Lineaire afbeeldingen

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Lineaire afbeeldingen"

Transcriptie

1 Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn dat de lineaire afbeeldingen Definities 4 Een L-lineaire afbeelding tussen L-vectorruimten V en W is een afbeelding f: V W die voldoet aan [A] f(v + v 2 = f(v + f(v 2 voor alle v,v 2 V ; [A2] f(λv = λf(v voor alle v V en λ L Als V = W dan heet een L-lineaire afbeelding ook wel een (lineaire transformatie of een endomorfisme Als W = L = L (de L-vectorruimte van dimensie dan heet een L-lineaire afbeelding ook wel een lineaire functionaal Opmerkingen 42 Veel belangrijke eigenschappen van L-lineaire afbeeldingen f volgen uit de definities net zo als in het reële geval: (i f(0 = 0; (ii f( v = f(v voor elke v V ; (iii f(v + λ v 2 = f(v + λ f(v 2 voor elke λ L en alle v,v 2, V ; (iv f(λ v + λ v λ k v k = λ f(v +λ 2 f(v λ k f(v k voor alle natuurlijke getallen k, alle λ i L en alle v i V Het is niet moeilijk in te zien dat (iii en (iv elk equivalent zijn met eigenschap [A] en [A2] samen Dat verklaart de naam lineaire afbeelding Na verloop van tijd laten we de L in L-lineaire afbeelding vaak weg; bedenk wel dat f : V W alleen een lineaire afbeelding kan zijn als V en W vectorruimten over hetzelfde lichaam L zijn Voorbeelden 4 (i De afbeelding 0 : V W die aan alle v V het nulelement 0 W van W toevoegt is altijd een L-lineaire afbeelding als V en W beide L-vectorruimten zijn Dit heet natuurlijk de nulafbeelding (ii De afbeelding id : V W die aan elk element v V zichzelf toevoegt, id(v = v, is een L-lineaire afbeelding als V een lineaire deelruimte van W is, bijvoorbeeld wanneer W = V Dit heet de identieke afbeelding (iii De afbeelding a die aan een polynoom g L[x] zijn afgeleide a(g = g toevoegt, is een L-lineaire afbeelding op L[x], die natuurlijk de afgeleide heet (iv De afbeelding p die aan een polynoom g L[x] zijn primitieve a(g = h = g dx toevoegt met h(0 = 0, is een L-lineaire afbeelding op L[x], die de primitieve heet 7

2 8 HOOFDSTUK 4 LINEAIRE AFBEELDINGEN (v De afbeelding b(g = v u g(xdx is een R-lineaire functionaal op de vectorruimte van alle continue, reëelwaardige functies op R, voor elk vast paar reële getallen u,v met u < v Zo n functie heet een bepaalde integraal van g Definities 44 Laat f een L-lineaire afbeelding van V naar W De kern van f, notatie Kerf, is de deelverzameling Kerf = {v : v V f(v = 0} van V Het beeld van f, notatie Imf, is de deelverzameling Imf = {f(v : v V } van W Opmerkingen 45 Er bestaat wel eens misverstand over de naam beeld ; het beeld moet niet verward worden met het bereik van de afbeelding, want dat is de vectorruimte W waarheen f afbeeldt Het beeld is een deelverzameling (in feite: deelruimte, zoals we zullen zien van het bereik Het domein van f is de vectorruimte V waarop f gedefinieerd is Stelling 46 De kern Kerf van een lineaire afbeelding f : V W is een lineaire deelruimte van het domein V, en het beeld Imf is een lineaire deelruimte van het bereik W Als bovendien geldt dat V eindig-dimensionaal is, dan zijn ook Kerf en Imf dat, en dan geldt dim Kerf + dim Imf = dim V Bewijs De beweringen over lineaire deelruimten volgen direct uit de definities Als V eindig-dimensionaal is, kunnen we een basis b,b 2,,b n kiezen Omdat elke vector van V een unieke lineaire combinatie van de b i is, is elke vector in Imf een lineaire combinatie van de beelden f(b i : het beeld is opspansel van deze vectoren en dus is de dimensie ten hoogste n Voor de kern is dat ook duidelijk omdat het een deelruimte van V zelf is Als de dimensie van Kerf gelijk aan k is, kunnen we er een basis u,,u k voor kiezen; vul deze basis aan met vectoren v,,v m van V tot een basis u,,u k,v,,v m van V Dan moet k + m = n Vanwege de zojuist gemaakte opmerking wordt Imf opgespannen door de beelden f(u,,f(u k,f(v,,f(v m Maar f(u = = f(u k = 0, dus Imf wordt opgespannen door de beelden f(v,,f(v m Veronderstel nu eens dat µ f(v + + µ m f(v m = 0, oftewel, vanwege lineariteit, f(µ v + + µ m v m = 0, dat wil zeggen, µ v + + µ m v m zit in de kern van f, en is dus uniek te schrijven als λ u + +λ k u k Maar dan is λ u + + λ k u k µ v µ m v m = 0 Dat kan alleen als alle λ i en µ j gelijk aan 0 zijn, want de u i en v j vormen een basis voor V Dus de vectoren f(v,,f(v m zijn lineair onafhankelijk: ze vormen een basis voor Imf Maar dan hebben we k = dim Kerf en m = dimimf, terwijl k + m = n = dim V, hetgeen te bewijzen was Opmerkingen 47 Het is belangrijk vast te stellen dat het beeld van een lineaire afbeelding volledig vastligt door het beeld van de basisvectoren van het domein Definities 48 Een afbeelding h heet injectief (of ook wel als geldt dat h(x h(y als x y (en dus h(x = h(y alleen wanneer x = y De afbeelding heet surjectief (of ook wel op als bij elke z uit het bereik van h er een x in het domein is met h(x = z; het beeld valt dus samen met het bereik Een bijectie is een afbeelding die injectief en surjectief is

3 9 Een L-isomorfisme (van L-vectorruimten is een L-lineaire afbeelding die tevens bijectie is; als er een isomorfisme tussen V en W bestaat heten ze isomorf: V = W (precieser: L-isomorf, notatie V = L W In het speciale geval dat W = V heet zo n isomorfisme een automorfisme Opmerkingen 49 Onder isomorfismen worden belangrijke lineaire eigenschappen behouden, zoals (onafhankelijkheid Als twee L-vectorruimten dezelfde eindige dimensie n hebben, dan zijn ze daarom isomorf: een isomorfisme wordt gegeven door de elementen van de basis van de één naar die van de ander af te beelden Beide zijn dus isomorf met L n Stelling 4 Laat f : V W een lineaire afbeelding van vectorruimten zijn Dan zijn equivalent: (i f is injectief; (ii Kerf = {0} Is V eindig-dimensionaal, dan zijn deze twee bovendien equivalent met (iii dim Imf = dimv Als, tenslotte, ook nog dimw = dim V, dan zijn deze drie equivalent met (iv f is surjectief; Bewijs Omdat 0 in de kern van elke lineaire afbeelding zit, moet Kerf = {0} als f injectief is Als, omgekeerd, Kerf = {0}, volgt uit f(v = f(v 2, dat 0 = f(v f(v 2 = f(v v 2 en dus v v 2 Kerf = {0}, zodat v = v 2 en f injectief is Als V eindig-dimensionaal is, dan volgt uit Stelling 46 dat dimkerf = 0 dan en slechts dan als dim Imf = dim V In dit geval is Imf een lineaire deelruimte van W van dimensie dim V, en de laatste bewering volgt Matrices Net als in het reële geval kunnen we een L-lineaire afbeelding f : V W tussen eindig-dimensionale L-vectorruimten representeren met behulp van matrices; kiezen we een basis B = b,,b n voor V kiezen en een basis C = c,,c m voor W, dan kunnen we f: V W geven door middel van de matrix m m 2 m n M f = C Mf B = m 2 m 22 m 2n M m n(l, m m m m2 m mn die aangeeft wat het beeld w = f(v als coördinatenvector ten opzichte van de basis C is van een vector v, gegeven als coördinatenvector ten opzichte van de basis B, namelijk m m 2 m n m 2 m 22 m 2n M f (v = m m m m2 m mn v v 2 v n = w w 2 w m = w

4 20 HOOFDSTUK 4 LINEAIRE AFBEELDINGEN De kolommen van de matrix C Mf B bestaan uit beelden f(b,,f(b n van de basisvectoren, uitgedrukt op de basis C Zoals we eerder zagen wordt het Imf opgespannen door de beeldvectoren f(b i Voorbeeld 4 Dat de kolommen van C Mf B bestaan uit de beelden van de basisvectoren zorgt ervoor dat we in sommige gevallen de matrix van een lineaire afbeelding heel eenvoudig kunnen bepalen Als voorbeeld nemen we de matrix M φ van een rotatie in de R 2 over een hoek φ (met de klok mee ten opzichte van de standaardbasis Het beeld van het punt met coördinaten (, 0 heeft coördinaten (cos φ, sin φ, en het beeld van (0, zal het punt (sin φ,cos φ zijn Vatten we als gebruikelijk de vectoren met deze eindpunten op als kolomvectoren, dan zien we dat ( cos φ sin φ M φ = sin φ cos φ In het algemeen is de matrix M f = C Mf B is sterk afhankelijk van de keuze van de bases B en C Een lineaire afbeelding f van L n naar L m met daarop keuze voor bases B en C bepaalt een unieke matrix C Mf B M m n (L Omgekeerd bepaalt zo n matrix een lineaire afbeelding van L n naar L m bij basiskeuze Het samenstellen van lineaire afbeeldingen h = g f waar f: V W en g: W X, correspondeert met het vermenigvuldigen van de bijbehorende matrices: M h = M g M f, waarbij we dan wel moeten zorgen dat f en g gegeven worden ten opzichte van dezelfde basis C voor W: D M B h = D M C g CM B f Definities 42 Een lineaire afbeelding f van V naar W is inverteerbaar als er een inverse lineaire afbeelding f van W naar V bestaat met de eigenschap dat f f = id V en f f = id W, de identieke afbeeldingen op V en W Opmerkingen 4 Als een lineaire afbeelding inverteerbaar is, dan moet f injectief zijn, en dan is de inverse f uniek bepaald Voor een lineaire afbeelding f : V W tussen eindig-dimensionale vectorruimten van dezelfde dimensie n is inverteerbaarheid van f dan equivalent met de eis dat de vierkante matrix M f inverteerbaar is, dat wil zeggen, er is een vierkante matrix A met dezelfde afmetingen zodat A M f = M f A = I n, de n n eenheidsmatrix Deze inverse A is natuurlijk de matrix M f van de afbeelding f, en er geldt dus dat A = M f = M f Merk nogmaals op dat we eigenlijk moeten schrijven M f = C Mf B, omdat deze van basiskeuzen afhangt, en dat dan M f = B Mf C Laat V nu eindig-dimensionaal met basis B = {b,b 2,,b n } zijn, en f een lineaire transformatie van V die inverteerbaar is Dan geeft f een automorfisme van V, en vormen de beelden {f(b,,f(b n } ook weer een basis van V De matrix B M B f heeft in de i-de kolom de coördinatenvector van het beeld f(b i ten opzichte van de basis B Nemen we als nieuwe basis C voor V de vectoren c i = f(b i, dan kunnen we de matrix met in de i-de kolom de coördinaten van f(b i = c i op basis B natuurlijk ook interpreteren als de matrix van de afbeelding die c i geschreven op basis C stuurt naar c i geschreven op basis B Met andere woorden, B M C id = B M B f

5 2 Maar dan is de matrix die de b i op basis C schrijft ook gemakkelijk te vinden: C Mid B = (B Mid C ( = B Mf B De matrices B Mid C en C Mid B zijn van groot belang; ze geven coördinatentransformaties Als een vector v gegeven is op basis B, dan is C Mid B (v dezelfde vector maar dan uitgeschreven op de basis C Meestal is de matrix B Mid C gemakkelijk te vinden (omdat de kolommen de coördinaten van de nieuwe basisvectoren op de oorspronkelijke basis B zijn terwijl je de inverse matrix C Mid B wilt gebruiken om een vector op de nieuwe basis te schrijven Voorbeeld 44 We bekijken een eenvoudig voorbeeld in R Laat B een gekozen basis zijn (bijvoorbeeld de standaardbasis ten opzichte waarvan de vector v gegeven is: 5 v = 2 Gevraagd wordt om de vector v uit te drukken op een nieuwe basis C, als bijvoorbeeld 2 C = 0,, 0 0 Merk op dat we de vectoren c i hier in coördinaten ten opzichte van B gegeven hebben! Omdat de vectoren c,c 2,c een mooie diagonaalvorm hebben, kun je het juiste antwoord direct aflezen: v = c c 2 4c, dus v = 4 In het algemeen is dat niet zo eenvoudig, maar volgt het antwoord uit B C M B id (v = (B M C id (v, waar B Mid C als kolommen c,c 2,c op basis B heeft Hier dus: = 0 2 = hetgeen overeenkomt met wat we al zagen Laat Φ nu de matrix B Mid C zijn Dan zijn we in staat om van een lineaire transformatie g van V gegeven ten opzichte van de basis B, ook de matrix van g ten opzichte van de nieuwe basis C te bepalen Immers, om g ten opzichte van C te bepalen kunnen we eerst vectoren herschrijven van C naar B, dan de g ten opzichte van B nemen en tenslotte weer teruggaan naar de basis C Dus: C M C g = Φ BM B g Φ Matrices A,B M n n (L waarvoor een inverteerbare C M n n (L bestaat zodat A = C B C heten geconjugeerd (met elkaar, in M n n (L Een belangrijk thema in volgende hoofdstukken zal zijn om een met A geconjugeerde matrix te vinden die prettigere eigenschappen heeft dan A zelf, met andere woorden, om door overgang op een andere basis een mooiere matrix voor een gegeven afbeelding te vinden C 4,

6 22 HOOFDSTUK 4 LINEAIRE AFBEELDINGEN Voorbeeld 45 We geven een toepassing in V = R 2, namelijk om de matrix M l te bepalen, ten opzichte van de standaardbasis, van de lineaire afbeelding l die een gegeven vector spiegelt in de lijn y = x We maken hier gebruik van de keuzemogelijkheid van een basis, en wel om een basis te kiezen ten opzichte waarvan de matrix eenvoudig op te schrijven valt Daarna doen we een coördinatentransformatie om terug te gaan naar de standaardbasis Laat de speciale basis B = {b,b 2 } voor R 2 zo zijn dat de eerste basisvector b op l ligt, en de tweede er loodrecht op staat Dus, bijvoorbeeld, b = (, b 2 = ( De matrix B M B l voor spiegeling in de lijn y = x ten opzichte van de basis B voor R 2 is eenvoudig, immers het beeld van b (die op l ligt is b zelf, en van b 2 (die loodrecht op l staat wordt het spiegelbeeld b 2 ; met andere woorden: Volgens het bovenstaande is B M B l = ( 0 0 E M E l = Φ BM B l Φ, waar Φ = B Mid E aangeeft hoe e i in B uit te drukken Nu is ( e = = ( + ( = 0 b + b 2, dus zodat e 2 = ( 0 = E M E l = ( B M E ( + ( id = Φ = ( E M B id = Φ = ( 0 0 ( ( = b + b 2,,, = ( 8 6 In dit geval was het gemakkelijk om Φ op te schrijven, en moesten we moeite doen om Φ te vinden 6 8

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

3 De duale vectorruimte

3 De duale vectorruimte 3 De duale vectorruimte We brengen de volgende definitie in de herinnering. Definitie 3.1 (hom K (V, W )) Gegeven twee vectorruimtes (V, K) en (W, K) over K noteren we de verzameling van alle lineaire

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 2 Lineaire afbeeldingen 21 Inleiding Een afbeelding f van een verzameling V naar een verzameling W is een regel die aan ieder element v van V een element f(v) van W toevoegt maw een generalisatie

Nadere informatie

Vectorruimten en deelruimten

Vectorruimten en deelruimten Vectorruimten en deelruimten We hebben al uitgebreid kennis gemaakt met de vectorruimte R n We zullen nu zien dat R n slechts een speciaal geval vormt van het (veel algemenere begrip vectorruimte : Definitie

Nadere informatie

Lineaire Algebra SUPPLEMENT I

Lineaire Algebra SUPPLEMENT I Lineaire Algebra SUPPLEMENT I F.Beukers 22 Departement Wiskunde UU Hoofdstuk 2 Vectorruimten 2. Axioma s Tot nu toe hebben we het uitsluitend over R n gehad. In de geschiedenis van de wiskunde blijkt

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H.A. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.

TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A. TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode

Examenvragen Meetkunde en lineaire algebra Tweede examenperiode Examenvragen Meetkunde en lineaire algebra Tweede examenperiode 2008-2009 Een rechte conoïde met als richtrechte de X-as, en als richtoppervlak de sfeer met middelpunt in (0, 16, 0) en straal 9. (1) Stel

Nadere informatie

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector Les 3 Matrix product We hebben gezien hoe we matrices kunnen gebruiken om lineaire afbeeldingen te beschrijven. Om het beeld van een vector onder een afbeelding te bepalen hebben we al een soort product

Nadere informatie

2. Transformaties en matrices

2. Transformaties en matrices Transformaties en matrices Lineaire afbeelding Onder een lineaire afbeelding van R n naar R m verstaan we een functie A die aan iedere vector uit R n een vector uit R m toevoegt en van het volgende type

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

Lineaire Algebra C 2WF09

Lineaire Algebra C 2WF09 Lineaire Algebra C 2WF09 College: Instructie: L. Habets HG 8.09, Tel. 4230, Email: l.c.g.j.m.habets@tue.nl H. Wilbrink HG 9.49, Tel. 2783, E-mail: h.a.wilbrink@tue.nl http://www.win.tue.nl/wsk/onderwijs/2wf09

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Vectorruimten en lineaire afbeeldingen tussen vectorruimten

Vectorruimten en lineaire afbeeldingen tussen vectorruimten Hoofdstuk 3 Vectorruimten en lineaire afbeeldingen tussen vectorruimten 3.1 Vectorruimte : definitie en voorbeelden R DEFINITIE 3.1 vectorruimte Een vectorruimte of lineaire ruimte over een veld F is een

Nadere informatie

Wiskunde 1 voor kunstmatige intelligentie (WB033B) Bernd Souvignier

Wiskunde 1 voor kunstmatige intelligentie (WB033B) Bernd Souvignier Wiskunde voor kunstmatige intelligentie (WB33B Bernd Souvignier voorjaar 24 Deel I Lineaire Algebra Wiskunde voor kunstmatige intelligentie, 24 Les Stelsels lineaire vergelijkingen Om te beginnen is hier

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

Lineaire Algebra 2. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven

Lineaire Algebra 2. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Lineaire Algebra 2 Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven 2012-2013 ii Syllabus in wording bij Lineaire Algebra 2 (2WF30 Inhoudsopgave 1 Lineaire afbeeldingen 1 11 Lineaire

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

SYLLABUS LINEAIRE ALGEBRA 2

SYLLABUS LINEAIRE ALGEBRA 2 SYLLABUS LINEAIRE ALGEBRA 2 ******** RJKooman Universiteit Leiden najaar 2007 0 INHOUDSOPGAVE I Algemene begrippen Vectorruimten 1 Lineaire deelruimte, lineaire onafhankelijkheid, basis 2 Lineaire afbeeldingen

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

Wiskunde 1 voor kunstmatige intelligentie. Bernd Souvignier

Wiskunde 1 voor kunstmatige intelligentie. Bernd Souvignier Wiskunde voor kunstmatige intelligentie Bernd Souvignier voorjaar 2003 Hoofdstuk I Lineaire Algebra Les Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Lineaire Algebra. Samenvatting. De Roover Robin

Lineaire Algebra. Samenvatting. De Roover Robin Lineaire Algebra Samenvatting De Roover Robin 21-211 Deze samenvatting is een overzicht van alle definities, stellingen, lemma's en proposities met hun bijhorende bewijzen. Deze samenvatting is gebaseerd

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel C Lineaire Algebra Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Seymour Lipschutz, Marc L. Lipson: (Schaum s Outline of Theory and Problems of) Linear Algebra. McGraw-Hill Companies,

Nadere informatie

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.

Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert. Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer

Nadere informatie

Module 10 Lineaire Algebra

Module 10 Lineaire Algebra L Vak 57.5 Les 36. Module Lineaire Algebra Afbeeldingen (vervolg (b)) In deze les worden de eigenwaarden en eigenvectoren van lineaire afbeeldingen behandeld. Inhoud van de leskern Basistransformatie *:;*

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Voortgezette Lineaire Algebra. Prof. dr. J. van Mill Dr. F. van Schagen

Voortgezette Lineaire Algebra. Prof. dr. J. van Mill Dr. F. van Schagen Voortgezette Lineaire Algebra Prof. dr. J. van Mill Dr. F. van Schagen Inhoud Hoofdstuk I. Complexe vectorruimten en inwendige producten 5 I.1. Vectorruimten 5 I.2. Hermitische producten 8 I.3. Inwendig-productruimten

Nadere informatie

Wiskunde 1 voor kunstmatige intelligentie (BKI 116)

Wiskunde 1 voor kunstmatige intelligentie (BKI 116) Wiskunde voor kunstmatige intelligentie (BKI 6) Bernd Souvignier voorjaar 25 Inhoud I Lineaire Algebra 4 Les Stelsels lineaire vergelijkingen.................... 5. Gauss-eliminatie.......................

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte

Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte Lineaire algebra en kegelsneden Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk Reële vectorruimten. De reële vectorruimte van de reële n-tallen Definitie Een reëel

Nadere informatie

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie.

(2) Stel een parametervoorstelling op van de doorsnijdingskromme van sfeer en cilinder in de voorkeurpositie. Vraag op 5 punten de sfeer met middelpunt in,, 4 en straal 6; de omwentelingscilinder met straal 6 en als as de rechte door,, met richtingsvector,, Bepaal een affiene transformatie of een coördinatentransformatie,

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,

Nadere informatie

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel C Lineaire Algebra Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Seymour Lipschutz, Marc L. Lipson: (Schaum s Outline of Theory and Problems of) Linear Algebra. McGraw-Hill Companies,

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 J.Keijsper

Nadere informatie

Matrixgroepen. SL n (K) = S GL n (K)

Matrixgroepen. SL n (K) = S GL n (K) B Matrixgroepen De lineaire algebra is niet alleen een theorie waar de functionaalanalyse op voort bouwt, omgekeerd hebben sommige resultaten uit de hoofdtext ook consequenties voor de lineaire algebra.

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Lineaire Algebra SUPPLEMENT II

Lineaire Algebra SUPPLEMENT II Lineaire Algebra SUPPLEMENT II FBeukers 2012 Departement Wiskunde UU Inhoudsopgave 13 Eigenwaarden en eigenvectoren 3 131 Inleiding 3 132 Berekening van eigenwaarden en eigenvectoren 5 133 Basiseigenschappen

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

College WisCKI. Albert Visser. 28 november, Department of Philosophy, Faculty Humanities, Utrecht University. Lijn, Vlak, etc.

College WisCKI. Albert Visser. 28 november, Department of Philosophy, Faculty Humanities, Utrecht University. Lijn, Vlak, etc. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 28 november, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Vectorvoorstelling Lijn: x = b + λa. b is steunvector

Nadere informatie

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer Samenvatting Lineaire Algebra 1 - Collegejaar 2013-2014 Dictaat met verwijzing naar het boek Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst

Nadere informatie

Complexe getallen. 5.1 Constructie van de complexe getallen

Complexe getallen. 5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten. WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de

Nadere informatie

Lineaire Algebra A en B. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven

Lineaire Algebra A en B. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Lineaire Algebra A en B Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven 2007 2008 ii Syllabus bij Lineaire Algebra A (2WF07) en Lineaire Algebra B (2WF08) Inhoudsopgave 0 Vectorrekening

Nadere informatie