Lijst van alle opdrachten versie 13 mei 2014

Maat: px
Weergave met pagina beginnen:

Download "Lijst van alle opdrachten versie 13 mei 2014"

Transcriptie

1 Lijst van alle opdrachten versie 13 mei 2014 Punt Pu1 Zorg dat Toon assen aan staat. Teken een punt in het vlak. Wijzig de naam naar X (hoofdletter!) (rechtsklikken op het punt voor openen snelmenu). Sleep het punt naar een andere plaats in het vlak (knop 1 - Verplaatsen). Wat gebeurt er in het Algebravenster met de getallen bij object X? Welke getallen zijn dat? Voor alle volgende opdrachten mag Toon assen af. Pu2 Teken een punt in het vlak. Open het snelmenu via rechtsklikken op het punt (in het Tekenvenster). Vink aan: Spoor aan. Verplaats het punt. Wat stel je vast? Verwijder het punt (via snelmenu = rechtsklikken). Wordt het spoor ook verwijderd? Pu3 Teken een punt in het vlak. Rechtsklik op de vermelding van het punt in het Algebravenster. Klik op Eigenschappen in het snelmenu. Kijk na wat je kan wijzigen via de tabbladen Basis - Kleur - Stijl. Experimenteer. Pu4 Teken twee verschillende punten. Laat Geogebra de afstand tussen de twee punten opmeten. Vergroot de nauwkeurigheid van de meting via het menu Opties - Afronden - 10 Decimale cijfers Verplaats één van de twee punten. Kijk wat er met het meetresultaat gebeurt. Rechte Re1 Teken een rechte a in het vlak. Teken een punt P op de rechte (knop 2). Verplaats (verschuif) de rechte. Welk(e) punt(en) moet je daartoe verplaatsen (slepen)? Blijft het punt P op de rechte? Verander de helling van de rechte. Welk(e) punt(en) moet je daartoe verplaatsen? Blijft het punt P nu ook op de rechte? Kan je het punt P van de rechte a af slepen? Re2 Teken een punt in het vlak. Teken een rechte die dat punt bevat (teken een rechte door dat punt). (In onze screencast tonen we hoe het niet moet en hoe het wel moet) Re3 Teken twee verschillende punten in het vlak. Teken een rechte die die twee punten bevat (teken een rechte door die twee punten).

2 Re4 Teken een rechte a en een rechte b die evenwijdig is met a. Controleer de relatie tussen de twee rechten. Verander de helling van de eerste rechte a. Controleer wat er met de evenwijdigheid gebeurt (relatie tussen twee objecten). Re5 Teken een rechte a en een rechte b die de rechte a snijdt. Geef het snijpunt aan. Noem dat punt S. Verplaats de rechten, verander hun helling. Controleer wat met punt S gebeurt. Re6 Teken een rechte a en een rechte b die loodrecht staat op de rechte a. Controleer de relatie tussen de twee rechten. Verander de helling van de eerste rechte a. Controleer wat er met de loodrechte stand gebeurt (relatie tussen twee objecten). Re7 Teken twee evenwijdige rechten a en b. Teken een rechte c die de rechte a snijdt. Check de relatie tussen de rechten b en c. Wat stel je vast? Re8 Teken een rechte a. Teken een rechte b die evenwijdig is met de rechte a. Teken een rechte c die ook evenwijdig is met de rechte a. Check de relatie tussen de rechten b en c. Wat stel je vast? Re9 Teken een rechte a. Teken een rechte b die loodrecht staat op de rechte a. Teken een rechte c die ook loodrecht staat op de rechte a. Wat kun je besluiten over de rechten b en c? Controleer met relatie tussen de objecten b en c. Re10 Teken twee evenwijdige rechten a en b. Teken een rechte c die loodrecht staat op de eerste rechte a. Onderzoek de relatie tussen de rechten b en c. Besluit? Re11 Teken een rechte a en een punt A dat niet op de rechte ligt. Teken een rechte b door het punt A en die evenwijdig is met de rechte a. Check de relatie tussen de rechte a en de rechte b. Teken een rechte c door het punt A en die loodrecht staat op de rechte a. Check de relatie tussen de rechte a en de rechte c.

3 Lijnstuk Li1 Teken twee verschillende punten in het vlak. Teken het lijnstuk begrensd door die twee punten. Werk het lijnstuk (volledig!) af in groen. Meet het lijnstuk op. Verplaats het lijnstuk. Maak het lijnstuk langer. Li2 Teken een lijnstuk met een lengte van 1,83 cm. Laat Geogebra het lijnstuk opmeten (de lengte wordt bij het lijnstuk geplaatst). Probeer het lijnstuk langer of korter te maken door het verplaatsen van een grenspunt. Lukt dat? Probeer het meetresultaat ver van het lijnstuk weg te slepen (Verplaatsen). Lukt dat? Li3 Teken een lijnstuk [AB]. Teken zijn drager t. Zet de drager in stippellijn. Li4 'Een moeilijke'. Teken twee verschillende punten X en Y in het vlak. Teken een lijnstuk dat deze twee punten bevat, maar deze punten mogen niet de grenspunten van het lijnstuk zijn. Li5 Teken twee lijnstukken die juist één grenspunt gemeenschappelijk hebben, maar niet dezelfde drager hebben. Li6 Teken twee lijnstukken die juist één grenspunt gemeenschappelijk hebben en ook dezelfde drager hebben. Verander de lijnsoort van de drager naar stippellijn. Li7 Teken twee lijnstukken die juist één punt gemeenschappelijk hebben, maar het mag niet een grenspunt zijn. Geef het gemeenschappelijk punt aan in rood en noem het S. Sleep één van de grenspunten, zodanig dat er geen snijpunt meer is. Welke melding krijg je te zien bij het object S in het Algebravenster? Li8 Teken een lijnstuk [AB]. Teken een lijnstuk [CD] zodat CD = AB en zodat de lijnstukken geen enkel punt gemeenschappelijk hebben (Passer). Markeer de twee even lange lijnstukken (Eigenschappen, Markering). Maak het eerste lijnstuk [AB] langer. Wat gebeurt er met de lengte van het lijnstuk [CD]? Li9 Teken een lijnstuk [AB] en bepaal zijn midden M. Meet de afstanden van de grenspunten A en B tot dit midden M op. We bedachten een middeltje om de even lange (halve) lijnstukken van eenzelfde merkteken te voorzien :-)

4 Li10 Teken een lijnstuk [AB] en zijn middelloodlijn. Bepaal het snijpunt van middelloodlijn en lijnstuk. Teken een punt X op de middelloodlijn. Bepaal d(x,a) en d(x,b). Wat stel je vast? Verplaats het punt X (op de middelloodlijn). Wat gebeurt er met de meetresultaten? Li11 Teken twee punten die op 3.15 cm van elkaar liggen. Gebruik daarvoor een lijnstuk. Zet het lijnstuk onzichtbaar. Probeer de afstand tussen de twee punten te wijzigen door verplaatsen (slepen). Lukt dat? Hoek Ho1 Teken een hoek bepaald door drie verschillende punten A,B,C. Welk punt is het hoekpunt? Normaal gezien gebeurt er al automatisch een hoekmeting. Meet ook de andere hoek (met zelfde hoekpunt) die door die drie punten bepaald wordt. Welke punten moet je slepen (verplaatsen) om de hoekgroottes te wijzigen? Ho2 Teken een hoek bepaald door drie verschillende punten. Maak de hoek volledig door de benen (twee passende halfrechten) te tekenen. Verwijder de bestaande hoekmeting. Meet de andere hoek op. Zorg dat de hoekboog verder van het hoekpunt komt via Eigenschappen - tabblad Stijl - Afmeting. Wijzig de hoek(grootte). Ho3 Teken een hoek Ê zodat Ê = 73 Ho4 Teken twee hoeken TÔF en PÂD zodat TÔF = PÂD via Hoek met gegeven grootte. Geef de even grote hoeken aan met merktekens op de hoekbogen. Ho5 Teken een hoek. Vervolledig met de passende halfrechten. Meet de hoek op. Teken de deellijn (de bissectrice) van de hoek. Plaats een punt op die deellijn. Meet de twee halve hoeken op. Plaats passende merktekens. Ho6 Teken een nulhoek (er zijn verschillende mogelijkheden). Ho7 Teken een scherpe hoek.

5 Ho8 Teken een rechte hoek. Ho9 Teken een stompe hoek. Ho10 Teken een gestrekte hoek. Ho11 Teken een volle hoek. TIP: hoekeigenschappen - tabblad Basis - Hoek tussen... en.... Driehoek Dr1 Teken een driehoek met hoekpunten A, B, C. Laat Geogebra de omtrek en de oppervlakte bepalen. Dr2 Teken een driehoek waarvan de drie zijden een verschillende lengte hebben. Hoe noemen we zo een driehoek? Meet de zijden op. Dr3 Teken, met behulp van een cirkel, een gelijkbenige driehoek. Markeer de even lange zijden. Wat is de juiste naam voor die even lange zijden? Dr4 Teken, met behulp van een cirkel een gelijkbenige driehoek met opstaande zijden 3,84 cm lang. Markeer de opstaande zijden met een zelfde merkteken. Dr5 Teken een gelijkzijdige driehoek. Er zijn twee mogelijkheden: ofwel gebruik je Regelmatige veelhoek onder de vijfde knop Veelhoek, ofwel start je met een lijnstuk (eerste zijde) en werk je af met cirkels. Markeer de even lange zijden met een zelfde merkteken. Dr6 Teken een scherphoekige driehoek. Meet de (binnen)hoeken van de driehoek op. Voeg deze tekst toe via Tekst invoegen onder knop 10: Dit is een scherphoekige driehoek. Dr7 Teken een stomphoekige driehoek. Meet de (binnen)hoeken van de driehoek op. Dr8 Teken een rechthoekige driehoek. Meet de (binnen)hoeken van de driehoek op. Dr9 Teken een rechthoekige driehoek met rechthoekszijden 2,7 cm en 4,2 cm.

6 Dr10 Teken een rechthoekige driehoek met een schuine zijde van 7,4 cm. Dr11 Teken een driehoek met een basis van 7,0 cm en een hoogte van 4,0 cm. Bereken zelf de oppervlakte van deze driehoek. Laat Geogebra de oppervlakte bepalen. Dr12 Teken een driehoek met een oppervlakte van 12 cm². Kies een passende basis en hoogte. Laat, ter controle, Geogebra de oppervlakte bepalen. Dr13 Teken een driehoek met een zijde van 4,5 cm en de aanliggende hoeken van die zijde 75 en 60 groot. Dr14 Teken een driehoek met zijden 3,0 cm; 4,5 cm en 2,6 cm lang. Dr15 Teken een driehoek met zijden van 3,5 cm en 3,0 cm lang en een ingesloten hoek van 100. Dr16 Teken een gelijkbenige driehoek KAT met tophoek  zodat  = 76 en de benen 4,0 cm lang. Dr17 Teken een driehoek en twee van zijn zwaartelijnen (merktekens bij middens zijden). Bepaal het snijpunt van de twee zwaartelijnen. Teken de derde zwaartelijn in rood (merkteken bij midden zijde). Controleer of het snijpunt ook op de derde zwaartelijn ligt. Verplaats een hoekpunt. Dr18 Teken een driehoek en twee van zijn hoogtelijnen (loodrechte stand: winkelhaakjes). Bepaal het snijpunt van de twee hoogtelijnen. Teken de derde hoogtelijn in rood (winkelhaakje). Controleer of het snijpunt ook op de derde hoogtelijn ligt. Verplaats een hoekpunt. Dr19 Teken een driehoek en twee van zijn middelloodlijnen (winkelhaakje, merktekens). Bepaal het snijpunt van de twee middelloodlijnen. Teken in rood de derde middelloodlijn (merktekens). Controleer of het snijpunt ook op de derde middelloodlijn ligt. Sleep een hoekpunt naar een andere plaats. Dr20 Teken een driehoek en twee van zijn deellijnen (bissectrices). Bepaal het snijpunt van de twee deellijnen. Teken de derde deellijn (in rood). Controleer of het snijpunt ook op de derde deellijn (bissectrice) ligt. Wijzig de vorm van de driehoek.

7 Vierhoek Vi1 Teken een vierhoek. Open het dialoogvenster Eigenschappen van de vierhoek. Verhoog op het tabblad Kleur de Ondoorschijnendheid naar niveau 50. Breng op het tabblad Stijl de Lijndikte naar niveau 4. Vi2 Teken een vierhoek. Zet een hoekpunt in groen. Vi3 Teken een vierhoek en een zijde (volledig) in groen. Vi4 Teken een vierhoek en een duo overstaande hoekpunten rood. Vi5 Teken een vierhoek; zijn diagonalen; het snijpunt van de diagonalen. Vi6 Teken een vierhoek en een duo overstaande zijden oranje. Vi7 Teken een vierhoek en een duo opeenvolgende zijden zwart. Vi8 Teken een vierhoek en meet de (binnen)hoeken op. Vi9 Teken een vierhoek en meet een duo overstaande hoeken op. Vi10 Teken een vierhoek en meet een duo opeenvolgende hoeken op. Vi11 Teken een vierhoek TANK en meet de ingesloten hoek van de zijden [AN] en [NK]. Vi12 Teken een vierhoek ABCD en meet de aanliggende hoeken van de zijde [CD]. Vi13 Teken een trapezium. Vi14 Teken een trapezium met basissen 3,0 en 5,7 cm. Vi15 Teken een trapezium met een hoogte van 2,85 cm.

8 Cirkel Ci1 Teken twee verschillende punten A en B. Teken de cirkel met middelpunt A en die B bevat. Welk(e) punt(en) moet je slepen (verplaatsen) om de cirkel te verplaatsen? Welk(e) punt(en) moet je slepen (verplaatsen) om de straal groter of kleiner te maken? Ci2 Teken een punt A. Teken alle punten die op 2,55 cm van het punt A liggen. Ci3 Teken een cirkel. Laat Geogebra de omtrek en de oppervlakte van de cirkel bepalen. Maak de straal groter. Wat gebeurt er met de omtrek en de oppervlakte van de cirkel? Ci4 Teken een cirkel. Teken een straal van de cirkel (definitie: een straal van een cirkel is een lijnstuk begrensd door het middelpunt van de cirkel en een punt van de cirkel). Teken een middellijn van de cirkel (definitie: een middellijn van een cirkel is een rechte die door het middelpunt van de cirkel gaat). Teken een koorde van de cirkel (definitie: een koorde van een cirkel is een lijnstuk begrensd door twee punten van de cirkel). Teken een diameter van de cirkel (definitie: een diameter van een cirkel is een koorde door het middelpunt van de cirkel). Ci5 Teken twee punten die op 3,15 cm van elkaar liggen. Gebruik een cirkel. Zet de cirkel in stippellijn. Probeer de afstand tussen de twee punten te wijzigen. Ci6 Teken een cirkel met middelpunt A en een middelpuntshoek. Meet de middelpuntshoek op.

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...

Nadere informatie

INHOUDSTABEL. 1. TRANSFORMATIES (fiche 1) SYMMETRIE (fiche 2) MERKWAARDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6

INHOUDSTABEL. 1. TRANSFORMATIES (fiche 1) SYMMETRIE (fiche 2) MERKWAARDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6 INHOUDSTBEL 1. TRNSFORMTIES (fiche 1)...3 2. SYMMETRIE (fiche 2)...4 3. MERKWRDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6 4. VLKKE FIGUREN: DRIEHOEKEN (fiche 4)...7 5. VLKKE FIGUREN: BIJZONDERE VIERHOEKEN

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie

Hoofdstuk 8 : De Cirkel

Hoofdstuk 8 : De Cirkel - 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG)

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG) Lesbrief GeoGebra Inhoud: 1. Even kennismaken met GeoGebra 2. Meetkunde: 2.1 Punten, lijnen, figuren maken 2.2 Loodlijn, deellijn, middelloodlijn maken 2.3 Probleem M1: De rechte van Euler 2.4 Probleem

Nadere informatie

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ... PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...

Nadere informatie

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78 ICT Meetkunde met GeoGebra 2.7 deel 1 blz 78 Om de opdrachten van paragraaf 2.7 uit het leerboek te kunnen maken heb je het computerprogramma GeoGebra nodig. Je kunt het programma openen via de leerlingenkit

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Ruimtelijke oriëntatie: plaats en richting

Ruimtelijke oriëntatie: plaats en richting Ruimtelijke oriëntatie: plaats en richting 1 Lijnen en rechten Hoe kunnen lijnen zijn? gebogen of krom gebroken recht We onthouden: Een rechte is een rechte lijn. c a b Een rechte heeft geen begin- en

Nadere informatie

Hoofdstuk 2 : Som Hoekgrootten van een veelhoek (boek pag 34)

Hoofdstuk 2 : Som Hoekgrootten van een veelhoek (boek pag 34) - 39- Hoofdstuk 2 : Som Hoekgrootten van een veelhoek (boek pag 34) Som hoekgrootten van een driehoek ( boek pag 35) Stelling: Voor ABC geldt: A ˆ + Bˆ + Cˆ = 180 o Bewijs: Trek door het punt A een rechte

Nadere informatie

Pienter 1ASO Extra oefeningen hoofdstuk 7

Pienter 1ASO Extra oefeningen hoofdstuk 7 Extra oefeningen hoofdstuk 7: Vlakke figuren 1 Teken binnen een cirkel met straal 6 cm een tweede cirkel met straal 2 cm. Wat is de kleinste en wat is de grootst mogelijke afstand tussen beide middelpunten?

Nadere informatie

3.1 Soorten hoeken [1]

3.1 Soorten hoeken [1] 3.1 Soorten hoeken [1] Let op: Een lijn heeft geen eindpunt; Een halve lijn heeft één eindpunt Een lijnstuk heeft twee eindpunten; Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de

Nadere informatie

PQS en PRS PS is de bissectrice van ˆP

PQS en PRS PS is de bissectrice van ˆP OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is

Nadere informatie

Driehoeken. 18 m 2 18 dm 2 90 dm 2 oef. 694. 24 dm 3 96 dm 3 240 dm 3 oef. 704

Driehoeken. 18 m 2 18 dm 2 90 dm 2 oef. 694. 24 dm 3 96 dm 3 240 dm 3 oef. 704 4 riehoeken it kun je al 1 ruimtefiguren herkennen hoeken meten en tekenen 3 oppervlakte berekenen van vierhoeken 4 volume berekenen van balk en kubus Test jezelf lke vraag heeft maar één juist antwoord.

Nadere informatie

Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur.

Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur. VRAAG 1 Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur. VRAAG 2 Duid in de onderstaande figuur de overeenkomstige zijden en hoeken van de congruente driehoeken aan met eenzelfde

Nadere informatie

handleiding pagina s 241 tot Handleiding 1.1 Kopieerbladen pagina 59: wandelplannen pagina 60: grondplannen constructies 2 Werkboek

handleiding pagina s 241 tot Handleiding 1.1 Kopieerbladen pagina 59: wandelplannen pagina 60: grondplannen constructies 2 Werkboek week 8 les 5 toets en foutenanalyse handleiding pagina s 2 tot 29 nuttige informatie Handleiding. Kopieerbladen pagina 59: wandelplannen pagina 60: grondplannen constructies.2 Huistaken huistaak 5: bladzijde

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen Kern Meetkundige plaatsen a Zie afbeelding rechts. b In het niet-gearceerde deel. c Op de middenparallel. l m 2 a Teken lijn m en lijn n, beide evenwijdig aan l en op een afstand van 3 cm van l. b Punten

Nadere informatie

INLEIDING TOT GEOGEBRA

INLEIDING TOT GEOGEBRA INLEIDING TOT GEOGEBRA Sven Mettepenningen, 28/02/2007 GEOGEBRA 1 EERSTE KENNISMAKING Het pakket Geogebra kan je downloaden op de site http://www.geogebra.at/ Eventueel is het ook nuttig van de laatste

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Hoofdstuk 5 : De driehoek

Hoofdstuk 5 : De driehoek Hoofdstuk 5 : De driehoek - 89 1. Congruente figuren Figuren die elkaar volkomen kunnen bedekken noemen we congruente figuren. Congruente figuren hebben dezelfde vorm (~ ) en dezelfde grootte (=). Als

Nadere informatie

handleiding pagina s 687 tot Handleiding 1.1 Kopieerbladen pagina 444: tangram 2 Werkboek 3 Posters

handleiding pagina s 687 tot Handleiding 1.1 Kopieerbladen pagina 444: tangram 2 Werkboek 3 Posters week 22 les 4 toets en foutenanalyse handleiding pagina s 687 tot 695 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 444: tangram 12 Huistaken huistaak 14: bladzijde 445 (vierhoeken tekenen)

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

Creatief aan de slag met GeoGebra. Een tangram is een beroemde Chinese puzzel bestaande uit 7 puzzelstukjes: 1 vierkant, 1 parallellogram.

Creatief aan de slag met GeoGebra. Een tangram is een beroemde Chinese puzzel bestaande uit 7 puzzelstukjes: 1 vierkant, 1 parallellogram. 18 Tangram puzzel Een tangram is een beroemde Chinese puzzel bestaande uit 7 puzzelstukjes: 5 gelijkbenige rechthoekige driehoeken van 3 verschillende grootten, 1 vierkant, 1 parallellogram. Aan het begin

Nadere informatie

12.1 Omtrekshoeken en middelpuntshoeken [1]

12.1 Omtrekshoeken en middelpuntshoeken [1] 12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 99 99 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde. Vlaamse Wiskunde Olympiade 995-996 : Tweede Ronde De tweede ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

1 Middelpunten. Verkennen. Uitleg

1 Middelpunten. Verkennen. Uitleg 1 Middelpunten Verkennen Middelpunten Inleiding Verkennen Probeer vanuit drie gegeven punten (niet op één lijn) die op een cirkel moeten liggen het middelpunt van die cirkel te construeren. Je kunt hem

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden

Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden Lesbrief 6 Meetkunde 1 Hoektransversalen in een driehoek ABC is een driehoek. Een lijn l door een hoekpunt A van de driehoek heet een hoektransversaal van A. We zullen onderzoeken onder welke voorwaarden

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 017 tijdvak 1 maandag 15 mei 13:30-16:30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 14 vragen. Voor dit examen zijn maximaal 69 punten te behalen. Voor elk

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d.

Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d. 17 Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d. 18 Vermoeden: De drie hoogtelijnen gaan door 1 punt 34. a. De drie middelloodlijnen van een

Nadere informatie

8.1 Gelijkvormige en congruente driehoeken [1] Willem-Jan van der Zanden

8.1 Gelijkvormige en congruente driehoeken [1] Willem-Jan van der Zanden 8.1 Gelijkvormige en congruente driehoeken [1] 1 8.1 Gelijkvormige en congruente driehoeken [1] Twee evenwijdige lijnen worden gesneden door een derde lijn. De twee rode hoeken (F-hoeken) zijn gelijk.

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

Eigenschappen van driehoeken

Eigenschappen van driehoeken 5 igenschappen van driehoeken it kun je al een hoek meten de verschillende soorten driehoeken definiëren 3 de verschillende soorten hoeken definiëren 4 de eigenschappen van de verschillende soorten hoeken

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

1 Introductie. 2 Oppervlakteformules

1 Introductie. 2 Oppervlakteformules Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2008-2009: eerste ronde 1 Hoeveel is 2 5 7? (A) 10 21 (B) 25 7 (C) 7 10 (D) 1 15 (E) 29 21 2 Welke van volgende sommen is gelijk aan 10? (A), + 5,555 (B) 2,222 + 6,666 (C),

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 200-2005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Cabri-werkblad Negenpuntscirkel

Cabri-werkblad Negenpuntscirkel Cabri-werkblad Negenpuntscirkel 0. Vooraf - Bij dit werkblad wordt kennis verondersteld van de eigenschappen van parallellogrammen, rechthoekige driehoeken en van de elementaire eigenschappen van de koordenvierhoek.

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

12 Bewijzen in de vlakke meetkunde

12 Bewijzen in de vlakke meetkunde ewijzen in de vlakke meetkunde bladzijde 54 a ' b Gegeven: e gelijkzijdige driehoek met zijn omgeschreven cirkel. unt ligt op de kortste boog en ligt op het verlengde van zo, dat =. riehoek is gelijkzijdig.

Nadere informatie

Eindexamen wiskunde B vwo II

Eindexamen wiskunde B vwo II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

door: Bart Van den Bergh

door: Bart Van den Bergh door: Bart Van den Bergh Inhoud 1. Inleiding...5 1.1. Wat is GeoGebra?... 5 1.2. Downloaden en installatie... 5 2. Basiscursus...7 2.1. Aan de slag... 7 2.1.1 Openen van het programma... 7 2.1.2 Lay-out...

Nadere informatie

Proefexemplaar. ICT PraCTICumboek (1e graad / onderbouw) Filip Geeurickx Jan Thoelen Roger Van Nieuwenhuyze. GeoGebra

Proefexemplaar. ICT PraCTICumboek (1e graad / onderbouw) Filip Geeurickx Jan Thoelen Roger Van Nieuwenhuyze. GeoGebra ICT PraCTICumboek (1e graad / onderbouw) GeoGebra Filip Geeurickx Jan Thoelen Roger Van Nieuwenhuyze 3 ICT practicumboek > inhoud 1 Het pakket Geogebra 1.1 Het programma downloaden, 6 1.2 Vensters en icoontjes

Nadere informatie

HZH: c, α en β ZZR: a, b en β

HZH: c, α en β ZZR: a, b en β EETKUNE e hoekpunten van een driehoek of vierhoek geven we met HOOFLETTER aan. Lijnen krijgen een kleine letter en voor hoeken gebruiken we vaak Griekse letters. Het Griekse alfabet begint met de letters

Nadere informatie

Dag van de wiskunde 26/11/2005. R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet.

Dag van de wiskunde 26/11/2005. R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. Dag van de wiskunde 26/11/2005 R. Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Dag van de Wiskunde 2005 Van Nieuwenhuyze

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN ) Gegeven: een rechthoekige driehoek ABC. Schrijf de volgende goniometrische getallen in functie van de lengten van de zijden van

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Hoofdstuk 5 - Meetkundige plaatsen

Hoofdstuk 5 - Meetkundige plaatsen oderne wiskunde 9e editie vwo deel Voorkennis: Eigenschappen en ewijzen ladzijde 138 V-1a Gegeven: Driehoek met hoeken :, en Te ewijzen: 180 ewijs: 1 3 Teken lijn door die evenwijdig loopt met : lijn door

Nadere informatie

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Meetkundige constructies Leerlingmateriaal

Meetkundige constructies Leerlingmateriaal Meetkundige constructies Leerlingmateriaal Nynke Koopmans Roeland Hiele Historical Aspects of Classroom Mathematics Universiteit Utrecht, juni 2013 Inleiding Inleiding Een meetkundige constructie is een

Nadere informatie

Waarom WAB? Organisatie WAB. 27 november De vrije ruimte in 1A. Basisvorming 27/28 lestijden per week invulling wettelijk bepaald

Waarom WAB? Organisatie WAB. 27 november De vrije ruimte in 1A. Basisvorming 27/28 lestijden per week invulling wettelijk bepaald 7 november 0 Dag van wiskunde 8 november 0 KULAK Wendy Luyckx Bob Roefs Mark Verbelen Paul Verbelen Waarom WAB? Leerlingen warm maken om door te stromen naar sterke wiskundige richtingen Organisatie WAB

Nadere informatie

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 1005 tot 1015 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 812: gelijkvormig / vervormen pagina 813: patronen pagina 814: kubus pagina

Nadere informatie

2 Hoeken en bogen 77

2 Hoeken en bogen 77 2 Hoeken en bogen 77 1 De stand van zaken In deze paragraaf wordt je gevraagd wat je weet van de zijden, hoeken en diagonalen van verschillende soorten vierhoeken. En omgekeerd, wat voor speciaal type

Nadere informatie

1 Vlaamse Wiskunde Olympiade: tweede ronde

1 Vlaamse Wiskunde Olympiade: tweede ronde Vlaamse Wiskunde Olympiade: tweede ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt

Nadere informatie

GeoGebra 1e en 2e graad

GeoGebra 1e en 2e graad GeoGebra 1e en 2e graad WI-0097-01 Nascholing ICT-wiskunde Paul Decuypere, Ria Vandermeersch, Jozef Van Remoortere Werkgroep Integratie van de Informatica in de Wiskunde 2007 Vlaams Verbond van het Katholiek

Nadere informatie

7.1 Symmetrie[1] Willem-Jan van der Zanden

7.1 Symmetrie[1] Willem-Jan van der Zanden 7.1 Symmetrie[1] Al de drie figuren hierboven zijn lijnsymmetrisch; Je kunt ze op één of meerdere manieren dubbelvouwen zodat de ene helft het spiegelbeeld van de andere helft is; De vouwlijn heet de symmetrieas/spiegelas;

Nadere informatie

Verdieping - De Lijn van Wallace

Verdieping - De Lijn van Wallace Verdieping - e Lijn van Wallace ladzijde 4 ac - d Nee, want als ijvooreeld en samenvallen dan geldt = op en = op, dus = = maar dan moet ook S met samenvallen, dus ligt S niet uiten de driehoek en dat is

Nadere informatie

Vandaag 11/22/11$ ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN. Moeilijk onderdeel van de leerstof

Vandaag 11/22/11$ ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN. Moeilijk onderdeel van de leerstof 2 3 ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN ErasmushogeschoolBrussel Lerarenopleiding LSO anne.schatteman@ehb.be Vandaag 2 Moeilijk onderdeel van de leerstof 3 Bewijzen worden behandeld

Nadere informatie

DEEL I. Vlakke figuren. Hoofdstuk 1. Vlakke figuren 6 Hoofdstuk 2. Rechten 20 Hoofdstuk 3. Lijnstukken 39 Hoofdstuk 4. Hoeken 57

DEEL I. Vlakke figuren. Hoofdstuk 1. Vlakke figuren 6 Hoofdstuk 2. Rechten 20 Hoofdstuk 3. Lijnstukken 39 Hoofdstuk 4. Hoeken 57 DEEL I Vlakke figuren Hoofdstuk. Vlakke figuren 6 Hoofdstuk. Rechten 0 Hoofdstuk. Lijnstukken 9 Hoofdstuk. Hoeken 57 Vlakke figuren OP VERKENNING! Sneeuwvlokjes zijn een mooi voorbeeld van meetkunde in

Nadere informatie

Neem [pr]=[ps] en beschrijf uit r en s twee cirkelbogen met dezelfde straal, die elkaar in c snijden. [cp] is de loodlijn op [ab].

Neem [pr]=[ps] en beschrijf uit r en s twee cirkelbogen met dezelfde straal, die elkaar in c snijden. [cp] is de loodlijn op [ab]. Met a en b als middelpunt en met straal groter dan de helft van [ab] trekt men met dezelfde straal twee cirkelbogen, die elkaar snijden in c en d; cd is de middelloodlijn en m het midden van [ab] Neem

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 006-007: tweede ronde 1 In een rechthoekige driehoek verdeelt de bissectrice uit een scherpe hoek de overstaande zijde in twee stukken met lengten 4 en 5 (zie figuur) De oppervlakte

Nadere informatie

Proefexemplaar. ICT PRACTICUMBOEK (3e JAAR / ONDERBOUW) Tim Van der Hoeven Roger Van Nieuwenhuyze

Proefexemplaar. ICT PRACTICUMBOEK (3e JAAR / ONDERBOUW) Tim Van der Hoeven Roger Van Nieuwenhuyze ICT PRACTICUMBOEK (3e JAAR / ONDERBOUW) GeoGebra Dit leerwerkboekje is bruikbaar in 3 ASO (leerweg 4 en 5) 3 TSO-KSO (leerplan A - B - C) Derde jaar van het GO! Meetkunde en analytische meetkunde vraagstukken

Nadere informatie

Kaart 1: Kubus aanpassen Zet bij Beeld de assen uit en het rooster aan.

Kaart 1: Kubus aanpassen Zet bij Beeld de assen uit en het rooster aan. Kaart 1: Kubus aanpassen Zet bij Beeld de assen uit en het rooster aan. Kies uit het menu Rechte door 2 punten voor lijnstuk tussen twee punten. Klik op een roosterpunt en punt A wordt getekend. Teken

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

1 MEETKUNDE. Wat vindt u van deze preview? www.plantyn.com/integraal. Laat het ons weten op. http://wiskunde.plantyn.com/mijnmeningoverintegraal

1 MEETKUNDE. Wat vindt u van deze preview? www.plantyn.com/integraal. Laat het ons weten op. http://wiskunde.plantyn.com/mijnmeningoverintegraal INTEGRL www.plantyn.com/integraal INTEGRL SNEK PREVIEW DEEL HOOFDSTUK MEETKUNDE LEERWERKOEK Wat vindt u van deze preview? Laat het ons weten op http://wiskunde.plantyn.com/mijnmeningoverintegraal WISKUNDE

Nadere informatie

GEOGEBRA IN DE EERSTE GRAAD. Kan dit wel? R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet.

GEOGEBRA IN DE EERSTE GRAAD. Kan dit wel? R. Van Nieuwenhuyze. Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. GEOGEBRA Kan dit wel? IN DE EERSTE GRAAD R. Van Nieuwenhuyze Docent wiskunde en statistiek aan Ehsal, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Geogebra in de eerste graad

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

Wiskunde Opdrachten Vlakke figuren

Wiskunde Opdrachten Vlakke figuren Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke

Nadere informatie

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B Centrale Commissie Voortentamen Wiskunde Syllabus voortentamen Wiskunde B Deze syllabus bevat een beschrijving van het programma van het voortentamen Wiskunde B dat wordt afgenomen door de Centrale Commissie

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Wiskunde Leerjaar 2 - Periode 1 Meetkunde

Wiskunde Leerjaar 2 - Periode 1 Meetkunde Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 0 tijdvak woensdag 8 mei 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie