgebracht door a en a n = e, dan noteren we de groep als C n = a.

Nadere informatie

7.1 Het aantal inverteerbare restklassen

7.1 Het aantal inverteerbare restklassen Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties Hoofdstuk 6 Congruentierekening 6.1 Congruenties We hebben waarschijnlijk allemaal wel eens opgemerkt dat bij vermenigvuldigen van twee getallen de laatste cijfers als het ware meevermenigvuldigen. Stel

Nadere informatie

Oefening: Markeer de getallen die een priemgetal zijn.

Oefening: Markeer de getallen die een priemgetal zijn. Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal

Nadere informatie

Groepen, ringen en velden

Groepen, ringen en velden Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

7 Deelbaarheid. 7.1 Deelbaarheid WIS7 1

7 Deelbaarheid. 7.1 Deelbaarheid WIS7 1 WIS7 1 7 Deelbaarheid 7.1 Deelbaarheid Deelbaarheid Voor geheeltallige d en n met d > 0 zeggen we dat d een deler is van n, en ook dat n deelbaar is door d, als n d een geheel getal is. Notatie: d\n k

Nadere informatie

handleiding ontbinden

handleiding ontbinden handleiding ontbinden inhoudsopgave inhoudsopgave de grote lijn 3 Bespreking per paragraaf 4 Applets 4 1 met gegeven product 4 ontbinden van getallen 4 3 vergelijkingen 5 4 onderzoek 6 tijdpad 9 materialen

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 1

Uitwerkingen oefeningen hoofdstuk 1 Uitwerkingen oefeningen hoofdstuk 1 1.4.1 Basis Oefeningen Romeinse cijfers 1 Op deze zonnewijzer staan achtereenvolgens de getallen: I (= 1) II (= 2) III (= 3) IV (= 4) V (= 5) VI (= 6) VII (= 7) VIII

Nadere informatie

Priemontbinding en ggd s

Priemontbinding en ggd s Hoofdstuk 3 Priemontbinding en ggd s 3.1 Priemgetallen Een getal > 1 dat alleen 1 en zichzelf als positieve deler heeft noemen we een priemgetal. De rij priemgetallen begint als volgt, 2, 3, 5, 7, 11,

Nadere informatie

De Chinese reststelling

De Chinese reststelling De Chinese reststelling 1 Inleiding 1. De Chinese reststelling is een stelling binnen de getaltheorie. De stelling werd voor het eerst beschreven in de vierde eeuw na Chr. door de Chinese wiskundige Sunzi

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Bewijs door inductie

Bewijs door inductie Bewijs door inductie 1 Bewijs door inductie Vaak bestaat een probleem erin aan te tonen dat een bepaalde eigenschap geldt voor elk natuurlijk getal. Als je wilt weten of iets waar is voor alle natuurlijke

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA?

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA? Algoritmes en Priemgetallen Hoe maak je een sleutelpaar voor RSA? Het recept van RSA Kies p q priemgetallen en bepaal N = pq Kies e Z N (publieke sleutel) Bepaal d e 1 mod φ N (privésleutel) x ed x kφ

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

Extra oefeningen hoofdstuk 4: Deelbaarheid

Extra oefeningen hoofdstuk 4: Deelbaarheid Extra oefeningen hoofdstuk 4: Deelbaarheid 4.1 Delers en veelvouden 1 Bepaal door opsomming. a) del 84 =... b) del 13 =... c) del 44 =... d) del 89 =... e) del 1 =... f) del 360 =... 2 Bepaal de eerste

Nadere informatie

6 Ringen, lichamen, velden

6 Ringen, lichamen, velden 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x 2 + 2x + 2 irreducibel is in Z 3 [x]. Oplossing 6.1 Aangezien de veelterm van graad 3 is,

Nadere informatie

MODULOREKENEN EN CRYPTOGRAFIE

MODULOREKENEN EN CRYPTOGRAFIE MODULOREKENEN EN CRYPTOGRAFIE 1. Inleiding 1.1. Oorsprong. Het woord cryptografie stamt uit het Grieks en betekent geheimschrift (κρυπτ óς = kryptós = verborgen; γράφω = gráfo = schrijven). Het behoeft

Nadere informatie

Gehelen van Gauss. Hector Mommaerts

Gehelen van Gauss. Hector Mommaerts Gehelen van Gauss Hector Mommaerts 2 Hoofdstuk 1 Definities Gehelen van Gauss zijn complexe getallen van de vorm a + bi waarbij a, b Z. De verzameling van alle gehelen van Gauss noteren we met Z(i). Dus

Nadere informatie

IMO-selectietoets III zaterdag 3 juni 2017

IMO-selectietoets III zaterdag 3 juni 2017 IMO-selectietoets III zaterdag 3 juni 017 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Gegeven is cirkel ω met middellijn AK. Punt M ligt binnen de cirkel, niet op lijn AK. De lijn AM snijdt

Nadere informatie

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten Hoofdstuk 12 Sommen van kwadraten 12.1 Sommen van twee kwadraten In Hoofdstuk 11 hebben we gezien dat als p een oneven priemdeler van a 2 + b 2 is, en p deelt niet zowel a als b, dan is p gelijk aan 1

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

Perfecte getallen en Leinster groepen

Perfecte getallen en Leinster groepen Faculteit Wetenschappen Departement Wiskunde Perfecte getallen en Leinster groepen Bachelorproef 1 Lukas Boelens Promotor: Dr. Andreas Bächle 29 januari 2015 Inhoudsopgave 1 Inleiding 2 2 Perfecte getallen

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Hoofdstuk 4. Delers. 4.1 Delers (op)tellen

Hoofdstuk 4. Delers. 4.1 Delers (op)tellen Hoofdstuk 4 Delers 4. Delers (op)tellen Ieder getal heeft zijn delers. Van oudsher heeft het onvoorspelbare gedrag van delers van getallen een aantrekkingskracht uitgeoefend op mensen. Zozeer zelfs dat

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

Het RSA Algoritme. Erik Aarts - 1 -

Het RSA Algoritme. Erik Aarts - 1 - Het RSA Algoritme Erik Aarts - 1 - 1 Wiskunde... 3 1.1 Het algoritme van Euclides... 3 1.1.1 Stelling 1... 4 1.2 Het uitgebreide algoritme van Euclides... 5 1.3 Modulo rekenen... 7 1.3.1 Optellen, aftrekken

Nadere informatie

Public Key Cryptography. Wieb Bosma

Public Key Cryptography. Wieb Bosma Public Key Cryptography de wiskunde van het perfecte kopje koffie Wieb Bosma Radboud Universiteit Nijmegen Bachelordag 2 april 2011 Nijmegen, 6 november 2010 0 Nijmegen, 6 november 2010 1 cryptografie

Nadere informatie

Probabilistische aspecten bij public-key crypto (i.h.b. RSA)

Probabilistische aspecten bij public-key crypto (i.h.b. RSA) p. 1/21 Probabilistische aspecten bij public-key crypto (i.h.b. RSA) Herman te Riele, CWI Amsterdam Nationale Wiskunde Dagen Noordwijkerhout, 31 januari 2015 p. 2/21 verzicht Binair exponentiëren RSA Factorisatie-algoritmen

Nadere informatie

1 Kettingbreuken van rationale getallen

1 Kettingbreuken van rationale getallen Kettingbreuken van rationale getallen Laten we eens starten met een breuk bijvoorbeeld 37/3 Laten we hier ons kettingbreuk algoritme op los, We concluderen hieruit dat 37 3 3 + 3 + + 37 3 + + + hetgeen

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 +

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 + I Getall 0 e π 8 9 Dit deel gaat over het rek met getall. Ze kom in allerlei soort voor: positieve getall, negatieve getall, gehele getall, rationale irrationale getall. De getall, π e zijn voorbeeld van

Nadere informatie

Hoofdstuk 18. Het abc-vermoeden Introductie

Hoofdstuk 18. Het abc-vermoeden Introductie Hoofdstuk 18 Het abc-vermoeden 18.1 Introductie In de gehele getallen zijn optelling en vermenigvuldiging de belangrijkste bewerkingen. Als we echter uitsluitend naar de optelstructuur van de gehele getallen

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Geef een goede onderbouwing van je antwoorden. Succes! 1. (a) (10 pt) Ontbindt het polynoom X 3 3X+3 in irreducibele factoren in Q[X] en in

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 Extremenprincipe 6 3 Ladenprincipe 11 1 Bewijs uit het ongerijmde In Katern hebben we de volgende rekenregel bewezen, als onderdeel van

Nadere informatie

Constructie der p-adische getallen

Constructie der p-adische getallen Constructie der p-adische getallen Pim van der Hoorn Marcel de Reus 4 februari 2008 Voorwoord Deze tekst is geschreven als opdracht bij de cursus Kaleidoscoop 2007 2008 aan de Universiteit Utrecht. De

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

FACTORISATIE EN CRYPTOGRAFIE

FACTORISATIE EN CRYPTOGRAFIE FACTORISATIE EN CRYPTOGRAFIE COMPUTERPRACTICUM UvA-MASTERCLASS WISKUNDE 1993 G.C.M. Ruitenburg Faculteit Wiskunde en Informatica Universiteit van Amsterdam 1993 INLEIDING In dit computer prakticum volgen

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65,

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, GETALTHEORIE 1 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, SAMENSTELLING: H. de Leuw - 1 - 1. NATUURLIJKE GETALLEN. Als kind hebben we allemaal leren tellen: 1,

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato Algebra voor Informaticastudenten Getallen Jean Delville: de school van Plato Ernic Kamerich januari 2007 Inhoud 1 De gehele getallen..........................................................................

Nadere informatie

Finaletraining Nederlandse Wiskunde Olympiade

Finaletraining Nederlandse Wiskunde Olympiade NEDERLANDSE W I S K U N D E OLYMPIADE Finaletraining Nederlandse Wiskunde Olympiade Met uitwerkingen Birgit van Dalen, Julian Lyczak, Quintijn Puite Dit trainingsmateriaal is deels gebaseerd op materiaal

Nadere informatie

Het doel van dit Hoofdstuk is een inleiding te geven in de theorie van kettingbreuken,

Het doel van dit Hoofdstuk is een inleiding te geven in de theorie van kettingbreuken, Kettingbreuken Het doel van dit Hoofdstuk is een inleiding te geven in de theorie van kettingbreuken en enkele toepassingen daarvan te geven.. Eindige kettingbreuken Een aardige manier om kettingbreuken

Nadere informatie

Priemgetallen. van nutteloos tot staatsgevaarlijk? Wieb Bosma. Nijmeegse Tweedaagse Radboud Universiteit

Priemgetallen. van nutteloos tot staatsgevaarlijk? Wieb Bosma. Nijmeegse Tweedaagse Radboud Universiteit Priemgetallen van nutteloos tot staatsgevaarlijk? Wieb Bosma Nijmeegse Tweedaagse Radboud Universiteit Nijmegen oktober 2008 Priemgetallen 2 Voorwoord Dit zijn de aantekeningen bij één van de twee onderwerpen

Nadere informatie

De grootste gemeenschappelijke deler van twee of meerdere getallen

De grootste gemeenschappelijke deler van twee of meerdere getallen De grootste gemeenschappelijke deler van twee of meerdere getallen Vraagstuk : In een houtbedrijf heeft schrijnwerker een balk hout met een breedte van 231 cm, een lengte van 735 cm en een hoogte van 210

Nadere informatie

De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: [ H =

De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: [ H = Oplossing examen TAI 11 juni 2008 Veel plezier :) Vraag 1 De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: H = [ 1 0 1 2 3 ] 4 0 1 1 1 1 1 (a) Bepaal de bijhorende generatormatrix

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl. 9 februari 2009 BEWIJZEN Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 BEWIJZEN Discrete Structuren Week1 : Bewijzen Onderwerpen Puzzels

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn :

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn : HOOFDSTUK. VERZAMELINGEN, RELATIES EN FUNCTIES Opgaven verzamelingen, relaties en functies. Toon aan : a) (A B) C = A (B C) b) A (B C) = (A B) (A C) c) (A B) c = A c B c d) A B B c A c. Ga voor volgende

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen Een praktische opdracht voor leerlingen van 5VWO met wiskunde B DE TELDUIVEL Inleiding Wiskunde? Hou op zeg! Voor

Nadere informatie

cyclotomische polynomen

cyclotomische polynomen Coëfficiënten van cyclotomische polynomen Joris Luijsterburg Studentnummer: 0314137 Maart 2009 Bachelorscriptie Onder begeleiding van Dr. W. Bosma Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en

Nadere informatie

Wiskundige Structuren voor Informatici Opgavenbundel

Wiskundige Structuren voor Informatici Opgavenbundel Wiskundige Structuren voor Informatici Opgavenbundel Wim Gielen Engelbert Hubbers 9 juli 04 Inhoudsopgave Inhoudsopgave Getallen 3. Natuurlijke getallen....................................... 3. Ontbinding

Nadere informatie

Beste deelnemer, Wanneer we vanmiddag op het kampterrein aankomen, zullen we beginnen met een verkenningsrondje over het terrein. Dat is op zichzelf

Beste deelnemer, Wanneer we vanmiddag op het kampterrein aankomen, zullen we beginnen met een verkenningsrondje over het terrein. Dat is op zichzelf Beste deelnemer, Wanneer we vanmiddag op het kampterrein aankomen, zullen we beginnen met een verkenningsrondje over het terrein. Dat is op zichzelf al best leuk, maar het wordt nog veel leuker als we

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Definitie 4.1. Als H en K normaaldelers zijn van een groep G en H K = {e} en HK = G dan noemt men G het direct product van

Definitie 4.1. Als H en K normaaldelers zijn van een groep G en H K = {e} en HK = G dan noemt men G het direct product van Hoofdstuk 4 Groepsconstructies 4.1 Direct product We gaan nu bestuderen hoe we van 2 groepen een nieuwe groep kunnen maken of hoe we een groep kunnen schrijven als een product van 2 groepen met kleinere

Nadere informatie

WISKUNDE-ESTAFETTE 2010 Uitwerkingen

WISKUNDE-ESTAFETTE 2010 Uitwerkingen WISKUNDE-ESTAFETTE 010 Uitwerkingen 1 We tellen het aantal donkere tegels in elke rij. Rij 1 (en rij 19) bestaat uit 10 witte tegels. Rij (en rij 18) bestaat uit 11 tegels, waarvan 6 wit en 5 donker. Rij

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Oefeningen Cursus Discrete Wiskunde. 26 mei 2003

Oefeningen Cursus Discrete Wiskunde. 26 mei 2003 Oefeningen Cursus Discrete Wiskunde 26 mei 2003 1 Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging Oefening 1.1.1 Zoals gebruikelijk noteren wij

Nadere informatie

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade Katernen voor de regionale training ten behoeve van de tweede ronde van de Nederlandse Wiskunde Olympiade NEDERLANDSE WISKUNDE OLYMPIADE Birgit van Dalen Julian Lyczak Quintijn Puite Inhoudsopgave Katern

Nadere informatie

Lineaire Algebra 3 en 4. Wieb Bosma

Lineaire Algebra 3 en 4. Wieb Bosma Lineaire Algebra 3 en 4 Wieb Bosma juni 2000/juni 2001 Inhoudsopgave 1 Vectorruimten 3 1.1 Inleiding........................................ 3 1.2 Lichamen....................................... 3 1.2.1

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

Uitwerkingen eerste serie inleveropgaven

Uitwerkingen eerste serie inleveropgaven Uitwerkingen eerste serie inleveropgaven (1) Gegeven het 4 4 grid bestaande uit de 16 punten (i, j) met i, j = 0,..., 3. Bepaal het aantal driehoeken dat je kunt vinden zodanig dat ieder hoekpunt samenvalt

Nadere informatie

Toelichting op de werkwijzer

Toelichting op de werkwijzer Toelichting op de werkwijzer NEDERLANDSE W I S K U N D E OLYMPIADE Birgit van Dalen, Quintijn Puite De opgaven voor de training komen uit het boekje De Nederlandse Wiskunde Olympiade 100 opgaven met hints,

Nadere informatie

Uitwerkingen van geselecteerde opgaven (laatste update 4 Januari 2018) Zebra 50. De Wiskunde van Rubik s Kubus.

Uitwerkingen van geselecteerde opgaven (laatste update 4 Januari 2018) Zebra 50. De Wiskunde van Rubik s Kubus. Uitwerkingen van geselecteerde opgaven (laatste update 4 Januari 2018) Zebra 50. De Wiskunde van Rubik s Kubus. Opgave 1. Niet alle mogelijke posities zijn door middel van draaien te bereiken. Het is bijvoorbeeld

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

priemgetallen en verzamelingen Jaap Top

priemgetallen en verzamelingen Jaap Top priemgetallen en verzamelingen Jaap Top IWI-RuG & DIAMANT j.top@rug.nl 21 april 2009 (Collegecaroussel, Groningen) 1 In de biografie Gauss zum Gedächtnis (1862, door de Duitse geoloog Wolfgang Sartorius

Nadere informatie

Uitwerkingen toets 18 maart 2011

Uitwerkingen toets 18 maart 2011 Uitwerkingen toets 8 maart 20 Opgave. Alle positieve gehele getallen worden rood of groen gekleurd, zodat aan de volgende voorwaarden wordt voldaan: Er zijn zowel rode als groene getallen. De som van drie

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie