Analytische Mechanica

Vergelijkbare documenten
1 De Hamilton vergelijkingen

1 Het principe van d Alembert

Uitwerkingen van het Tentamen Moleculaire Simulaties - 8C Januari uur

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen

7. Hamiltoniaanse systemen

Tentamen Klassieke Mechanica, 29 Augustus 2007

Theory Dutch (Netherlands) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave.

Gravitatie en kosmologie

Uitwerking Tentamen Klassieke Mechanica I Dinsdag 10 juni 2003

Inleiding tot de dynamica van atmosferen Krachten

7 College 01/12: Electrische velden, Wet van Gauss

Gravitatie en kosmologie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016

Examen Algemene natuurkunde 1, oplossing

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen

2.1 Twee gekoppelde oscillatoren zonder aandrijving

De leraar fysica als goochelaar. lesvoorbeeld: harmonische trillingen

De wortel uit min één, Cardano, Kepler en Newton

Uitwerkingen Tentamen Natuurkunde-1

Gravitatie en kosmologie

Higgs-mechanisme: het bestaan van W- en Z-bosonen

Overgangsverschijnselen

BIOFYSICA: Toets I.4. Dynamica: Oplossing

Hoofdstuk 23 Electrische Potentiaal. Copyright 2009 Pearson Education, Inc.

Opgave 1 Golven op de bouwplaats ( 20 punten, ) Een staalkabel met lengte L hangt verticaal aan een torenkraan.

Bewerkingen met krachten

Gravitatie en kosmologie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

2de bach HIR. Optica. Smvt - Peremans. uickprinter Koningstraat Antwerpen EUR

Langere vraag over de theorie

Lineaire dv van orde 2 met constante coefficienten

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30

Eerste orde partiële differentiaalvergelijkingen

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 22 juni :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar.

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

Het brachistochroonprobleem van een magneet in een niet-uniform magneetveld

Wiskundige Technieken

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Opgave Zonnestelsel 2005/2006: 7. 7 Het viriaal theorema en de Jeans Massa: Stervorming. 7.1 Het viriaal theorema

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

Gravitatie en kosmologie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Oplossing examenoefening 2 :

Arbeid & Energie. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts

Tentamen Mechanica ( )

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB augustus 2011, uur

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts

Juli blauw Vraag 1. Fysica

5 Lineaire differentiaalvergelijkingen

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde

Examen Klassieke Mechanica

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

Respons van een voertuig bij passage over een verkeersdrempel

UITWERKING. Thermodynamica en Statistische Fysica (TN ) 3 april 2007

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

Elementaire Deeltjesfysica

Gravitatie en kosmologie

compact weer te geven (ken ook een waarde toe aan n).

Elementaire Deeltjesfysica

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Essential University Physics Richard Wolfson 2 nd Edition

toelatingsexamen-geneeskunde.be

Examen Klassieke Mechanica

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

Krachten (4VWO)

****** Deel theorie. Opgave 1

OVER HET WARMTETHEOREMA VANNERNST DOOR H. A. LORENTZ.

Biofysische Scheikunde: Statistische Mechanica

1. Langere vraag over de theorie

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011)

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Trillingen en Golven

Aanvullingen bij Hoofdstuk 6

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

Uitwerkingen van het Tentamen Moleculaire Simulaties - 8C Januari uur

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Essential University Physics Richard Wolfson 2 nd Edition

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Deze Informatie is gratis en mag op geen enkele wijze tegen betaling aangeboden worden. Vraag 1

Verbanden en functies

Aanvullingen bij Hoofdstuk 8

Advanced Creative Enigneering Skills

Module 5 Uitwerkingen van de opdrachten

Examen mechanica: oefeningen

Basiskennistoets wiskunde

Analyse: vraagstuk van Kepler

NATIONALE NATUURKUNDE OLYMPIADE. Tweede ronde - theorie toets. 21 juni beschikbare tijd : 2 x 2 uur

Samenvatting Natuurkunde Hoofdstuk 8, Bewegen in functies

EXAMENFOLDER maandag 26 januari 2015 OPLOSSINGEN. Vraag 1: Een gelijkstroomnetwerk (20 minuten - 2 punten)

Uitwerkingen Mei Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

3 Wat is een stelsel lineaire vergelijkingen?

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Basic Creative Engineering Skills

Vlakke meetkunde. Module Geijkte rechte Afstand tussen twee punten Midden van een lijnstuk

Transcriptie:

Analytische Mechanica Universiteit Antwerpen - 2de bachelor fysica Christophe De Beule - Bart Partoens Academiejaar 2013-2014

Inhoudsopgave I. Analytische mechanica 1 1. Lagrangiaanse mechanica 2 1.1. Voorbeeld................................... 2 1.1.1. Newtoniaanse methode........................ 2 1.1.2. Virtuele arbeid............................ 4 1.2. Veralgemeende coördinaten.......................... 6 1.2.1. Vrijheidsgraden en bindingen.................... 7 1.3. Virtuele arbeid................................ 9 1.4. Principe van d Alembert........................... 9 1.5. De Lagrangiaan................................ 10 1.6. Lagrange-vergelijking in willekeurige coördinaten.............. 11 1.7. Symmetrieën en constanten van beweging.................. 12 1.7.1. Ijksymmetrie............................. 12 1.7.2. Theorema van Noether........................ 13 1.7.3. De Hamiltoniaan en behoud van energie.............. 14 1.8. Deeltje in een elektromagnetisch veld.................... 15 2. Hamiltoniaanse mechanica 17 2.1. Variatierekening en het principe van Hamilton............... 17 2.2. De faseruimte................................. 18 2.3. Theorema van Liouville............................ 19 2.4. Poisson haakjes................................ 21 2.5. Canonieke transformaties........................... 22 2.6. Genererende functie.............................. 24 2.7. De Hamilton-Jacobi vergelijking....................... 27 2.8. Verband met kwantummechanica...................... 27 3. Trillingen rond evenwicht 29 3.1. Stabiel of onstabiel evenwicht........................ 29 3.2. Lagrangiaan rond evenwicht......................... 31 3.3. Eenvoudige harmonische oscillator...................... 32 3.4. Gedempte harmonische oscillator...................... 33 3.5. Gedreven harmonische oscillator....................... 35 3.5.1. Constante drijfkracht......................... 36

3.5.2. Greense functie voor de EHO.................... 38 3.5.3. Willekeurige kracht.......................... 40 3.6. Resonantie................................... 41 3.6.1. Ongedempte trilling......................... 41 3.6.2. Ondergedempte trilling........................ 41 3.7. Anharmonische effecten............................ 45 3.7.1. Correctie op de periode........................ 45 3.7.2. Lindstedt-Poincaré storingstheorie.................. 47 3.7.3. Gedreven anharmonische oscillator................. 50 II. Relativiteit 54 4. Tensorrekening 55 4.1. Meetkundig object.............................. 55 4.2. Coördinatentransformatie.......................... 56 4.3. Vectoren.................................... 57 4.4. Duale vectoren................................ 58 4.5. Scalair product en de metrische tensor................... 59 4.6. Tensoren.................................... 60 4.6.1. Bewerkingen met tensoren...................... 62 4.6.2. Levi-Civita tensor........................... 63 4.7. Differentiaaloperatoren............................ 65 III. Chaos 67

Deel I. Analytische mechanica

1. Lagrangiaanse mechanica In de Newtoniaanse vectoriële mechanica wordt een probleem opgelost door elk lichaam en de krachten die er op inwerken afzonderlijk te beschouwen. In dit hoofdstuk zullen we een equivalente formulering van de mechanica introduceren, de Lagrangiaanse analytische mechanica. In deze formulering wordt het fysisch systeem als een geheel beschouwd. Deze methode introduceert geen nieuwe fysische principes, maar ze is wiskundig veel krachtiger dan de Newtoniaanse methode. 1.1. Voorbeeld We beginnen met een voorbeeld om je meer vertrouwd te maken met de belangrijke concepten die je zal tegenkomen in dit hoofdstuk. Beschouw een blok met massa m die wrijvingsloos glijdt over een schuine blok met massa M, die zelf op een wrijvingsloos oppervlak rust, zoals getoond in Fig. 1.1. Er zijn twee vrijheidsgraden in dit systeem, namelijk de kleine blok die naar beneden kan glijden en de schuine blok die horizontaal over het oppervlak kan bewegen. 1.1.1. Newtoniaanse methode Allereerst kiezen we een inertiaalstelsel 1 waar de versnelling van de schuine blok gegeven wordt door A = Aˆx. Als a de versnelling is van de kleine blok t.o.v. de schuine blok, dan is a + A de versnelling van de kleine blok in dit stelsel. Kleine blok De tweede wet van Newton voor de kleine blok wordt gegeven door F = F 1 mgŷ = m( a + A), waar F 1 de normaalkracht is van de schuine op de kleine blok. Zo n kracht noemt men een dwangkracht omdat het de beweging van de kleine blok over de schuine blok houdt. Als we deze vergelijkingen uitschrijven in componenten evenwijdig aan (F ) en loodrecht op (F ) de schuine blok dan vinden we F = mg sin α = ma + ma cos α (1.1) F = F 1 mg cos α = ma + ma sin α, 1 Een inertiaalstelsel is een stelsel dat geen versnelling ondergaat. Alle inertiaalstelsels bewegen met een constante rechtlijnige snelheid t.o.v. elkaar.

Voorbeeld 3 d F 1 mgŷ α Figuur 1.1. waar α de hellingshoek is van de schuine blok. Omdat de kleine blok enkel over de schuine blok kan bewegen geldt dat a = 0, zodat F 1 = mg cos α + ma sin α. (1.2) Schuine blok Naast de zwaartekracht werken er nog twee krachten in op de schuine blok. Volgens de derde wet van Newton wordt een reactiekracht F 1 uitgeoefend door de kleine op de schuine blok. Daarnaast is er nog de dwangkracht F 2 = F 2 ŷ die ervoor zorgt dat er geen verticale beweging is. Voor de schuine blok vinden we dus F = F 1 + F 2 Mgŷ = M A. De verticale component van F 1 wordt gecompenseerd door F 2 Mg en voor de horizontale component geldt F 1 sin α = MA. Als we (1.2) invullen in bovenstaande vergelijking dan vinden we ( ) sin α cos α A = g sin 2. α + M/m Bespreking De verticale component van de versnelling van de schuine blok vinden we met vergelijking (1.1) en wordt gegeven door ( ) M + m a y = a sin α = g sin 2 α M + m sin 2. α

Voorbeeld 4 Als de kleine blok vanuit rust vertrekt van een hoogte h op de schuine blok, dan bereikt deze het oppervlak na een tijd t = 2h/a y. Om dit probleem op te lossen hadden we twee vergelijkingen nodig voor elk lichaam met vier onbekenden F 1, F 2, a en A. In de Lagrangiaanse mechanica is er geen nood meer voor dwangkrachten zoals F 1 en F 2. We zullen dit toelichten met de methode van virtuele arbeid. 1.1.2. Virtuele arbeid De dynamische variabelen 2 in dit probleem zijn de afstand d van de kleine blok tot het startpunt op de schuine blok en de horizontale positie X van de schuine blok. Eerst schrijven we de kinetische energie T in functie van deze variabelen: T = 1 2 m ( ẋ 2 + ẏ 2) + 1 2 MẊ2, met x = X + d cos α y = h d sin α, waar h de hoogte is van het startpunt zodat T ( d, Ẋ) = 1 2 (m + M) Ẋ2 + 1 2 m ( d 2 + 2 dẋ cos α ). (1.3) Variaties Een variatie δq(t) is een virtuele infinitesemale verandering van de functie q(t) zelf. Dit geeft aanleiding tot een nieuwe functie: q(t) q(t) = q(t) + δq(t). Men noemt de verandering virtueel omdat het geen gevolg is van een echte verandering in de variabele t zoals bij de differentiaal dq = qdt. Bij een variatie wordt de functionele vorm van q(t) een klein beetje veranderd als een soort van wiskundig experiment. Virtuele arbeid. Beschouw een variatie δd(t) van d(t) en δx(t) van X(t). Deze virtuele verplaatsingen voldoen automatisch aan de bindingen 3. De variaties in d en X geven aanleiding tot een variatie van de positievector, δ r = r ( d, X) r (d, X) = r (d + δd, X + δx) r (d, X) = r r δd + d X δx. 2 Dynamische variabelen zijn tijdsafhankelijke variabelen die de beweging volledig beschrijven eens de bewegingsvergelijkingen opgelost zijn. 3 Bindingen zijn voorwaarden op de beweging. In dit geval zijn er twee bindingen: de kleine blok kan enkel over de schuine blok bewegen, die enkel horizontaal kan bewegen.

Voorbeeld 5 Als we dit toepassen op (1.3) dan bekomen we de variatie op de positie van de kleine blok r en de schuine blok R, δ r = (δx + δd cos α) ˆx (δd sin α) ŷ, δ R = δx ˆx. Beschouw nu even terug een willekeurig lichaam met positievector r. De virtuele arbeid verricht door een virtuele verplaatsing δ r wordt gegeven door δw = F δ r, met F de totale kracht die inwerkt op het lichaam. In het voorbeeld is de enige kracht die virtuele arbeid levert de zwaartekracht die inwerkt op de kleine blok, δw = (mg sin α) δd. Merk op dat de dwangkrachten F 1 en F 2 geen bijdrage leveren aan de virtuele arbeid omdat ze loodrecht op de verplaatsing staan. Principe van d Alembert Anderzijds kunnen we de virtuele arbeid herschrijven met de wet van Newton. Dit is het principe van d Alembert: δw p δ r = 0. (1.4) De bewegingsvergelijkingen worden bekomen door de virtuele arbeid opnieuw te berekenen met het principe van d Alembert. Merk eerst op dat p δ r = d dt d ( p δ r ) p δ r. (1.5) dt Om deze vergelijking verder uit te werken, berekenen we eerst de snelheidsvector met de kettingregel: r = r d d + r X Ẋ. Aan de hand van de partiële afgeleiden van deze vergelijking naar d en Ẋ herschrijven we de variatie van de positie, δ r = r r δd + d X r δx = d δd + r Ẋ δx, zodat de eerste term van (1.5) geschreven kan worden als ( p δ r = T r r ) r d δd + Ẋ δx = T T d δd + Ẋ δx.

Veralgemeende coördinaten 6 De tweede term van vergelijking (1.5) wordt gegeven door de tijdsafgeleide van de variatie in de positie, d dt r r r δ r = δd + δx + d X d δ d + r X δẋ = r d δ d + r X δẋ, aangezien r in dit voorbeeld niet afhangt van d en X. Net zoals voor de eerste term kunnen we dit ook schrijven als waaruit volgt d r δ r = dt d δ d + r Ẋ δẋ, ( p d T δ r = dt r r d δ d + r ) Ẋ δẋ = T d δ d + T Ẋ δẋ. De virtuele arbeid uit vergelijking (1.4) kan dus geschreven worden als δw = d ( ) T dt d δd + d ( ) T δx. dt Ẋ Deze vergelijking geldt voor heel het systeem omdat de kinetische energie een additieve grootheid is. Als we deze vergelijking uitwerken dan vinden we (mg sin α) δd = (m d ) ( + mẍ cos α δd + (m + M) Ẍ + m d ) cos α δx. Dit moet gelden voor een willekeurige virtuele verplaatsing zodat g sin α = d + Ẍ cos α 0 = (m + M) Ẍ + m d cos α. Deze procedure lijkt ingewikkelder dan de Newtoniaanse methode, maar in de toekomst moeten we voor zulke problemen enkel de kinetische energie en de virtuele arbeid berekenen zonder dat we de dwangkrachten in rekening moeten nemen. In de oefeningen zullen jullie een algemener probleem oplossen waar de snelheid wel afhangt van de dynamische variabelen zodat d δ r nog extra termen bevat. dt 1.2. Veralgemeende coördinaten Beschouw een mechanisch systeem dat opgebouwd is uit N deeltjes die vrij kunnen bewegen en dus niet beperkt worden door bindingen. De rechthoekige coördinaten x i, y i, z i, (i = 1,..., N),

Veralgemeende coördinaten 7 bepalen de configuratie van het systeem op elk tijdstip t, en de beweging ligt vast eens de {x i, y i, z i } gegeven worden als functie van t. We kunnen echter hetzelfde probleem oplossen als we de {x i, y i, z i } uitdrukken in functie van andere grootheden q 1,..., q 3N, aan de hand van een algemene coördinatentransformatie. Je kan dit beschouwen als een veralgemening van de transformatie van rechthoekige coördinaten x, y, z van een enkel deeltje naar sferische coördinaten r, θ, φ. Een algemene coördinatentransformatie wordt gegeven door x 1 = f 1 (q 1,..., q 3N ). z N = f 3N (q 1,..., q 3N ). Het oorspronkelijke probleem waar de {x i, y i, z i } bepaald moeten worden, wordt getransformeerd naar een nieuw probleem waar we de q 1,..., q 3N moeten bepalen. Aan de hand van een geschikte coördinatentransformatie wordt het nieuwe probleem eenvoudiger op te lossen dan het oude probleem. Zo zijn poolcoördinaten beter geschikt voor de beweging van een planeet rond de zon te beschrijven. In het voorbeeld van hierboven worden de veralgemeende coördinaten gegeven door de afstand d van de kleine blok tot het toppunt van de schuine blok en de horizontale positie X van de schuine blok. 1.2.1. Vrijheidsgraden en bindingen In de beschrijving van een mechanisch systeem hebben we vaak te maken met bindingen, wat betekent dat de beweging van een deel van het systeem de beweging van een ander deel strikt volgt. In de vectoranalyse van zo n systeem worden er onbekende krachten geassocieerd met deze bindingen, en een deel van de analyse bestaat er juist in om deze dwangkrachten te elimineren door de bindingsvoorwaarden op te leggen. Een groot voordeel van de Lagrangiaanse formulering is het gebruik van variabelen die reeds vanaf het begin deze bindingen in rekening nemen. Beschouw een mechanisch systeem dat opgebouwd is uit N deeltjes die niet allemaal onafhankelijk van elkaar kunnen bewegen door m onafhankelijke bindingsvoorwaarden op de coördinaten, zodat er maar n = 3N m onafhankelijke parameters q 1, q 2,..., q n nodig zijn om het systeem te beschrijven. De rechthoekige coördinaten van alle deeltjes kunnen dan geschreven worden als x 1 = f 1 (q 1,..., q n, t). z N = f 3N (q 1,..., q n, t). De onafhankelijke n parameters q 1,..., q n die nodig zijn om de beweging te beschrijven, noemen we de veralgemeende coördinaten of vrijheidsgraden van het systeem.

Veralgemeende coördinaten 8 Voorbeelden De beweging van een punt in de ruimte wordt volledig beschreven met drie onafhankelijke dynamische variabelen. Anderzijds heeft een massapunt dat beweegt op een tafel maar twee vrijheidsgraden. Een star lichaam, bestaande uit drie of meer massapunten, dat vrij kan bewegen heeft altijd zes vrijheidsgraden, namelijk drie translaties en drie rotaties. Soorten bindingen Beschouw nu een systeem met n vrijheidsgraden waarvoor we een bindingsvoorwaarde opleggen, zodat het systeem nog maar n 1 vrijheidsgraden heeft. Men onderscheidt twee soorten bindingsvoorwaarden: holonome en niet-holonome bindingen. Holonome bindingen Een bindingsvoorwaarde die uitgedrukt kan worden als f (q 1,..., q n, t) = 0, (1.6) noemen we holonoom. Dit reduceert het aantal onafhankelijke coördinaten met één. De positievectoren kunnen dan uitgedrukt worden als (i = 1,..., N) r i = r i (q 1,..., q n 1, t). Een bindingsvoorwaarde die expliciet van de tijd afhangt zoals in (1.6) noemen we bovendien een rheonome binding. Een holonome bindingsvoorwaarde f (q 1,..., q n ) = 0, die niet expliciet van de tijd afhangt, noemen we een scleronome binding, en dan worden de positievectoren gegeven door r i = r i (q 1,..., q n 1 ). Neem bijvoorbeeld de bindingsvoorwaarde f(r, θ, φ) = r R. Dit betekent dat de beweging plaatsvindt op het oppervlak van een bol (cf. sferische slinger). Deze voorwaarde is scleronoom, maar als nu de straal op een gekende manier verandert in de tijd zodat f(r, θ, φ, t) = r R(t), dan wordt de bindingsvoorwaarde rheonoom. Niet-holonome bindingen Er bestaan ook bindingen die niet holonoom zijn en waarvoor de bindingsvoorwaarde enkel infinitesimaal uitgedrukt kan worden, n A k (q, t) dq k + B(q, t) dt = 0, k=1 waar q = {q 1,..., q n }. Dit betekent dat deze vergelijking niet geschreven kan worden als een totale differentiaal. Aangezien dit geen verband geeft tussen de coördinaten zelf, kunnen we het aantal onafhankelijke coördinaten niet meteen reduceren. Hiervoor moet men de methode van de Lagrange-multiplicatoren gebruiken. Rollen zonder glijden is bijvoorbeeld een niet-holonome binding. In de rest van deze cursus beschouwen we enkel holonome systemen. In de oefeningen zullen jullie een niet-holonoom probleem oplossen.

Virtuele arbeid 9 1.3. Virtuele arbeid Stel dat we één van de vrijheidsgraden q k (t) variëren met een infinitesimale hoeveelheid δq k (t), wat betekent dat we de functionele vorm een heel klein beetje veranderen. De variatie van de positie van het i-de massapunt wordt dan δ r i = r i δq k. q k Omwille van de krachten die inwerken op het systeem wordt er virtuele arbeid uitgeoefend door de virtuele verplaatsing δq k. Als de vrijheidsgraden onafhankelijk zijn, dan is de totale virtuele arbeid δw de som van de arbeid δw k geleverd door elke afzonderlijke verplaatsing δq k, met δw = N F i δ r i = i=1 δw k = ( N n F i i=1 ( N i=1 k=1 F i r i q k r i q k δq k ) ) = n δw k, k=1 δq k. (1.7) Aangezien de veralgemeende coördinaten voldoen aan de bindingen, leveren de dwangkrachten geen bijdrage tot de virtuele arbeid aangezien ze steeds loodrecht staan op de beweging en de gradiënt gericht is langs de beweging. Wanneer we in de rest van dit hoofdstuk spreken over krachten, dan bedoelen we steeds alle krachten buiten de dwangkrachten. Naar analogie definiëren we voor elke vrijheidsgraad een veralgemeende kracht F k, F k N i=1 F i r i q k. (1.8) Merk op dat de functies F k overeenkomen met de componenten van een vectorveld in de q-ruimte en dat ze niet noodzakelijk de dimensie van een kracht hebben. 1.4. Principe van d Alembert De kinetische energie wordt in het algemeen gegeven door T = 1 N m i ri 2 r i = T (q 1,..., q N, q 1,..., q N, t). i=1 Allereerst schrijven we de partiële afgeleiden van de kinetische energie naar de veralgemeende coördinaten en snelheden uit met de kettingregel: T q k = i T q k = i m i ri r i q k = i m i ri r i q k = i p i r i q k (1.9) p i r i q k. (1.10)

De Lagrangiaan 10 De laatste stap in (1.10) is enkel geldig voor holonome systemen (oefening). Als we de tijdsafgeleide nemen van (1.10) dan vinden we d T = [ p i r i + p i r ] i. dt q k q i k q k Het Principe van d Alembert stelt dat we de tweede wet van Newton kunnen gebruiken om p i gelijk te stellen aan de kracht die inwerkt op het i-de massapunt. Let op dat dit enkel kan als r i gedefinieerd is in een inertiaalstelsel. De eerste term van de bovenstaande vergelijking is gegeven door de veralgemeende kracht uit (1.8). Samen met vergelijking (1.9) vinden we de veralgemeende bewegingsvergelijkingen: F k = d T T, k = 1,..., n. (1.11) dt q k q k Een holonoom systeem kan dus beschreven worden met n vergelijkingen die afhangen van n + 1 scalaire functies, namelijk de kinetische energie T (q, q, t) en de veralgemeende krachten F k (q, t) met q = {q 1,..., q n }. In de Newtoniaanse mechanica moeten er meer dan n vergelijkingen opgelost worden omdat de dwangkrachten zelf extra onbekenden zijn. De Lagrangiaanse mechanica is dus bijzonder efficiënt, aangezien er evenveel vergelijkingen als onbekenden q k zijn. 1.5. De Lagrangiaan Als we de virtuele arbeid (1.7) schrijven voor een variatie die op elk tijdstip overeenkomt met de echte infinitesimale verplaatsing op dat tijdstip zodat δq k = dq 4 k, dan bekomen we de ogenblikkelijke arbeid dw = F k dq k. k Indien er een scalaire functie V = V (q 1,..., q n, t) bestaat zodat op elk tijdstip dw = dv = k V q k dq k, (1.12) dan moet er op elk ogenblik gelden dat F k = V q k. In het geval dat V = V (q 1,..., q n ) niet expliciet van de tijd afhangt, spreken we van een conservatief systeem en komt de functie V overeen met de potentiële energie van het systeem. Laten we nu de Lagrangiaan L definiëren als L T V. 4 Deze variatie komt overeen met een infinitesimale verschuiving van de kromme q k (t) naar links.

Lagrange-vergelijking in willekeurige coördinaten 11 Omdat we aangenomen hebben dat de scalaire functie V onafhankelijk is van de snelheden q k geldt er L = T. q k q k Als we alles invullen in de veralgemeende bewegingsvergelijking (1.11) dan bekomen we de Euler-Lagrange bewegingsvergelijkingen: L d L = 0, k = 1,..., n. (1.13) q k dt q k Dit zijn de belangrijkste vergelijkingen van de Lagrangiaanse mechanica. Voor een holonoom systeem waarvoor (1.12) opgaat, is het probleem gereduceerd tot het zoeken van één enkele scalaire functie, de Lagrangiaan L. Snelheidsafhankelijke potentialen Het Lagrange formalisme werkt voor sommige snelheidsafhankelijke functies U = U(q, q, t) waarmee de veralgemeende krachten geschreven kunnen worden als F k = d U U. (1.14) dt q k q k In dit geval volgen de veralgemeende bewegingsvergelijkingen (1.11) uit de Lagrange vergelijkingen (1.13) met L = T U. De Lorentzkracht op een geladen deeltje in een elektromagnetisch veld kan bijvoorbeeld zo geschreven worden. 1.6. Lagrange-vergelijking in willekeurige coördinaten Onderstel dat de tijdsevolutie van een systeem met n vrijheidsgraden beschreven wordt door de coördinaten q 1 (t),..., q n (t) die voldoen aan de Lagrange-vergelijkingen, gegeven door (1.13). Beschouw nu een (inverteerbare) coördinatentranformatie naar nieuwe coördinaten u 1,..., u n. De oude coördinaten kunnen uitgedrukt als q k = q k (u 1,..., u n, t), (k = 1,..., n), waar de coördinatentransformatie mogelijk kan veranderen in de tijd. We zullen nu aantonen dat als de originele coördinaten voldoen aan de bewegingsvergelijkingen, dat dan de nieuwe coördinaten hier ook aan voldoen: L d L = 0, u k dt u k zodat de vorm van de bewegingsvergelijkingen onafhankelijk is van de coördinaten. We zullen dit aantonen voor een enkele vrijheidsgraad om de notatie eenvoudig te houden. Het bewijs voor meerdere vrijheidsgraden verloopt analoog. Het pad in de oorspronkelijke coördinaat q kan uitgedrukt worden in de nieuwe coördinaat u als q(t) = q(u(t), t).

Symmetrieën en constanten van beweging 12 Hieruit volgt dat q = q q u + u t. In de nieuwe coördinaat u wordt de Lagrangiaan dus gegeven door ( ) q(u, t) q(u, t) L = L q(u, t), u +, t. u t Met de kettingregel vinden we dan L u = L q q u + L ( ) q q u + q u u t L u = L q q u = L q q u, zodat d L dt u = d dt ( ) L q q u + L d q q dt u = d ( ) L q dt q u + L q u ( q q u + u t ). We vinden dus L u d ( L L dt u = q d ) L q dt q u. 1.7. Symmetrieën en constanten van beweging Een symmetrie is een transformatie van de Lagrangiaan die de actie (op randtermen na), en dus de bewegingsvergelijkingen onveranderd laat. We beschouwen twee soorten symmetrieën: ijksymmetrie en symmetrieën die overeenkomen met continue transformaties van de veralgemeende coördinaten. Voor de laatstgenoemden symmetrieën zullen we een belangrijk theorema bewijzen, namelijk het theorema van Noether. Ten laatste zullen we de Hamiltoniaan introduceren en onderzoeken wanneer deze behouden is, en hoe dit in verband staat met het behoud van energie. 1.7.1. Ijksymmetrie Als we een constante optellen bij de Lagrangiaan of de Lagrangiaan vermenigvuldigen met een constante, dan verkrijgen we een Lagrangiaan die fysisch equivalent is, aangezien de bewegingsvergelijkingen (1.13) niet veranderen onder deze transformaties. Zo kunnen we ook een totale tijdsafgeleide van een scalaire functie G = G (q, t) optellen bij de Lagrangiaan zonder de bewegingsvergelijkingen te veranderen, L L + dg dt. (1.15)

Symmetrieën en constanten van beweging 13 Om dit aan te tonen, schrijven we eerst de totale tijdsafgeleide uit, dg dt = k G q k + G q k t, zodat ( ) d dg dt q k dt = d G = dt q k dg q k dt, en de bewegingsvergelijkingen niet veranderen. Een symmetrietransformatie zoals (1.15) noemt men een ijktransformatie van de Lagrangiaan. 1.7.2. Theorema van Noether We zullen hier aantonen dat de invariantie van de bewegingsvergelijkingen onder een continue symmetrie leidt tot een behouden grootheid. Een continue transformatie kan per definitie bereikt worden vanuit de identiteit door een opeenvolging van infinitesimale transformaties 5, zodat we enkel q k (t) q k (t) + δq k (t) moeten beschouwen. Dit geeft aanleiding tot een kleine verandering van de Lagrangiaan, L L + δl, δl = ( L δq k + L ) δ q k. q k q k k Aangezien we veronderstellen dat de bewegingsvergelijkingen invariant zijn onder deze transformatie, mag δl hoogstens gegeven worden door een totale tijdsafgeleide k δl = d df δg(q, t) dt dt. (1.16) Er moet dus gelden dat [ L δq k d ( ) L δq k + d ( )] L δq k = df q k dt q k dt q k dt. Als de q(t) bovendien ook nog voldoen aan de bewegingsvergelijkingen, dan vinden we dat de Noetherstroom J = L δq k F, q k k een constante van beweging is. Dit is de meest eenvoudige versie van het theorema van Noether. Merk bijvoorbeeld op dat translaties in de tijd (en dus behoud van energie) niet inbegrepen zijn in deze versie. 5 In tegenstelling tot een discrete transformatie zoals inversie r r.

Symmetrieën en constanten van beweging 14 Cyclische coördinaten Als voorbeeld beschouwen we een translatie van de coördinaat q 1 (t) q 1 (t) + δa. Onderstel bovendien dat q 1 een cyclische coördinaat is, wat betekent dat ze niet voorkomt in de Lagrangiaan. In dit geval verdwijnt de variatie van de Lagrangiaan, δl = L q 1 δa + L q 1 δȧ = 0, aangezien δa constant is, en L niet afhangt van q 1. We kunnen δl schrijven als (1.16) door F gelijk te stellen aan een constante c. De Noetherstroom wordt dan gegeven door J = L q 1 δa c. Aangezien δa arbitrair is, is dit enkel een constante van beweging als p 1 L q 1 constant is in de tijd. Dit volgt ook meteen uit de bewegingsvergelijking voor de cyclische coördinaat q 1. De grootheid p 1 noemt men een veralgemeende of canonieke impuls, en het behoud van p 1 is een veralgemening van behoud van (echte) impuls. Neem bijvoorbeeld een systeem dat cilindersymmetrisch is. In dit geval is de azimutale hoek φ een cyclische coördinaat, en de overeenkomstige behouden canonieke impuls p φ komt dan overeen met het draaimoment rond de z-as. Merk op dat q 1 mogelijk nog aanwezig is in de Lagrangiaan. We kunnen deze variabele echter elimineren door gebruik te maken van het feit dat de canonieke impuls p 1 een constante van beweging is, p 1 (q 2,..., q n, q 1, q 2,..., q n, t) = k, met k een constante. Deze vergelijking kunnen we in principe oplossen naar q 1 zodat het aantal onafhankelijke bewegingsvergelijkingen met één verminderd is. Uiteraard zullen de vergelijkingen nu wel afhangen van de constante k die bepaald wordt door de beginvoorwaarden. 1.7.3. De Hamiltoniaan en behoud van energie Men kan een grootheid construeren uit de Lagrangiaan, de Hamiltoniaan H genoemd, die behouden is onder heel algemene voorwaarden: H k q k L q k L. De tijdsafgeleide van H wordt gegeven door dh dt = k ( L d q k + q k q k dt ) L q k dl dt.

Deeltje in een elektromagnetisch veld 15 Uit de kettingregel volgt dl dt = k ( ) L L q k + q k + L q k q k t. Als we de Lagrange vergelijkingen (1.13) gebruiken dan vinden we dh dt = L t, zodat de Hamiltoniaan behouden is als en slechts als de Lagrangiaan niet expliciet afhangt van de tijd. Behoud van energie Voor een scleronoom systeem is de Lagrangiaan nooit expliciet afhankelijk van de tijd. Bovendien is de kinetische energie in dit geval een kwadratische vorm van de veralgemeende snelheden, aangezien T = 1 m i ri 2 r i = 1 r i m i q k q k r i, 2 q i i k,k k q k zodat 2T = k q k T q k = k q k L q k = H + T V, waaruit volgt dat H = T + V = E. De totale energie van een scleronoom systeem is dus altijd behouden. Voor een rheonoom systeem is de Lagrangiaan meestal, maar niet altijd, expliciet afhankelijk van de tijd. Als dit niet het geval is, dan is de Hamiltoniaan behouden, maar niet meer gelijk aan de totale energie. 1.8. Deeltje in een elektromagnetisch veld De bewegingsvergelijking van een deeltje met lading e in een elektromagnetisch veld wordt gegeven door (in SI eenheden) ( ) m a = e E( r, t) + v B( r, t) F ( r, v, t), (1.17) met E het elektrisch en B het magnetisch veld. Als er geen magnetisch veld aanwezig is, kan deze vergelijking afgeleid worden van de Lagrangiaan L = T V met V = eφ, de elektrostatische potentiële energie. Men kan echter een snelheidsafhankelijke potentiaal definiëren zodat ook eindige magneetvelden in rekening gebracht kunnen worden. Daartoe introduceren we de vectorpotentiaal A die gedefinieerd wordt door E = φ A t, B = A,

Deeltje in een elektromagnetisch veld 16 zodat de Lorentzkracht in uitdrukking (1.17) geschreven kan worden als F i = d dt ( ea i) ( eφ e x ) A v. i De Lorentzkracht volgt dus uit (1.14) met U = eφ e A v. De Lagrangiaan wordt dan L = T U = 1 2 m v v + e A( r, t) v eφ( r, t), zodat de canonieke impuls p = L v = m v + e A. Merk op dat een deeltje een eindige snelheid kan hebben terwijl de canonieke impuls gelijk is aan nul! Bovendien is de canonieke impuls afhankelijk van de keuze van de vectorpotentiaal (zie hieronder) zodat de canonieke impuls niet ijkinvariant is en dus niet fysisch waarneembaar. De kinematische impuls m v is natuurlijk wel fysisch en dus ijkinvariant. De Hamiltoniaan wordt gegeven door H = p v L = 1 ( p ea) 2m 2 + eφ = T + V. Het is interessant om op te merken dat deze Lagrangiaan niet uniek bepaald is, terwijl de bewegingsvergelijkingen dat natuurlijk wel zijn. Een ijktransformatie transformeert de potentialen als volgt: φ φ χ t A A + χ, met χ = χ( r, t) een scalaire functie. De fysische grootheden E en B veranderen niet onder deze transformatie, terwijl de Lagrangiaan transformeert als L L + d dt (eχ). Zoals reeds vermeld zijn Lagrangianen fysisch equivalent indien ze verschillen op een totale tijdsafgeleide omdat ze dezelfde bewegingsvergelijkingen opleveren.

2. Hamiltoniaanse mechanica In Lagrange s formalisme bepaalt de Langrangiaan de dynamica van het systeem via de partiële afgeleiden naar de variabelen q k en q k. In Hamiltons formalisme wordt een verandering van de variabelen uitgevoerd, van de set van veralgemeende coördinaten en snelheden (q, q) naar de set van coördinaten en canonieke momenta (q, p) met q {q 1,..., q n } en p {p 1,..., p n }. Dit gaat gepaard met een Legendre transformatie die de Lagrangiaan transformeert in de Hamiltoniaan: H = k p k q k L, p k = L q k. Om de bewegingsvergelijkingen van Lagrange te herformuleren in termen van de partiële afgeleiden van H, beschouwen we eerst de differentiaal dh = k (dp k q k + p k d q k ) dl = k q k dp k k L q k dq k L t dt. Het is belangrijk om op te merken dat de differentiaal d q k niet meer voorkomt in de laatste uitdrukking zodat de nieuwe onafhankelijke variabelen inderdaad de (q, p) zijn. Uit bovenstaande uitdrukking volgt onmiddellijk q k = H p k, H = L, q k q k H t = L t. Samen met de definitie van de canonieke impuls bekomen we de bewegingsvergelijkingen van Hamilton: q k = H p k, ṗ k = H q k. 2.1. Variatierekening en het principe van Hamilton Stel dat q 1 en q 2 twee configuraties zijn van het systeem op verschillende tijden. Beschouw nu alle mogelijke paden tussen q(t 1 ) = q 1 en q(t 2 ) = q 2. Wat karakteriseert het dynamische pad (d.i. het pad dat voldoet aan de bewegingsvergelijkingen) in vergelijking met de andere continue paden?

De faseruimte 18 Hamilton formuleerde een antwoord op deze vraag in de vorm van een variationeel probleem. Het pad dat de dynamische evolutie beschrijft én dat voldoet aan de randvoorwaarden, is het pad waarvoor de actie-integraal S[q(t)] = t2 t 1 dt L(q(t), q(t), t), stationair is, d.i. het pad waarvoor de variatie van de actie δs verdwijnt. Daartoe berekenen we δs onder een variatie van het pad q(t) q(t) + δq(t) dat voldoet aan de randvoorwaarden δq(t 1 ) = δq(t 2 ) = 0. We vinden t2 δs = S[q(t) + δq(t)] S[q(t)] = dt δl(q(t), q(t), t) t 1 t2 = dt ( L δq k + L ) δ q k t 1 q k q k k t2 = dt [ L δq k + d ( ) L δq k d ( ) ] L δq k t 1 q k dt q k dt q k k t2 = dt [ L d ( )] [ ] t2 L L δq k + δq k t 1 q k dt q k q k k k t 1 t2 = dt [ L d ( )] L δq k. t 1 q k dt q k k Hieruit volgt dat de actie stationair is als het pad voldoet aan de bewegingsvergelijkingen aangezien de integraal moet verdwijnen voor elke variatie δq die aan de randvoorwaarden voldoet. Dit is is meestal een (lokaal) minimum en soms een zadelpunt, maar nooit een maximum. Er bestaat namelijk steeds een sneller pad door veel kleine fluctuaties toe te voegen met relatief meer kinetische energie en dus een grotere actie. 2.2. De faseruimte Een manier om de oplossing van de bewegingsvergelijking voor te stellen wordt getoond in Fig. 2.1a. Het toont de tijdsevolutie van de n coördinaten q(t) voor een bepaald pad in de n-dimensionale configuratieruimte. De verschillende paden worden onderscheiden door andere randvoorwaarden. In het Lagrange formalise worden de snelheiden q(t) ook beschouwd als onafhankelijke variabelen vooraleer de Lagrange vergelijkingen opgelost zijn. De configuratie van het systeem q(t) op een bepaald tijdstip bepaalt a priori namelijk niet de snelheid op datzelfde tijdstip. Echter in Hamiltons formalisme worden de coördinaten en de momenta op gelijke voet behandeld zodat men een pad beter kan voorstellen in de 2d-dimensionale faseruimte, zoals getoond in Fig. 2.1b. Aangezien elk punt in de faseruimte bepaald wordt door 2d getallen, en elk dynamisch pad uniek bepaald wordt door 2d beginvoorwaarden,

Theorema van Liouville 19 q 2 p (q(t), p(t)) q(t) q 1 q (a) (b) Figuur 2.1.: Schets van de configuratieruimte (a) en de faseruimte (b). gaat er door elk punt in de faseruimte juist één pad. Dit betekent dat verschillende dynamische paden elkaar niet kunnen snijden in de faseruimte. In Figuur 2.2 wordt het faseportret van de eenvoudige slinger getoond (mathematische slinger). 2.3. Theorema van Liouville In de praktijk is het meestal onmogelijk om de beginvoorwaarden voor ieder deeltje van grote en/of complex systemen te bepalen, laat staan om de bewegingsvergelijkingen op te lossen. We moeten een andere aanpak gebruiken om de dynamica van zulke systemen te bestuderen, nl. de statistische mechanica. De Hamiltoniaanformulering is ideaal voor de statistische studie van complexe systemen. Het theorema van Liouville is een voorbeeld hiervan. Voor een groot aantal deeltjes (bv. gasmoleculen) is het onmogelijk om een specifiek punt in de faseruimte aan te duiden dat correspondeert met de toestand van het systeem. We kunnen echter wel de faseruimte vullen met punten die de mogelijke toestanden van het systeem voorstellen (een deel van de ruimte kunnen we uitsluiten, bv. omwille van behoud van energie). In plaats van het traject van een welbepaald systeem te zoeken, bestuderen we een ensemble van equivalente systemen. We onderstellen nu dat deze punten in de faseruimte voldoende talrijk zijn, zodat we een dichtheid ρ in de faseruimte kunnen definiëren; de volume-elementen die ρ definiëren moeten voldoende groot zijn zodat ρ op een continue manier varieert. Het aantal systemen ( punten ) in een volume dv is dan gegeven door ρdv met dv = dq 1 dq 2... dq N dp 1 dp 2... dp N. Beschouw nu een infinitesimaal volume-element in het (q k, p k )-vlak van de faseruimte wat getoond wordt in Figuur 2.3. Het aantal punten dat van buiten dit volume-element

Theorema van Liouville 20 θ 3 2 1 0 1 2 3 4 2 0 2 4 Figuur 2.2.: Het faseportret van de eenvoudige slinger. De stroom toont hoe het systeem evolueert. Merk op dat evenwichtspunten (θ = 0, π en θ = 0) overeenkomen met fixpunten van de stroom. De volle (rode) kromme noemt men de separatrix; de scheidingslijn tussen slingeren en roteren. θ beweegt tot in het volume-element via de linkerkant per tijdseenheid, wordt gegeven door ρ q k dp k, en via de onderkant door ρṗ k dq k. Het aantal punten dat uit het klein volume-element stroomt wordt dan (Taylor) [ ρ q k + ] [ (ρ q k )dq k dp k + ρṗ k + ] (ρṗ k )dp k dq k, q k p k zodat de totale verandering van de dichtheid in het volume-element dq k dp k per tijdseenheid gegeven wordt door [ ρ t dq kdp k = (ρ q k ) + ] (ρṗ k ) dq k dp k. q k p k Sommatie over alle k levert een continuïteitsvergelijking: ρ t + [ ρ q k + ρ q k + ρ ṗ k + ρ ṗ ] k q k q k p k p k k zodat het totaal aantal systemen in de faseruimte behouden is. Stel nu dat de dynamica van elk systeem beschreven wordt door de Hamiltonvergelijkingen. Invullen van q k / q k = ṗ k / p k in de continuïteitsvergelijking geeft ρ t + k [ ρ q k q k + ρ p k ṗ k ] = dρ dt = 0. = 0,

Poisson haakjes 21 (q k, p k + dp k ) (q k + dq k, p k + dp k ) (q k, p k ) (q k + dq k, p k ) Figuur 2.3.: De stroom door een infinitesimaal volume-element in het (q k, p k )-vlak van de faseruimte. Dit is het theorema van Liouville. Het stelt dat de dichtheid aan punten (mogelijke toestand van het systeem) in de faseruimte van een systeem van deeltjes constant blijft gedurende de beweging, tenminste als het systeem voldoet aan de vergelijkingen van Hamilton. In de statistische mechanica kunnen we dus gebruik maken van de Hamiltoniaanse dynamica om ensembles te bestuderen. 2.4. Poisson haakjes In het algemeen zijn we geïnteresseerd in het gedrag van functies van p en q, als functie van de tijd. Laten we een functie f(q, p, t) volgen in de tijd: df dt = ( f q k + f ) ṗ k + f q k p k t k = ( f H f ) H + f q k p k p k q k t. k Voor de combinatie tussen de haken in het rechterlid introduceert men de volgende notatie, het zogenaamde Poisson haakje van f en g: {f, g} ( f g f ) g. q k p k p k q k k Met deze notatie vinden we df f = {f, H} + dt t, zodat het theorema van Liouville geschreven kan worden als ρ t + {ρ, H} = 0.

Canonieke transformaties 22 We zien ook dat als f niet expliciet van de tijd afhangt, f een behouden grootheid is als het Poisson haakje van f met de Hamiltoniaan verdwijnt, dus als {f, H} = 0. Aan de hand van Poisson haakjes kunnen we dus op een eenvoudige manier testen of een grootheid behouden is. Daarnaast kunnen we de Hamilton vergelijkingen op een elegante en symmetrische manier opschrijven: q k = {q k, H}, ṗ k = {p k, H}. Het Poisson haakje voldoet aan volgende eigenschappen: 1. Antisymmetrie: {f, g} = {g, f}. 2. Lineariteit: {f + g, h} = {f, h} + {g, h} en {αf, g} = α{f, g} voor α R. 3. Leibniz regel: {fg, h} = f{g, h} + {f, h}g. 4. Jacobi regel: {f, {g, h}} + {g, {h, j}} + {h, {f, g}} = 0. Deze eigenschappen komen overeen met die van de commutator [f, g] uit de kwantummechanica (en dit is geen toeval!). De relatie met de kwantummechanica wordt nog suggestiever als we de q k en p k zelf als functie nemen: {q k, q l } = {p k, p l } = 0, {q k, p l } = δ kl. Bovendien geldt er ook voor de componenten van het draaimoment l = r p, {l x, l y } = l z. Zoals vermeld kunnen de Poisson haakjes gebruikt worden om te testen of een grootheid behouden is. Daarnaast kunnen we er ook nieuwe behoudswetten mee genereren. Stel dat f(q, p) en g(q, p) behouden grootheden zijn. Dan geldt er, gebruikmakend van de Jacobi identiteit, {{f, g}, H} = {f, {g, H} } {g, {f, H} } = 0, } {{ } } {{ } 0 0 zodat dan {f, g} ook een behouden grootheid is. 2.5. Canonieke transformaties We hebben reeds gezien dat de Lagrange vergelijkingen invariant zijn onder transfomaties van het type q k Q k (q 1,..., q N ) (zolang de transformatie inverteerbaar is). Nu we

Canonieke transformaties 23 canonieke impulsen en coördinaten op gelijke voet behandelen, is de vraag of we ook algemenere transformaties kunnen toelaten: q k Q k (q 1,..., q N, p 1,..., p N ) p k P k (q 1,..., q N, p 1,..., p N ). (2.1) Met een geschikte transformatie kunnen we misschien het probleem vereenvoudigen. Bijvoorbeeld, zodra een bepaalde getransformeerde coördinaat niet meer voorkomt in de Hamiltoniaan, is de bijhorende canonieke impuls een constante van beweging. Als we er in slagen om alle coördinaten q k weg te transformeren uit de Hamiltoniaan, dan zijn de getransformeerde impulsen allemaal constanten van beweging, P k = α k. De getransformeerde Hamiltoniaan K is dan alleen een functie van constanten, zodat de veralgemeende snelheden ook constanten zijn: Q k = K P k = K(α 1,..., α N ) α k = β k. Bij deze redenering zijn we er wel van uitgegaan dat ook na de transformatie nog steeds de vergelijkingen van Hamilton gelden: Q k = K(Q 1,..., Q N, P 1,..., P N ) P k P k = K(Q 1,..., Q N, P 1,..., P N ). Q k Omdat bij een transformatie deze canonieke vorm van de bewegingsvergelijkingen behouden moet blijven, spreken we van een canonieke transformatie. Wanneer zijn de transformaties (2.1) nu canoniek? We bepalen hiervoor nu de de voorwaarden. De tijdsevolutie van Q k en P k wordt gegeven door Q k = {Q k, H} q,p, P k = {P k, H} q,p, (2.2) waar we voor de duidelijkheid indices q, p hebben toegevoegd aan de Poisson haakjes om aan te geven dat we afleiden naar de q k en p k. Als we nu de vergelijkingen in (2.2) als de Hamiltonvergelijkingen willen identificeren, dan moeten de rechterleden ook gelijk zijn aan de Poisson haakjes in termen van de Q k en P k : met K de getransformeerde Hamiltoniaan {Q k, H} q,p = {Q k, K} Q,P {P k, H} q,p = {P k, K} Q,P. K(Q 1,..., Q N, P 1,..., P N ) = H(q 1 (Q 1,..., Q N, P 1,..., P N ),..., q N (Q 1,..., Q N, P 1,..., P N ), p 1 (Q 1,..., Q N, P 1,..., P N ),..., p N (Q 1,..., Q N, P 1,..., P N )).

Genererende functie 24 Dit betekent dat we transformaties zoeken die de eigenschap hebben dat ze het Poisson haakje invariant laten: {f, g} q,p = {f, g} Q,P. Met de kettingregel kunnen we aantonen dat hieraan voldaan is als {Q k, Q l } q,p = 0 {q k, q l } Q,P = 0 {Q k, P l } q,p = δ kl of analoog {q k, p l } Q,P = δ kl {P k, P l } q,p = 0 {p k, p l } Q,P = 0 2.6. Genererende functie Om nu de expliciete uitdrukking voor een canonieke transformatie te bekomen kunnen we gebruik maken van een genererende functie. Als de transformatie canoniek is, moet er gelden dat [ ] [ ] p k dq k Hdt P k dq k Kdt = df, k met df een totale differentiaal. Dit volgt uit het variatieprincipe van Hamilton: t2 [ ] t2 δ Ldt = δ p k q k H dt = 0. t 1 t 1 De functie F noemt men de genererende functie van de transformatie omdat, zoals we zullen zien, eens F gegeven is, de transformaties (2.1) bepaald zijn. Er zijn vier mogelijke vormen voor F. Om de transformatie vast te leggen tussen beide sets van canonieke variabelen, moet F afhangen van zowel de oude als de nieuwe variabelen. Daarom is F een functie van 4N variabelen plus de tijd. Echter enkel 2N ervan zijn onafhankelijk, omdat de transformatie tussen beide sets juist 2N voorwaarden opleggen. Daardoor zijn de volgende vier vormen voor F mogelijk, k k F = F 1 (q, Q, t), F = q p + F 3 (p, Q, t), F = Q P + F 2 (q, P, t), F = q p Q P + F 4 (p, P, t). De functies F 1, F 2, F 3, F 4 die allen dezelfde canonieke transformatie genereren, zijn dus met elkaar verbonden via een Legendre transformatie. Elk van deze functies heeft 2N onafhankelijke variabelen. Laten we nu de overeenkomstige canonieke momenta bepalen, bijvoorbeeld voor het eerste geval F 1. Uit (2.6) volgt [ ] [ ] p k q k H P k Q k K = df 1(q, Q, t) k k = k dt [ F1 q k + F 1 Q k q k Q k ] + F 1 t.

Genererende functie 25 Hieruit kunnen we de vergelijkingen voor p k en P k bepalen: p k = F 1(q, Q, t) q k, P k = F 1(q, Q, t) Q k. Het verband tussen beide Hamiltonianen wordt uiteindelijk K = H + F 1 t. Gelijkaardige uitdrukkingen voor de afhankelijke variabelen worden bekomen voor de functies F 2, F 3 en F 4. Steeds zal bovenstaande relatie tussen beide Hamiltonianen gelden. Bijvoorbeeld voor de genererende functie F 2 (q, P, t) geldt er p k = F 2(q, P, t) q k, Q k = F 2(q, P, t) P k, K = H + F 2 t. Eenvoudige voorbeelden Met de keuze F 2 (q, P, t) = k q kp k genereren we de eenheidstransformatie: p k = F 2 q k = P k, Q k = F 2 P k = q k. De genererende functie F 1 (q, Q, t) = k q kq k levert p k = F 1 q k = Q k, P k = F 1 Q k = q k. Afgezien van het extra minteken, zien we dat de rol van de coördinaten en de momenta omgekeerd worden door deze transformatie. Dit voorbeeld toont wederom aan dat de coördinaten en de impulsen equivalente variabelen zijn in het Hamilton formalisme. Via meer algemene canonieke transformaties kunnen we de faseruimte dus naar wens transformeren, in de hoop om zo getransformeerde bewegingsvergelijkingen te vinden die eenvoudiger op te lossen zijn. De harmonische oscillator De Hamiltoniaan voor dit probleem is Via de genererende functie H(q, p) = 1 2 ( p 2 + ω 2 q 2). F 1 (q, Q) = 1 2 ωq2 cot 2πQ.

Genererende functie 26 verkrijgen we volgende canonieke transformatie: p = F 1 q = ωq cot 2πQ, P = F 1 Q = πωq2 sin 2 2πQ. Oplossen van deze impliciete transformatie-vergelijkingen voor de expliciete (inverse) transformatie-vergelijkingen levert ωp P p = cos 2πQ, q = sin 2πQ. (2.3) π πω Substitutie in de oorspronkelijke Hamiltoniaan levert de nieuwe Hamiltoniaan K = ω 2π P. Omdat Q nu een cyclische coördinaat is, is P een constante van beweging. De bewegingsvergelijking van Hamilton wordt Q = ω 2π, met oplossing Q = ω 2π t + η. Invullen in (2.3) levert de gekende oplossing van de bewegingsvergelijkingen voor de harmonische oscillator op. Infinitesimale canonieke transformaties Kies F 2 (q, P, t) = k q kp k + ɛg(q, P ). Deze generator is bijna de eenheidstransformatie als ɛ infinitesimaal klein is. De transformatievergelijkingen leveren p k = P k + ɛ G q k, Q k = q k + ɛ G P k. Stel nu ɛ = dt, een infinitesimaal tijdinterval. Dan bekomen we voor Q k en P k Q k = q k + dt G P k, P k = p k dt G q k. Als G(q, P ) = H(q, P ) en aangezien (P, Q) (q, p) voor dt 0, zien we dat we opnieuw de bewegingsvergelijking van Hamilton gereproduceerd hebben. We kunnen de Hamiltoniaan dus beschouwen als generator van de canonieke transformatie die (q, p) t transformeert in (q, p) t+dt, en dus de generator van de tijdsevolutie.

De Hamilton-Jacobi vergelijking 27 2.7. De Hamilton-Jacobi vergelijking Laten we nu op zoek gaan naar de genererende functie die ons de eenvoudigste Hamiltoniaan oplevert, namelijk K(Q, P, t) = 0 = H(q, p, t) + S t. In dit geval zijn al de Q k en P k constant. Noemen we S = F 2 (q, P, t) de genererende functie die hiervoor zorgt, dan is p k = S/ q k en Q k = S/ P k. De vergelijking die we moeten oplossen is dus ( H q, S ) q, t + S t = 0. Dit is de Hamilton-Jacobi vergelijking. De functie S noemt men de principiële functie van Hamilton, en bevat alle informatie over de tijdsevolutie van het systeem. De totale tijdsafgeleide van S wordt gegeven door ds dt = k S q k + S q k t = k p k q k H = L. De genererende functie S is dus de actie S = Ldt. 2.8. Verband met kwantummechanica Hier gaan we de klassieke limiet van de kwantummechanica bestuderen 1. Deze behandeling is geldig als de actie groot is ten opzichte van de constante van Planck, d.i. de limiet /S 0. Laten we starten van de Schrödingervergelijking i ψ t = 2 2m 2 ψ + V ( r, t)ψ. De golffunctie is een complexe grootheid die we kunnen schrijven als ψ( r, t) = [ ] i ρ( r, t) exp S( r, t), met ρ en S reëel, en waar ρ > 0 de waarschijnlijkheidsdichtheid is. Invullen in de Schrödingervergelijking levert volgende vergelijking, ( ρ i + i ) S ρ = t t ( 2 2 ρ + 2i 2m ρ S 1 ρ ( S) 2 + i ) ρ 2 S + V ρ. 2 1 Klassieke mechanica komt tevoorschijn op macroscopische schaal door een samenzwering van microscopisch kwantumgedrag, m.a.w. de klassieke mechanica is emergent.

Verband met kwantummechanica 28 Veronderstel nu dat beschouwd kan worden als een kleine grootheid. De fysische betekenis van deze benadering zal later duidelijk worden. Laten we dus aannemen dat 2 S S 2, enzovoort. Zo houden we enkel de termen over die niet bevatten. Dit geeft een niet-lineaire partiële differentiaalvergelijking voor S: 1 2m ( S)2 + V ( r ) + S t = 0. Merk op dat deze vergelijking identiek is aan de Hamilton-Jacobi vergelijking waar S gegeven wordt door de actie. SAKURAI p.103 Geldigheid van de klassieke limiet We zullen nu aantonen dat de (semi-)klassieke limiet van de kwantummechanica geldig is als de potentiaal weinig varieert over verschillende de Broglie golflengtes λ = /p.

3. Trillingen rond evenwicht In een mechanisch systeem komt periodieke beweging tot stand door een herstellende kracht die arbeid verricht op het systeem. Positieve arbeid zet kinetische energie om naar potentiële energie en negatieve arbeid verandert de potentiële energie terug naar kinetische energie. Een oscillator is een systeem met periodieke beweging. Als de kracht lineair toeneemt met de uitwijking, spreken we van een lineaire of harmonische oscillator; de frequentie van de trilling is dan onafhankelijk van de amplitude. In een echt mechanisch systeem is er wrijving aanwezig waardoor we een wrijvingskracht moeten introduceren; zulke oscillatoren noemen we gedempt. Als we de oscillator aandrijven met een externe kracht dan spreken we van een gedreven oscillator. Het is mogelijk om de respons van een lineaire oscillator te berekenen voor een willekeurige externe kracht als deze kracht een gekende functie van de tijd is, onafhankelijk van de oscillator. De drijfkracht verricht arbeid waardoor er energie wordt opgeslagen in de oscillator. Als de drijffrequentie in de buurt komt van de natuurlijke frequentie van de oscillator, kan de amplitude van de oscillaties sterk toenemen; dit is resonantie. De mogelijkheid van een oscillator om energie op te slaan is echter gelimiteerd omdat er constant energie verwijderd wordt door wrijving. Als de herstellende kracht een niet-lineair deel bevat, dan spreken we van een anharmonische oscillator. In dit geval zal de periode afhankelijk zijn van de amplitude. Ook is het meestal niet meer mogelijk om de bewegingsvergelijking analytisch op te lossen. We zullen daarom gebruik maken van storingsrekening en Fourieranalyse om deze problemen te bestuderen. Voor de eenvoud beschouwen we enkel systemen met één vrijheidsgraad. 3.1. Stabiel of onstabiel evenwicht Een mechanisch systeem dat in rust is en dat in rust blijft, is in evenwicht. De evenwichtspunten van een systeem worden bepaald door te eisen dat alle veralgemeende krachten verdwijnen. Voor een conservatief systeem zijn dit alle configuraties waarvoor de potentiële energie V (q 1,..., q N ) stationair is. Een evenwichtspunt is dus een punt in de configuratieruimte waar alle partiële afgeleiden van de potentiële energie naar de coördinaten verdwijnen: δv = 0 V q 1 = = V q N = 0.

Stabiel of onstabiel evenwicht 30 Voorbeeld: de slinger Als voorbeeld beschouwen we de mathematische slinger. Er zijn twee punten waar de koppel te wijten aan de zwaartekracht gelijk is aan nul. De Lagrangiaan van de slinger wordt gegeven door L( θ, θ) = 1 2 ml2 θ2 mgl (1 cos θ), zodat de veralgemeende kracht (de koppel in dit geval) F θ = V = mgl sin θ, θ met evenwichtspunten θ = 0 en θ = π. De slinger blijft bewegingsloos als deze in rust geplaatst wordt in een van deze twee punten. De hoek θ = 0 is een stabiel evenwicht omdat het systeem na een kleine uitwijking oscillerend terugkeert naar de evenwichtspositie. Anderzijds is het punt θ = π een onstabiel evenwicht aangezien elke uitwijking zeer snel weg van het evenwicht wordt uitvergroot. Stabiel evenwicht In de buurt van θ = 0 kunnen we de cosinus expanderen zodat ( ) 2 L mgl l 2 g θ θ 2. In dimensieloze tijd τ = g l t en zonder de constante factor, vinden we L = 1 2 zodat de bewegingsvergelijking gegeven wordt door θ θ = 0, ( θ2 θ 2 ), (3.1) met algemene oplossing θ(t) = Ae it + Be it. Onstabiel evenwicht Analoog bekomen we rond θ = π met θ = θ π: L = 1 [ ( θ) 2 ] 2 + ( θ) 2, (3.2) zodat de bewegingsvergelijking gegeven wordt door θ + θ = 0, met algemene oplossing θ(t) = π + Ae t + Be t. Het belangrijkste verschil tussen stabiel evenwicht (3.1) en onstabiel evenwicht (3.2) is het teken van de term die kwadratisch is in de uitwijking. Deze term bepaalt namelijk of de kracht herstellend of uiteendrijvend werkt.