Exacte waarden bij sinus en cosinus
|
|
|
- Johan Brouwer
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Exacte waaren ij sinus en cosinus In enkele gevallen kun je vergelijkingen met sinus en cosinus exact oplossen. Welke gevallen zijn at? Hieroven zie je grafieken van f(x) = sin x en g(x) = cos x. a Hoe groot is e perioe van eie grafieken? Geef e exacte coörinaten van e snijpunten van e grafieken van f met e x-as op het interval [, ]. c Geef e exacte coörinaten van e toppen van e grafiek van g op het interval [, ]. Hoe groot is f(7)? En hoe groot is g(7)? e Neem over en vul in. sin 0 =... sin =... cos =... cos 9 =... sin =... sin 0 =... cos =... cos =... Hiernaast staat een gelijkzijige riehoek ABC met zijen. Ook is hoogtelijn AD geteken. a Leg uit met e riehoek at cos0 =. Bereken e exacte lengte van CD. c Laat zien at sin 0 =. Welke exacte waare heeft sin 0? En cos 0? In PQR hiernaast is P = 4 en Q = 90. Verer is PQ =. a Leg uit waarom QR =. Bereken e exacte lengte van PR. c Toon met ehulp van eze riehoek aan at sin 4 =. Welke exacte waare heeft cos 4? Voor enkele waaren van x moet je e waare van sin x en cos x exact weten. Je kunt aarij geruik maken van e grafieken van f(x) = sin x en g(x) = cos x en van e ovenstaane riehoeken. In e tael hiernaast vin je over welke waaren het gaat. aantal graen aantal raialen 0 4 sinus 0 cosinus 0
2 4 Geruik e grafieken op e vorige lazije. Geef van e volgene vergelijkingen e exacte oplossingen op het interval [, ]. sin x = a sin x = c cos x = cos x = 0 sin x = e f x = cos g sin x = sin x = h i x = cos Hiernaast staat e grafiek van f(x) = cos x op het interval [, ]. In eze opracht ga je e vergelijking cosx = op het interval [, ] oplossen. a Voor één oplossing gelt x =. Leg at uit. Eén oplossing is x = :=. 8 Welke oplossing volgt an uit e symmetrie in e y-as? c Welke perioe heeft e grafiek van f? Geruik e perioe om e overige vier oplossingen te erekenen. Hoe los je e vergelijking f(x) = p met f een goniometrische functie en p een constante, exact op een gegeven interval op? Geruik e tael met exacte waaren en zonoig e grafiek om één oplossing te vinen. Stel e perioe van e functie vast. Schets e grafiek van f op het gegeven interval en geef e gevonen oplossing in e schets aan. 4 Geruik e perioe en e symmetrie van e grafiek om e overige oplossingen te vinen. Vooreel Los 4+ sinx = op het interval [, ] exact op. Oplossing 4+ sinx = sinx = sin x = Met ehulp van e tael en e grafiek: één oplossing is x = us x = De perioe is : =. Zie e schets hiernaast. 4 De oplossingen zijn: x = of x = 7 of x = of x = of 7 x = of x =
3 Los e volgene vergelijkingen op het gegeven interval exact op. a sinx = op [, ] cos x = op [0, ] 7 Gegeven is e functie f( x) = + sin( x+ ). a Teken e grafiek op het interval [, ]. Welke perioe heeft e grafiek van f? c Bereken met ehulp van e perioe en e horizontale verschuiving ij welke waaren van x e symmetrieassen liggen. Los e vergelijking + sin( x + ) = op [, ] exact op. 8 Hiernaast zie je op het interval [, ] e grafieken van e functies f ( x) = x sinx en g( x) = x a Bereken f ( ) exact. Bereken f ( ) exact. c Om e coörinaten van e snijpunten van eie grafieken te erekenen, moet je e vergelijking x sinx= x oplossen. Deze vergelijking is gelijkwaarig met x = 0 of sin x =. Leg at uit. Los e vergelijking x sinx= x exact op. e Geef e exacte coörinaten van e vijf snijpunten ie hiernaast te zien zijn. 9 Los e volgene vergelijkingen op het gegeven interval exact op. a 4x cosx= x op [0, ] x sinx= x op [, ] c x cosx+ x= 0 op [9, ] 0 De grafiek van functie f ( x) = x sinx uit opracht 8 lijkt een top te heen ij x =. Als e grafiek van f een top heeft ij x =, an moet f () = 0. a Geruik e prouctregel om e afgeleie van f te erekenen. Bereken f () en laat zien at f () > 0. c Ligt e genoeme top links of rechts van x =? Ga na at e exacte waare van e helling van e grafiek van f in het punt (, ) gelijk is aan +. e Bereken e exacte waare van e helling van e grafiek,. van f in het punt ( 4 4 )
4 Antwooren a (,0), (0,0), (, 0),(, 0), (, 0) c (, ), (0, ), (, ), (, ), (, ) f(7) = 0 en g(7) = e 0; ; 0; ; ; 0; ; AD CD = AD ; CD = CD sin A = = =, sin 0 = AD D = 0 = 0 ; sin D = = a cos A = = us cos 0 = c CD cos D = = = a R = P us PQ = QR PR = PQ + QR ; PR = + = ; PR = c RQ sin P = = = = = PR PQ cos P = = = = = PR x= of x = of x = of x = 4a x= x = x = x= c x= of x = of x= of x = x= of x = of x= of x = e x= of x= of x= of x= f x= of x = of x= of x = g x = of x = h x= of x = of x = of x = i x= of x = of x= of x = a = cos x = 8 of of of c De perioe is = x= + = en x= = x = + =, x = = a x = x = x = x = x = 7, x = x =,,,, 7a - De perioe is c x =, x = en x = x =, x =, x = f ( ) = sin = 8a f ( ) = sin = c x sinx x = 0; x(sinx ) = 0 x = 0ofsinx = x =, x = x = 0, x = en x =. e (, ), (, ), (0, 0), (, ) en(, ) 9a x = 0, x =, x =. 4 4 x= x = x= x = x= c x = 9, x= 0, x=,, 0,, 0a f ( x) = sinx+ x cosx f () = sin + 4 cos 0,4 c f () > 0, e grafiek stijgt, e top ligt us rechts van x =. f ( ) = + = + e f = = ( ) + 4
5 Uitwerkingen a (,0), (0,0), (, 0),(, 0) en (, 0) c (, ), (0, ), (, ), (, ) en (, ) f(7) = 0 en g(7) = e sin 0 = 0 sin = cos =0 cos9= sin = sin 0 = 0 cos = cos = a AD = AB = = AD cos A = = us cos 0 = CD = AD ; CD = = ; CD = CD sin us sin 0 AD D = 0 = 0 ; sin D = = c A = = = = CD cos D = = = a R = = 4 us P = R en PQ = QR PR = PQ + QR ; PR = + = ; PR = RQ sin PR c P = = = = = us sin 4 =. PQ cos PR P = = = = = x= of x = of x = of x = 4a x= of x = of x = of x= x= of x = of x= of x = c x= of x = of x= of x = x= of x= of x= of x= e x= of x = of x= of x = f x = of x = g x= of x = of x = of x = h x= of x = of x= of x = i
6 a cos = us x = De y-as is symmetrieas us een anere oplossing is 8 c De perioe is = x = = = ; x = = = x = + = + = ; x = + = + = a x = x = x = 9 sin ; ; De perioe is :=. De e oplossing is us x = = 9 9 Bij e oplossingen mag je een veelvou van optellen of aftrekken. De anere oplossingen zijn: 7 x = + = en x = = x= + = en x = = cos x = ; x = ; x = 4 De perioe is 4. De e oplossing is x = 4 ; x =. x = is e enige oplossing innen het omein. 7a De perioe is c Een symmetrieas van y = sinx ligt ij x = Een symmetrieas van y = sin( x+ ) ligt ij x = + = De anere symmetrieassen zijn x = = en x = + = sin( x+ ) = ; x+ = ; x = De symmetrieas ligt ij x =, e afstan van e e oplossing tot e symmetrieas is = De e oplossing is x = + = De e oplossing is x = + =
7 f ( ) = sin = = 8a f ( ) = sin = = c x sinx x = 0 x(sin x ) = 0 x = 0ofsinx = x = 0ofsinx = ; x = 0 of sin x = x = 0of x = De e oplossing is x = =. Bij e oplossingen x = en x = mag je een veelvou van optellen of aftrekken. De oplossingen zijn x =, x =, x = 0, x = en x =. (, ), (, ), (0, 0), (, ) en(, ) e 9a 4x cosx x = 0 x(4cos x ) = 0 x = 0of cosx = x = 0, x =, x =. 4 4 x sinx x = 0; x (sinx ) = 0 x = 0of sinx = sin x = ; x = ; x = De perioe is, e e oplossing is = Bij e oplossingen x = en x = mag je een veelvou van optellen of aftrekken. Dit geeft innen het omein e oplossingen: x=, x =, x= 0, x =, x= c (cos x x+ ) = 0; x = 0 of cosx = x = 0of x = of x = = Bij e oplossingen x = en x = mag je een veelvou van optellen. Dit geeft innen het omein e oplossingen: x = 9, x = 0, x = 0a f ( x) = sinx+ x cosx f () = sin + 4 cos 0,4 c f () > 0, e grafiek stijgt, e top ligt us rechts van x =. f ( ) = sin + cos f ( ) = + = + e f = ( ) sin cos f ( ) = + =
8 8
Exacte waarden bij sinus en cosinus
acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie
Blok 3 - Vaardigheden
Blok - Vaarigheen lazije 6 a Je moet e vergelijking ( )( ) oplossen. Je ziet nu meteen wat e oplossingen zijn. ( )( ) of of Je moet nu e vergelijking ( )( ) oplossen. e De methoe van onereel gelt alleen
1.1 Differentiëren, geknipt voor jou
1.1 Differentiëren, geknipt voor jou Je hebt leren omgaan met hellings of, wat hetzelfde is: s. We frissen de begrippen en rekenmethoden die hierbij horen nu wat op. Stel dat je met een (gewone) schaar
6.1 Eenheidscirkel en radiaal [1]
6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde
7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden
7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2
d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.
Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat
Noordhoff Uitgevers bv
V-1a / V-2a e Voorkennis Zie e figuur hieroner. Zie e figuur hieroner. De lijn n en het punt P kunnen ook aan e anere kant van lijn l liggen. Zie e figuur hieroner. P Zie e figuur hieroven. In vierhoek
Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde
Oppervlkte vn riehoeken Verkennen Opgve 1 Je ziet hier twee riehoeken op een m-rooster. Beie riehoeken zijn omgeven oor eenzelfe rehthoek. nme: Imges/hv-me7-e1-t01.jpg file: Imges/hv-me7-e1-t01.jpg Hoeveel
Hoofdstuk 4 - Integreren
Hoofstuk - Integreren Moerne wiskune 9e eitie vwo B eel Voorkennis: Oppervlakten lazije 98 V-a BC Oppervlakte ABC Driehoek ABC is gelijkvormig met riehoek ADB us AC AB waaruit volgt at BC BD us BD BD c
Basisvormen (algebraische denkeenheden) van algebraische expressies/functies
Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met
Hoofdstuk 2 - Afstanden
Hoofstuk - fstanen. e afstan vanuit een punt lazije a riehoek R is een rehthoekige riehoek met R 5 en R, us gelt R + R 5 + 9 9 59, en R liggen eien in het vlakeel. R an is R R + 5 + 8 89. r gelt at R met
Noordhoff Uitgevers bv
V-1a / 52 V-2a e Voorkennis Zie e figuur hieroner. Zie e figuur hieroner. De lijn n en het punt P kunnen ook aan e anere kant van lijn l liggen. Zie e figuur hieroner. P m l Zie e figuur hieroven. In vierhoek
Hoofdstuk 6 Goniometrie
Opstap Tangens O-1a EF!1044 32,3 m zije kwaraat zije kwaraat KL 30 m 900 ST 20 m 400 LM 15 m 225 TW? 225 KM? 1125 SW 25 m 625 KM!1125 33,5 m TW!225 15 m O-2a Driehoek PQR is een rehthoekige riehoek omat
Hoofdstuk 1 - Lijnen en cirkels
Lijn en vlak lazije a Die kun je aflezen van e oëffiiënten van x en y Dus is een normaalvetor 7 x invullen in e vergelijking van l geeft y en aarmee vin je (, ) y invullen in e vergelijking van l geeft
P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).
Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie
Hoofdstuk 6 - Differentiëren
Havo D eel Uitwerkingen Moerne wiskune Hoofstuk - Differentiëren Blazije a Het water steeg het harst op e tijstippen waarij e grafiek het steilst loopt. Dat is om ongeveer 7 uur s ohtens en om 7 uur s
Voorkennis. Hoekmeting
Hoekmeting Hoeken meten we in graen of in raialen. Hiernaast zie je e eenheiscirkel in het vlak (e cirkel met straal en e oorsprong als mielpunt) waarop e beie verelingen zijn aangegeven. Een volleige
Hoofdstuk 4 - Periodieke functies
Hoofdstuk - Periodieke functies ladzijde 98 V-a Na seconden. Het hart klopt c, millivolt = slagen per minuut. V-a Ja, met periode ; nee; misschien met periode. Evenwichtsstand y = ; -; y =. Amplitude is
Vaardigheden - Blok 4
Vaarigheen - Blok lazije + a p p p is nie juis wel gel p p p p 8 ( r ) r r ; e ewering is juis 9 + ( ) ( ) ; e ewering is juis mis 0 9 + 8 ( a a ) a is nie juis wel juis is ( a a ) ( a ) ( a ) a a + (
Noordhoff Uitgevers bv
5 bladzijde 9 ab f g h i j functie nr 5 Domein [ 0, 0, Bereik [ 0, [ 0, 0, c D k B k, 0 0, d Spiegelen in de -as geeft het tegengestelde bereik, dus, 0]. e u ( ) en yu ( ) u f D q, 0 0, ; B q 0, a [, b
Blok 4 - Keuzemenu. Verdieping - Driehoeksmetingen. 1092,33 3, meter = 4,118 km De afstand is ongeveer 4,1 km.
1a a 3a Verieping - Driehoeksmetingen 109,33 3,77 4118 meter = 4,118 km De afstan is ongeveer 4,1 km. 45 L 4,1 km Z Zoetermeer Voorshoten is 68 mm Leien Voorshoten is 94 mm In e tekening is 1 km geteken
Transformaties Grafieken verschuiven en vervormen
Wiskunde LJ2P4 Transformaties Grafieken verschuiven en vervormen 1. Ver'cale verschuiving We hebben bij wiskunde al verschillende grafieken leren kennen: rechte lijn, parabool, sinus, cosinus. Voor de
7.1 Ongelijkheden [1]
7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij
2012 I Onafhankelijk van a
0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as
12.0 Voorkennis. Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0.
12.0 Voorkennis Voorbeeld 1: Los de vergelijking sin(a) = 0 op. We zoeken nu de punten op de eenheidscirkel met y-coördinaat 0. Dit is in de punten (1,0) en (-1,0) (1,0) heeft draaiingshoek 0 (-1,0) heeft
Wiskunde D Online uitwerking 4 VWO blok 4 les 1
Wiskune D Online uitwerking 4 VWO blok 4 les aragraaf. Opgave a et e stelling van thagoras volgt at (, ) ( ) + ( ) ( 3 ) + ( ) + 3 3 b De roosterpunten met afstan 3 tot liggen op e cirkel met als mielpunt
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Zomercursus Wiskune Katholieke Universiteit Leuven September 2008 Rekenregels voor het berekenen van afgeleien (versie 27 juni 2008) Inleiing De afgeleie van een functie f in een punt R is e helling (richtingscoëfficiënt)
Noordhoff Uitgevers bv
8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,
Paragraaf 2.1 : Snelheden (en helling)
Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }
UITWERKINGEN VOOR HET VWO
UITWERKINGEN VOOR ET VWO AB DEEL oofstuk 5 GONIOMETRISCE FUNCTIES KERN PERIODIEKE VERSCIJNSELEN a) seconen van seconen een kwart van o is 9 o b) riekwart c) 5 van o is 5 a) o o o van o is 7 o o f 9 o o
1.4 Differentiëren van machtsfuncties
. Differentiëren van machtsfuncties De inmiels bekene regel voor het ifferentiëren van machtsfuncties luit: n n [ ] n (n,,, ) Deze regel kun je vrij gemakkelijk herontekken met behulp van e (uitgebreie)
Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016
Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel
Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268
Auteur VO-content Laatst gewijzigd Licentie Webadres 24 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74268 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =
Functies. Verdieping. 6N-3p 2010-2011 gghm
Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de ijehorende grafiek. Je mag de GRM hierij geruiken. Y f ( x) x X
UNIFORM HEREXAMEN MULO tevens 2 E ZITTING STAATSEXAMEN MULO 2007
MINISTERIE VAN ONERWIJS EN VOLKSONTWIKKELING EXAMENUREAU UNIFORM HEREXAMEN MULO tevens E ZITTING STAATSEXAMEN MULO 007 VAK : WISKUNE ATUM : TIJ : ----------------------------------------------------------------------------------------------------------------------------------------------
Blok 2 - Vaardigheden
Blok - Vaarigheen lazije a Het startgetal is en het hellingsgetal is De formule ie ij e lijn ast is y x De lijn k heeft het zelfe hellingsgetal als e lijn l, us De formule is y x+ 7 e Het hellingsgetal
11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20
.0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:
2.1 Lineaire functies [1]
2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
Meetkunde 2 - Omtrek 2 - Cirkels. Versie 2a - donderdag 29 maart 2007
eetkune 2 - Omtrek 2 - Cirkels Versie 2a - onerag 29 maart 2007 De cirkel is een verzameling punten op een vaste afstan van één punt (het mielpunt ). Je kunt een cirkel tekenen met een passer. De afstan
EERSTE AFGELEIDE TWEEDE AFGELEIDE
Lesrief EERSTE AFGELEIDE etreme waarden raaklijn normaal TWEEDE AFGELEIDE uigpunten 6/7Np GGHM03 Inleiding Met ehulp van de grafische rekenmachine kun je snel zien of de grafiek daalt of stijgt. Het horizontaal
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt
Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012
Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een
Voorbereidende sessie toelatingsexamen
1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal
Uitwerkingen bij 1_0 Voorkennis: Sinusoïden
Uitwerkingen ij _ Voorkennis: Sinusoïden V_ a A( π, ), B( π, ), C( π, ) en D(π, ) Met de rekenmachine : Y = sinx Y = Met CALC, Intersect of G-Solve, ISCT: c V_ a x,6, x,5 of x,67 Bij een verschuiving van
Samenvatting wiskunde B
Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!
Hoofdstuk 4 De afgeleide
Havo B eel Uitwerkingen Moerne wiskune Hoofstuk De afgeleie lazije 9 V-a 8 8 8 kg Lengte in m Gewiht in kg 8 7 8 9 8 gewiht 8 8 lengte m weegt 8 kg us m weegt 8 : 8 kg. e 8 m 8 8 is het startgetal en 8
Hoofdstuk 5 - Verbanden herkennen
V-a V-a Hoofstuk - Veranen herkennen Hoofstuk - Veranen herkennen Voorkennis O A B De grafiek ij tael A is een rehte lijn, want telkens als in e tael met toeneemt neemt met toe. Het startgetal is en het
De maximale waarderingscijfers van de opgaven verhouden zich als 30:30:20:20 deel cijfer=score./10
Universiteit Twente, Werktuigbouwkune Vak : Programmeren en Moelleren Datum : 0 oktober 20 Tij : 08.45-0.5 uur TOETS Deze eeltoets bestaat uit 4 opgaven. Geef niet alleen e antwooren maar toon ook e geane
Noordhoff Uitgevers bv
Hoofstuk De afgeleie lazije 9 V-a, 8, 8 8 kg lengte in m gewiht in kg,8,, 7, 8 9,,8 gewiht 8 8 lengte m weegt 8 kg us m weegt 8 : 8, kg. e, 8,, m 8,,8 is het startgetal en,8 is het hellingsgetal. V-a (,);(,);
Functies. Verdieping. 6N-3p 2013-2014 gghm
Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)
Noordhoff Uitgevers bv
Hoofdstuk - Periodieke functies Voorkennis: Sinusfuncties ladzijde V-a De omtrek van de eenheidscirkel is π = π. Hierij hoort een hoek van zowel π radialen als 0. Dus 80 komt overeen met π radialen. V-a
Oefenexamen 2 H1 t/m H13.2 uitwerkingen. A. Smit BSc
Oefenexamen H t/m H3. uitwerkingen A. Smit BSc Een bewegend vierkant (naar methode Getal en Ruimte) De baan van een punt P wordt gegeven door de volgende bewegingsvergelijkingen: ቐ x P t = sin t y P t
Transformaties Grafieken verschuiven en vervormen
Wiskunde LJ2P4 Transformaties Grafieken verschuiven en vervormen 1. Ver'cale verschuiving We hebben bij wiskunde al verschillende grafieken leren kennen: rechte lijn, parabool, sinus, cosinus. Voor de
Functies en symmetrie
lesbrief Functies en symmetrie (even en oneven functies) 7N5p 013 gghm Symmetrie Bij grafieken van functies hebben we te maken met twee soorten symmetrie: lijnsymmetrie en puntsymmetrie. In deze lesbrief
Paragraaf 7.1 : Eenheidscirkel en radiaal
Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)
Oef 1. Oef 2 Geef het functievoorschrift van g, h en k als a = 1
Herhalingsoefeningen Tweedegraadsfuncties Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1
WISKUNDE- HWTK PROEFTOETS- AT3 - OPGAVEN en UITWERKINGEN - EX 03 1.doc 1/11
VAK: WISKUNDE - HWTK Set Proeftoets AT WISKUNDE- HWTK PROEFTOETS- AT - OPGAVEN en UITWERKINGEN - EX 0.oc / DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tij: 00 minuten Uw naam:...
Hoofdstuk 4 De afgeleide
Hoofstuk De afgeleie lazije 9 V-a 8 8 8 kg lengte in m gewiht in kg 8 7 8 9 8 gewiht 8 8 lengte m weegt 8 kg us m weegt 8 : 8 kg. e 8 m 8 8 is het startgetal en 8 is het hellingsgetal. V-a ();(); ();(
Noordhoff Uitgevers bv
Voorkennis V-1a De punten op een afstan van 3 m van lijn l liggen op twee lijnen evenwijig aan l. De punten op een afstan van 5 m van punt liggen op een irkel met straal 5 en mielpunt. De vier snijpunten
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening
Noordhoff Uitgevers bv
0 Voorkennis: Differentiëren en rekenregels lazije 0 V-a h ( ) 0 f () t 6 t + t 0 t + t n () t t t 7 t 6t e k ( p) p p + 0 0p 7 p g ( ) + 08 V-a f( ) ( + ) 6 f ( ) 6 h ( ) ( + 9) 8 gt () tt ( + t ) t +
Uitwerkingen goniometrische functies Hst. 11 deel B3
Uitwerkingen goniometrische functies Hst. deel B. f() = sin(-) = -sin() g() = cos(-) = cos () h() = sin( + ) = cos() j() = cos( + ) = -sin() k() = sin ( + ) = -sin () l() = cos ( + ) = -cos (). Zie ook
Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek
Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de
Noordhoff Uitgevers bv
Hoofstuk 6 - Nieuwe grafieken Hoofstuk 6 - Nieuwe grafieken Voorkennis V-a Van lijn k is het hellingsgetal en het startgetal en e formule is = +. Van lijn l is het hellingsgetal en het startgetal en e
Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk
HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES
1 HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 Periodieke functies 2 1.1 Op verkenning 2 1.2 Periodieke functie 2 1.3 Periode-interval, evenwichtslijn en amplitude 4 1.4 De perioderechthoek 4 1.5 Oefeningen
5.1 Lineaire formules [1]
5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire
Hoofdstuk 8 - Periodieke functies
Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk 8 - Periodieke functies ladzijde 8 V-a c Na seconden = slagen per minuut ca., millivolt V-a Ja, met periode Nee Mogelijk, met periode = en amplitude
Blok 4 - Vaardigheden
lok - Vaardigheden Extra oefening - asis -a Het hellingsgetal is 60 = = 0,065. -a De hellingshoek is tan (0,065),6. c De hellingshoek van Raymond is tan ( 60 c 960 tan = geeft tan 6 = 600 = 600 tan 6 9
UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2009
MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 009 VK : WISKUNE TUM : VRIJG 0 JULI 009 TIJ : 09.45.45 UUR ------------------------------------------------------------------------------------------------------------------------
In een zware tornado worden maximale windsnelheden van ongeveer 280 km/u bereikt.
Tornadoschalen In tornado s kunnen hoge windsnelheden bereikt worden. De zwaarte of heftigheid van een tornado wordt intensiteit genoemd. Er zijn verschillende schalen om de intensiteit van een tornado
sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )
G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(
4.1 Rekenen met wortels [1]
4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:
9.1 Recursieve en directe formules [1]
9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is
Extra oefeningen goniometrische functies. Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. ...
Extra oefeningen goniometrische functies Oefening 1: Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. a. Elke periodieke functie heeft een (kleinste) periode. b. Er bestaat
OEFENPROEFWERK VWO B DEEL 3
Formules OEFENROEFWERK VWO B DEEL HOOFDSTUK GONIOMETRISCHE FORMULES cos( t u) cos( t)cos( u) sin( t)sin( u) sin( A) sin( A)cos( A) sin( t u) sin( t)cos( u) cos( t)sin( u) cos( t u) cos( t)cos( u) sin(
Paragraaf 8.1 : Eenheidscirkel
Hoofdstuk 8 Goniometrische functies (H4 Wis B) Pagina 1 van 10 Paragraaf 8.1 : Eenheidscirkel Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat
Checklist Wiskunde B HAVO HML
Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten
6.1 Rechthoekige driehoeken [1]
6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;
15.1 Oppervlakten en afstanden bij grafieken [1]
15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte
Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B
Het oplossen van goniometrische vergelijkingen een alternatieve handleiding voor HAVO wiskunde B Inleiding Voor het oplossen van goniometrische vergelijkingen heb je een aantal dingen nodig:. Kennis over
Voorbereidende sessie toelatingsexamen
1/7 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Algebra en meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 25 april 2018 1 Presentatie en opgeloste oefeningen zijn digitaal beschikbaar
Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 16 januari 2015 Tijd: 13.30 16.30 uur Aantal opgaven: 5 Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
Noordhoff Uitgevers bv
4 Voorkennis V-1 a De oörinaten zijn A( 2, 1), B(2, 3) en C(5, 4 Qw ). V-2 a Per stap van 1 naar rehts gaat e lijn Qw omhoog. Vanuit C ga je 7 stappen naar rehts en us 7 Qw = 3 Qw omhoog. Omat 4 Qw + 3
Hoofdstuk 4: Meetkunde
Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair
Examen HAVO. Wiskunde B (oude stijl)
Wiskunde B (oude stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1330 1630 uur 20 02 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit 18 vragen
