Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden"

Transcriptie

1 Lesbrief 6 Meetkunde 1 Hoektransversalen in een driehoek ABC is een driehoek. Een lijn l door een hoekpunt A van de driehoek heet een hoektransversaal van A. We zullen onderzoeken onder welke voorwaarden hoektransversalen van A, B en C door één punt gaan. In het bijzonder tonen we aan dat de drie zwaartelijnen, hoogtelijnen en bissectrices door één punt gaan. fig. 1 fig. 2 Stel l is een hoektransversaal van A. Voor alle punten D op l is de verhouding v 1 = DE : DF van de afstanden tot de zijden b en c dezelfde. Evenzo behoort bij een transversaal m van B een vaste verhouding v 2 van de afstanden van een punt opm tot c en a, enbij een transversaal n van C een verhouding v 3. Gaan l, m en n door één punt, dan geldt v 1 v 2 v 3 =1. (Zie fig. 2) Omgekeerd, doorsnijden de hoektransversalen l, m en n alle drie het binnengebied van de driehoek en is v 1 v 2 v 3 =1, dan gaan l, m en n ook door één punt. Noem om dat in te zien het snijpunt van m en nken laat loodlijnen KD, KE en KF neer op a, b en c. (Zie fig. 3) We zien dat KE : KF =(KE : KD)(KD : KF)= 1 1 v 3 v 2 = v 1. Op l is er precies één punt K binnen driehoek ABC met afstanden tot b gelijk aan KE. Voor alle punten op l geldt K E : K F = v 1, dus K F = KF. Hieruit volgt K = K en daarom gaat l door het snijpunt van m en n. Voor de binnenbissectrices van elke driehoek geldt v 1 = v 2 = v 3 = 1, dus: de binnenbissectrices van een driehoek gaan door één punt. fig. 3 1

2 Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden door de afstand van een punt tot een zijde van de driehoek van een teken te voorzien: positief als het punt aan dezelfde kant van de zijde ligt als driehoek en negatief in het andere geval. Zo krijgen ook v 1, v 2 en v 3 een teken. Men verifieert gemakkelijk dat de twee lijnen l 1 en l 2 altijd een verschillend teken voor v 1 geven en dat drie transversalen door één punt gaan dan en slechts dan als v 1 v 2 v 3 =1. De transversaal l = AP kan ook gekarakteriseerd worden door de verhouding O AP C : O AP B = u 1 van de oppervlakten van de driehoeken AP C en AP B waarin l de driehoek ABC verdeelt. (Zie fig. 5) Deze verhouding is echter gelijk aan PC : PB omdat de driehoeken dezelfde hoogtelijn vanuit A hebben. Anderzijds geldt O AP C = 1 PE 2 b en O AP B = 1 PF c, duspc : PB = 2 u 1 v 1 v 2 v 3. = v 1 b c. Hieruit volgt u 1u 2 u 3 = fig. 4 fig. 5 Neemt men ook transversalen in beschouwing die buiten de driehoek liggen, dan kan men de verhoudingen u 1, u 2 en u 3 op dezelfde wijze als v 1, v 2 en v 3 van een teken voorzien. Het snijpunt met de overstaande zijde kan dan ook op een van de verlengden van die zijde liggen. Met deze tekenafspraak geldt: fig. 6 Stelling 1.1 (Ceva,1678) Kiest men op de eventueel verlengde zijden a, b en c van driehoek ABC respectievelijk punten P, Q en R, dan gaan AP, BQ en CR door één punt dan en slechts dan als BP CQ AR PC QA RB =1. Zie fig. 6 voor een plaatje van de stelling. In het bijzonder gaan dus de drie zwaartelijnen van een driehoek door één punt. (Zie fig. 7) Voor de hoogtelijnen van een driehoek geldt (zie fig. 8 en let ook op de tekens): BP = c cos B, PC = b cos C, CQ = a cos C, QA = c cos A, AR = b cos A, RB = a cos B. Volgens de stelling van Ceva gaan de hoogtelijnen dus door één punt. 2

3 fig. 7 fig. 8 Opgave 1.1 Bewijs: elke binnenbissectrice van een driehoek gaat door het snijpunt van de buitenbissectrices van de andere hoekpunten. Zo ontstaan de middelpunten van de drie zogeheten aangeschreven cirkels. (Zie fig. 9) Toon aan dat de verbindingslijn van twee zulke middelpunten de verbindingslijn van het derde met het middelpunt van de ingeschreven cirkel loodrecht snijdt in een hoekpunt. fig. 9 Opgave 1.2 P, Q en R zijn de raakpunten van de ingeschreven cirkel aan de zijden van driehoek ABC. (Zie fig. 9) Bewijs dat AP, BQ en CR door één punt gaan. Evenzo voor de aangeschreven cirkels. Opgave 1.3 De driehoeken ABC en A B C voldoen aan AB A B, BC B C en CA C A. Bewijs dat AA, BB en CC door één punt gaan of evenwijdig zijn. Opgave 1.4 Bewijs dat de zes driehoeken waarin de zwaartelijnen een gegeven driehoek verdelen, alle dezelfde oppervlakte hebben. Bijgevolg verdelen de zwaartelijnen elkaar in de verhouding 1 : 2. (Zie fig. 7) 3

4 Opgave 1.5 Kiest men P op BC zo, dat AP een binnenbissectrice is van BAC, dan is BP : CP = BA : CA. Bewijs deze stelling, die de bissectricestelling heet. (Aanwijzing: snijd zoals in fig. 10 de lijn door C evenwijdig aan AB met de bissectrice.) Bewijs dat hetzelfde geldt voor de buitenbissectrice. Ook het omgekeerde geldt: verdeelt P het lijnstuk BC inwendig of uitwendig in de verhouding CA : BA, dan is AP de binnen- respectievelijk buitenbissectrice van BAC. fig. 10 Opgave 1.6 P, Q en R zijn punten op de eventueel verlengde zijden a, b en c van driehoek ABC. Bewijs: P, Q en R liggen op een rechte dan en slechts dan als BP CQ AR = 1. Dit heet de PC QA RB stelling van Menelaos (±100 n. Chr.). Aanwijzing: trek een lijn door A evenwijdig aan a, zoals aangegeven in fig. 11. fig Cirkels Op de cirkel C met middelpunt M en straal r liggen twee punten A en B en een punt P buiten de boog AB. De buitenhoek van een driehoek is gelijk aan de som van de niet-aanliggende binnenhoeken, dus (zie fig. 12) AM T = 2 AP M en TMB = 2 MPB. AP B is dus onafhankelijk van de plaats van P buiten de cirkelboog AB: fig. 12 Stelling 2.1 De grootte van een omtrekshoek is de helft van de grootte van de middelpuntshoek op dezelfde boog. 4

5 Gevolg: de verzameling van alle punten waaruit men een gegeven lijnstuk AB ziet onder een gegeven hoek, wordt gevormd door twee cirkelbogen op AB die elkaars spiegelbeeld zijn in AB. (Zie fig. 13) De limietstand van de omtrekshoek AP B als P tot A nadert, is de hoek tussen het lijnstuk AB en de raaklijn in A. Men ziet ook gemakkelijk direct in dat deze hoek de helft is van de middelpuntshoek AMB, omdat de raaklijn altijd loodrecht op de straal staat. (Zie fig. 14) Liggen vier punten A, B, C en D in deze volgorde op een cirkel, dan heet ABCD een koordenvierhoek. fig. 13 fig. 14 fig. 15 Stelling 2.2 ABCD is een koordenvierhoek dan en slechts dan als de som van een paar overstaande hoeken gelijk is aan ß. (Omdat de totale hoekensom gelijk is aan 2ß, isdanook de som van het andere paar overstaande hoeken gelijk aan ß.) Bewijs. Liggen A, B, C en D in deze volgorde op een cirkel, dan staan overstaande hoeken op complementaire bogen. Hun hoekensom is dus de helft van 2ß. Is omgekeerd bijvoorbeeld B + D = ß, dan trekt men de cirkel door A, B en C. De boog van deze cirkel tussen C en A is de verzameling van alle punten aan die kant van AC, van waaruit men AC onder een hoek van ß B ziet. D moet dus op deze boog liggen. Kies een punt P buiten een cirkel C. Trek door P twee lijnen die C snijden. (Zie fig. 16) De driehoeken PAB en PA B zijn dan gelijkvormig, dus PA : PB = PA : PB, ofwel PA PB = PA PB. Met andere woorden: het product van de afstanden van P tot de snijpunten met C is onafhankelijk van de keuze van de lijn door P. Dit product PA PB heet de macht van P ten opzichte van de cirkel. Kiest men voor de lijn de raaklijn, dan ziet men dat de macht het kwadraat is van de lengte van het raaklijnstuk vanuit P aan de cirkel. Ligt P binnen de cirkel (fig. 17), dan leidt men evenzo af dat PA PB onafhankelijk is van de keuze van de lijn door P. Ook dan noemt men dit product de macht van P. Om beide gevallen te onderscheiden geeft men de macht een teken: positief 5

6 als P buiten, negatief als P binnen de cirkel ligt. De punten op de cirkel hebben als grensgeval van beide soorten de macht nul; als P de cirkel nadert, gaat de macht van P inderdaad naar nul. fig. 16 fig. 17 Opgave 2.1 Wat is de verzameling van alle punten die een gegeven macht ten opzichte van een gegeven cirkel bezitten? Opgave 2.2 Gegeven zijn twee niet-concentrische cirkels. Bewijs dat de verzameling van alle punten die gelijke macht ten opzichte van de cirkels hebben, een lijn is. (Deze lijn heet de machtlijn van de cirkels.) Snijden de cirkels elkaar, dan is de machtlijn de verbindingslijn van de snijpunten. Opgave 2.3 Gegeven zijn drie cirkels. Geen twee ervan zijn concentrisch. Bewijs dat de drie machtlijnen van de drie paren cirkels door één punt gaan. (Dit punt heet het machtpunt van het drietal cirkels.) Opgave 2.4 De zijden van een koordenvierhoek ABCD worden verlengd. S is het snijpunt van AB en CD, T dat van AD en BC. Bewijs dat de binnenbissectrices van de hoeken S en T elkaar loodrecht snijden. (Zie fig. 18) Opgave 2.5 ABCD is een koordenvierhoek. P is een willekeurig punt van de omgeschreven cirkel. (Zie fig. 19) De projecties van P op AB, BC, CD, DA, AC en BD heten respectievelijk E, F, G, H, K en L. Bewijs dat PE PG = PF PH = PK PL. fig. 18 fig. 19 6

7 3 Enige formules voor driehoeken In driehoek ABC trekt men de hoogtelijn h c uit C. Volgens de stelling van Pythagoras is c (b 2 h 2 c) 1 2 =(a 2 h 2 c) 1 2, dus (door te kwadrateren) c 2 +b 2 h 2 c 2c(b 2 h 2 c) 1 2 = a 2 h 2 c. Sorteren en nogmaals kwadrateren geeft (c 2 +b 2 a 2 ) 2 = 4c 2 (b 2 h 2 c). Aangezien de oppervlakte O van ABC gelijk is aan 1 2 h cc, geldt fig O 2 = 4b 2 c 2 (c 2 + b 2 a 2 ) 2 = 2bc +(c 2 + b 2 a 2 ) 2bc (c 2 + b 2 a 2 ) = (b + c) 2 a 2 a 2 (b c) 2 = (b + c a)(b + c + a)(a b + c)(a + b c) Noem s = 1 (a + b + c), dan is als gevolg hiervan 2 O 2 = s(s a)(s b)(s c) (de zgn. oppervlakteformule van Heron) Omdat O = 1 2 h cc, volgt hieruit tevens dat h c = 2 cp s(s a)(s b)(s c) (de zgn. hoogtelijnformule) Stel I is het middelpunt van de ingeschreven cirkel van driehoek ABC. (Zie fig 21) Uit a = y + z, b = z + x en c = x + y volgt x = s a, y = s b en z = s c. Is r de straal van de ingeschreven cirkel, dan is O als som van de oppervlakten van BIC, CIA en AIB gelijk aan 1 2 r 2(s a)+2(s b)+2(s c) = rs, dus O = rs en via de oppervlakteformule volgt hieruit fig. 21 r 2 (s a)(s b)(s c) = s : 7

8 Is M het middelpunt van de omgeschreven cirkel van ABC, enr de straal van deze cirkel, dan geldt R sin A = 1 2 a (zie fig. 22), dus a sin A = b sin B = (de sinusregel) c sin C =2R fig. 22 Opgave 3.1 I a en r a zijn middelpunt en straal van de aan de zijde a aangeschreven cirkel. (Zie fig 9) Bewijs dat O = r a (s a) enr 2 a = s(s b)(s c) s a. Opgave 3.2 Bewijs dat van alle driehoeken met gegeven omtrek de gelijkzijdige de grootste oppervlakte heeft. 4 Gemengde opgaven Opgave 4.1 In koordenvierhoek ABP C is D het snijpunt van de diagonalen. 1 Bovendien is ABC een gelijkzijdige driehoek. Bewijs dat + 1 = 1. PB PC PD Opgave 4.2 In vierkant ABCD ligt P zo, dat PCD = PDC =15. Bereken AP B. Opgave 4.3 Wat is het kleinste aantal scherphoekige driehoeken waarin men een willekeurige stomphoekige driehoek kan verdelen? En een vierkant? (Geef dus ook een bewijs dat de gevonden waarden minimaal zijn.) Opgave 4.4 M is het midden van een koorde PQ van een cirkel. Door M zijn nog twee koorden AB en CD getrokken (met A en C aan dezelfde kantvan PQ). AD snijdt PQ in X, BC snijdt PQ in Y. Bewijs dat M ook het midden is van het lijnstuk XY. (Zie fig. 23) fig. 23 8

9 Opgave 4.5 D, E en F zijn de voetpunten van de hoogtelijnen uit A, B en C op de overstaande zijden van driehoek ABC. DEF heet de voetpuntsdriehoek van ABC. Bewijs dat het hoogtepunt H van ABC het middelpunt is van de ingeschreven cirkel van de voetpuntsdriehoek DEF. (Zie fig. 24) fig. 24 9

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

1 Introductie. 2 Oppervlakteformules

1 Introductie. 2 Oppervlakteformules Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

12.1 Omtrekshoeken en middelpuntshoeken [1]

12.1 Omtrekshoeken en middelpuntshoeken [1] 12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde

Nadere informatie

Extra oefeningen: de cirkel

Extra oefeningen: de cirkel Extra oefeningen: de cirkel 1. Gegeven een cirkel met middelpunt M en straal r 5 cm en. De lengte van de raaklijnstukken PA PB uit een punt P aan deze cirkel bedraagt 1 cm. Bereken de afstand PM. () PAM

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie

STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie Euclides van Alexandrië (ca. 265-200 v.chr.) Thales van Milete (ca. 624 v.chr. - 547 v.chr.) INHOUDSOPGAVE Algemene begrippen..blz. 1-3 - Stelling en bewijs

Nadere informatie

Neem [pr]=[ps] en beschrijf uit r en s twee cirkelbogen met dezelfde straal, die elkaar in c snijden. [cp] is de loodlijn op [ab].

Neem [pr]=[ps] en beschrijf uit r en s twee cirkelbogen met dezelfde straal, die elkaar in c snijden. [cp] is de loodlijn op [ab]. Met a en b als middelpunt en met straal groter dan de helft van [ab] trekt men met dezelfde straal twee cirkelbogen, die elkaar snijden in c en d; cd is de middelloodlijn en m het midden van [ab] Neem

Nadere informatie

Driehoeken. Enkele speciale topics. Arne Smeets. Trainingsweekend Februari 2008

Driehoeken. Enkele speciale topics. Arne Smeets. Trainingsweekend Februari 2008 Driehoeken Enkele speciale topics Arne Smeets Trainingsweekend Februari 2008 Trilineaire en barycentrische coördinaten Definitie van trilineaire coördinaten Beschouw (in het vlak) een driehoek ABC en een

Nadere informatie

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 07 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 4 vragen. Voor dit eamen zijn maimaal 7 punten te behalen. Voor elk vraagnummer

Nadere informatie

Basisconstructies, de werkbladen 1 Het midden van een lijnstuk

Basisconstructies, de werkbladen 1 Het midden van een lijnstuk Basisconstructies, de werkbladen 1 Het midden van een lijnstuk Basisconstructie 1 Het lijnstuk AB Neem vanuit A een afstand tussen de benen van de passer die wat groter is dan van A tot het geschatte midden

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen). Jozef Hoekmeters bevindt zich op de top van een berg die hoog uit zee rijst (zie figuur ). Aan de overkant van het water ziet hij een appartementsgebouw vlakbij

Nadere informatie

Exponenten en Gemengde opgaven logaritmen

Exponenten en Gemengde opgaven logaritmen 08 Exponenten en Gemengde opgaven logaritmen Lijnen en cirkels bladzijde a k p // l p, dus p + p p p + (p + )(p + ) (p )(p ) p + 6p + p 6p + 8 p p b k p l p, dus rc kp rc lp p + p p p + p p p + p p p p

Nadere informatie

8.1 Gelijkvormige en congruente driehoeken [1] Willem-Jan van der Zanden

8.1 Gelijkvormige en congruente driehoeken [1] Willem-Jan van der Zanden 8.1 Gelijkvormige en congruente driehoeken [1] 1 8.1 Gelijkvormige en congruente driehoeken [1] Twee evenwijdige lijnen worden gesneden door een derde lijn. De twee rode hoeken (F-hoeken) zijn gelijk.

Nadere informatie

Gerichte lengtes spelen o.a. een rol bij de stelling van Ceva en Menelaos en komen in deel 3 aan de orde.

Gerichte lengtes spelen o.a. een rol bij de stelling van Ceva en Menelaos en komen in deel 3 aan de orde. Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi, gerichte lengtes Trainingsweekend, 16 februari 2008 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Cabri-werkblad. Apollonius-cirkels

Cabri-werkblad. Apollonius-cirkels Cabri-werkblad Apollonius-cirkels 1. Doel We zullen in dit werkblad kennismaken met de zogenoemde Apollonius-cirkels [1] van een driehoek. Daarvoor moeten ook enkele eigenschappen van (binnen- en buiten)bissectrices

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

wiskunde B vwo 2017-II

wiskunde B vwo 2017-II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek . Omtrekshoeken en middelpuntshoeken Opgave : ACB is constant Opgave : a. * b. * c. ACB AMB Opgave 3: a. * b. de drie cirkels gaan door één punt c. de drie lijnstukken gaan door één punt Opgave 4: a. Teken

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Hoofdstuk 8 : De Cirkel

Hoofdstuk 8 : De Cirkel - 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: juli 00 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Eindexamen wiskunde B vwo II

Eindexamen wiskunde B vwo II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi Trainingsweekend 23 25 januari 2009 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen voor de verschillende

Nadere informatie

Vlakke meetkunde en geogebra

Vlakke meetkunde en geogebra Vlakke meetkunde en geogebra Open de geogebra-app. Kies het algebra- en tekenvenster. Aan de linkerkant zie je het algebravenster en rechts daarvan het tekenvenster met een x-as en een y-as. Om een rooster

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 16 januari 2015 Tijd: 13.30 16.30 uur Aantal opgaven: 5 Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

PQS en PRS PS is de bissectrice van ˆP

PQS en PRS PS is de bissectrice van ˆP OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is

Nadere informatie

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12 Katern 3 Meetkunde Inhoudsopgave 1 Hoeken 2 2 Congruentie en gelijkvormigheid 4 3 Driehoeken 8 4 Vierhoeken 12 5 Lijnen in een driehoek 15 Inleiding De vlakke meetkunde is de meetkunde die zich afspeelt

Nadere informatie

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

7.0 Voorkennis. Definitie = Een afspraak, die niet bewezen hoeft te worden.

7.0 Voorkennis. Definitie = Een afspraak, die niet bewezen hoeft te worden. 7.0 Voorkennis Definitie = Een afspraak, die niet bewezen hoeft te worden. Voorbeeld definitie: Een gestrekte hoek is een hoek van 180 ; Een rechte hoek is een hoek van 90 ; Een parallellogram is een vierhoek

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

12 Bewijzen in de vlakke meetkunde

12 Bewijzen in de vlakke meetkunde ewijzen in de vlakke meetkunde bladzijde 54 a ' b Gegeven: e gelijkzijdige driehoek met zijn omgeschreven cirkel. unt ligt op de kortste boog en ligt op het verlengde van zo, dat =. riehoek is gelijkzijdig.

Nadere informatie

Opgaven bij Analytische meetkunde in een nieuw jasje

Opgaven bij Analytische meetkunde in een nieuw jasje Opgaven bij Analytische meetkunde in een nieuw jasje Opgave 1. Gegeven de lijnen m en n met vectorvoorstellingen 6 8 x = 7 + µ 0. Bepaal de afstand tussen m en n. 16 0 4 x = 2 + λ 1 en Opgave 2. Bewijs

Nadere informatie

wiskunde B vwo 2015-II

wiskunde B vwo 2015-II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

2.1 Cirkel en middelloodlijn [1]

2.1 Cirkel en middelloodlijn [1] 2.1 Cirkel en middelloodlijn [1] Hiernaast staat de cirkel met middelpunt M en straal 2½ cm In het kort: (M, 2½ cm) Op de zwarte cirkel liggen alle punten P met PM = 2½ cm In het rode binnengebied liggen

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Bewijs. Zie figuur 2. Zijn U en V de projecties van P en Q op r, dan geldt: PU = PR (in driehoek RQV met PU // QV) QV QR

Bewijs. Zie figuur 2. Zijn U en V de projecties van P en Q op r, dan geldt: PU = PR (in driehoek RQV met PU // QV) QV QR Cabri-vraag VRAAG Hoe teken je een kegelsnede waarvan een punt P, een brandpunt F en de bij F behorende richtlijn r gegeven zijn? ANTWOORD Zoals bekend kan je met Cabri een kegelsnede tekenen (we spreken

Nadere informatie

Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen

Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen (Deze les sluit aan bij het paragraaf 3 en 4 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 017 tijdvak 1 maandag 15 mei 13:30-16:30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 14 vragen. Voor dit examen zijn maximaal 69 punten te behalen. Voor elk

Nadere informatie

Diagnostische toets. AMB stelling van de omtrekshoek AMB ˆ ANB. AQB ARB ˆ 180 koordenvierhoekstelling =

Diagnostische toets. AMB stelling van de omtrekshoek AMB ˆ ANB. AQB ARB ˆ 180 koordenvierhoekstelling = P Q M N R l M ˆ N M ˆ N 4M ˆ 4N ZZZ dus M ˆ N ˆ QP ˆ P ˆ M stelling van de omtrekshoek M ˆ N Q R ˆ 80 koordenvierhoekstelling R ˆ N stelling van de omtrekshoek Q PQ ˆ 80 gestrekte hoek Hieruit volgt dat

Nadere informatie

Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d.

Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d. 17 Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d. 18 Vermoeden: De drie hoogtelijnen gaan door 1 punt 34. a. De drie middelloodlijnen van een

Nadere informatie

Enkel-, Dubbelverhouding en Harmonische Objecten

Enkel-, Dubbelverhouding en Harmonische Objecten januari 2008 Enkel-, Dubbelverhouding en Harmonische Objecten Inleiding In de meetkunde werkt men vaak met verhoudingen van de afstanden van één punt tot twee andere. In het bijzonder natuurlijk bij de

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Henrik Bastijns en Joachim Nelis 22-4-2014

Henrik Bastijns en Joachim Nelis 22-4-2014 HEILIGE DRIEVULDIGHEIDSCOLLEGE Onderzoeksopdracht Stelling van Ptolemaeus Henrik Bastijns en Joachim Nelis 22-4-2014 Inhoudstafel Historische achtergrond Bewijs van de stelling van Ptolemaeus Toepassingen

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer.

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer. Cabri-werkblad Raaklijnen Raaklijnen aan een cirkel Definitie Een raaklijn aan een cirkel is een rechte lijn die precies één punt (het raakpunt) met de cirkel gemeenschappelijk heeft. Stelling De raaklijn

Nadere informatie

Over de tritangent stralen van een driehoek

Over de tritangent stralen van een driehoek Over de tritngent strlen vn een driehoek Dick Klingens mrt 004 Inleiding. Het bijvoeglijk nmwoord 'tritngent' gebruiken we ls we spreken over de incirkel (ingeschreven cirkel) en de uitcirkels (ngeschreven

Nadere informatie

Voorbereiding : examen meetkunde juni - 1 -

Voorbereiding : examen meetkunde juni - 1 - Voorbereiding : examen meetkunde juni - 1 - De driehoek : Congruentiekenmerken van een driehoek kennen Soorten lijnen in een driehoek kennen Bissectricestelling kennen Stelling van het zwaartelijnstuk

Nadere informatie

Cabri-werkblad Negenpuntscirkel

Cabri-werkblad Negenpuntscirkel Cabri-werkblad Negenpuntscirkel 0. Vooraf - Bij dit werkblad wordt kennis verondersteld van de eigenschappen van parallellogrammen, rechthoekige driehoeken en van de elementaire eigenschappen van de koordenvierhoek.

Nadere informatie

Uitwerkingen toets 18 maart 2011

Uitwerkingen toets 18 maart 2011 Uitwerkingen toets 8 maart 20 Opgave. Alle positieve gehele getallen worden rood of groen gekleurd, zodat aan de volgende voorwaarden wordt voldaan: Er zijn zowel rode als groene getallen. De som van drie

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Driehoeksongelijkheid en Ravi (groep 1)

Driehoeksongelijkheid en Ravi (groep 1) Driehoeksongelijkheid en Ravi (groep 1) Trainingsdag 3, april 009 Driehoeksongelijkheid Driehoeksongelijkheid Voor drie punten in het vlak A, B en C geldt altijd dat AC + CB AB. Gelijkheid geldt precies

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

2010-II bij vraag 1. Vooraf: De stelling van de constante (omtreks)hoek.

2010-II bij vraag 1. Vooraf: De stelling van de constante (omtreks)hoek. 200-II bij vraag Vooraf: De stelling van de constante (omtreks)hoek. Een applet (animatie) hierover is te vinden op bijvoorbeeld: http://home.planet.nl/~hietb062/java3.htm#constantehoek De punten P op

Nadere informatie

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B Centrale Commissie Voortentamen Wiskunde Syllabus voortentamen Wiskunde B Deze syllabus bevat een beschrijving van het programma van het voortentamen Wiskunde B dat wordt afgenomen door de Centrale Commissie

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde. Vlaamse Wiskunde Olympiade 995-996 : Tweede Ronde De tweede ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

wiskunde B vwo 2017-I

wiskunde B vwo 2017-I wiskunde vwo 017-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek,

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 0 tijdvak woensdag 8 mei 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Hoofdstuk 5 : De driehoek

Hoofdstuk 5 : De driehoek Hoofdstuk 5 : De driehoek - 89 1. Congruente figuren Figuren die elkaar volkomen kunnen bedekken noemen we congruente figuren. Congruente figuren hebben dezelfde vorm (~ ) en dezelfde grootte (=). Als

Nadere informatie

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen Kern Meetkundige plaatsen a Zie afbeelding rechts. b In het niet-gearceerde deel. c Op de middenparallel. l m 2 a Teken lijn m en lijn n, beide evenwijdig aan l en op een afstand van 3 cm van l. b Punten

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

Inversie. r 2 P Q. P Q =

Inversie. r 2 P Q. P Q = Inversie Zij O een punt in het vlak en zij r > 0 een reëel getal. De inversie I O,r met centrum O en straal r is de afbeelding vlak \ {O} vlak \ {O} die als volgt wordt gedefinieerd: I O,r (P ) het unieke

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

Hoofdstuk 6 : Projectie en Stelling van Thales

Hoofdstuk 6 : Projectie en Stelling van Thales Hoofdstuk 6 : Projectie en Stelling van Thales - 127 1. Projectie op een rechte (boek pag 175) x en y zijn twee... rechten. We trekken door het punt A een evenwijdige rechte met de rechte y en noemen het

Nadere informatie

HZH: c, α en β ZZR: a, b en β

HZH: c, α en β ZZR: a, b en β EETKUNE e hoekpunten van een driehoek of vierhoek geven we met HOOFLETTER aan. Lijnen krijgen een kleine letter en voor hoeken gebruiken we vaak Griekse letters. Het Griekse alfabet begint met de letters

Nadere informatie

Cabri-werkblad Pool en poollijn bij een cirkel

Cabri-werkblad Pool en poollijn bij een cirkel Cabri-werkblad Pool en poollijn bij een cirkel 1. Inleiding In dit werkblad bekijken we enkele eigenschappen van de pool en poollijn bij cirkels (gedeelten uit de pooltheorie). Ook de pooldriehoek bij

Nadere informatie

Open het programma Geogebra. Het beginscherm verschijnt. Klik voordat je verder gaat met je muis ergens in het

Open het programma Geogebra. Het beginscherm verschijnt. Klik voordat je verder gaat met je muis ergens in het Practicum I Opgave 1 Tekenen van een driehoek In de opgave gaan we op twee verschillende manieren een driehoek tekenen. We doen dit door gebruik te maken van de werkbalk (macrovenster) en van het invoerveld.

Nadere informatie

x y C. von Schwartzenberg 1/22 = + = Zie de lijnen in de figuur hiernaast. Zie de grafiek van k in de figuur rechts hiernaast. 2b

x y C. von Schwartzenberg 1/22 = + = Zie de lijnen in de figuur hiernaast. Zie de grafiek van k in de figuur rechts hiernaast. 2b G&R vwo D deel C von Schwartzenberg / a k: = x gaat door (0, ) ( 0 = ) en (, ) ( = ) l : x = 6 gaat door (0, ) (0 = 6) en (, 0) ( 0 = 6) Zie de lijnen in de figuur hiernaast b = x x = of x = of x = 6 of

Nadere informatie

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel.

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Raaklijnen Verkennen Raaklijnen Inleiding Verkennen Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Uitleg Raaklijnen Uitleg Opgave 1 Bekijk de Uitleg. a) Wat is de vergelijking

Nadere informatie

Lijst van alle opdrachten versie 13 mei 2014

Lijst van alle opdrachten versie 13 mei 2014 Lijst van alle opdrachten versie 13 mei 2014 Punt Pu1 Zorg dat Toon assen aan staat. Teken een punt in het vlak. Wijzig de naam naar X (hoofdletter!) (rechtsklikken op het punt voor openen snelmenu). Sleep

Nadere informatie

Voorkennis meetkunde (tweede graad)

Voorkennis meetkunde (tweede graad) Voorkennis meetkunde (tweede graad) 1. Vlakke meetkunde Lengten van de zijden en grootte van de hoeken van driehoeken en vierhoeken - De som van de hoeken van een driehoek is 180 - Bij een rechthoekige

Nadere informatie

Hoofdstuk 10 Meetkundige berekeningen

Hoofdstuk 10 Meetkundige berekeningen Hoofdstuk 10 Meetkundige berekeningen Les 0 (Extra) Aant. Voorkennis: Hoeken en afstanden Theorie A: Sinus, Cosinus en tangens O RHZ tan A = A RHZ O RHZ sin A = SZ A RHZ cos A = SZ Afspraak: Graden afronden

Nadere informatie

IMO-selectietoets I vrijdag 6 juni 2014

IMO-selectietoets I vrijdag 6 juni 2014 IMO-selectietoets I vrijdag 6 juni 04 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave. Bepaal alle paren (a, b) van positieve gehele getallen waarvoor a + b a b + a en b a ab + b. Oplossing.

Nadere informatie

LANDSEXAMEN VWO

LANDSEXAMEN VWO LANDSEXAMEN VWO 2017-2018 Eamenprogramma WISKUNDE B (V.W.O.) ( nieuw eamenprogramma*) 1 Het eindeamen Het eindeamen bestaat uit het centraal eamen en het commissie-eamen. Het centraal eamen wordt afgenomen

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Meetkundige constructies Leerlingmateriaal

Meetkundige constructies Leerlingmateriaal Meetkundige constructies Leerlingmateriaal Nynke Koopmans Roeland Hiele Historical Aspects of Classroom Mathematics Universiteit Utrecht, juni 2013 Inleiding Inleiding Een meetkundige constructie is een

Nadere informatie

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven

Nadere informatie

Stelling 1.5 Geven isometrieën J 1 en J 2 hetzelfde beeld in drie punten die niet op één lijn liggen, dan zijn ze identiek. Bewijs. De isometrie J 1 2

Stelling 1.5 Geven isometrieën J 1 en J 2 hetzelfde beeld in drie punten die niet op één lijn liggen, dan zijn ze identiek. Bewijs. De isometrie J 1 2 Lesbrief 8 Isometrieën 1 Inleiding Een één-éénduidige afbeelding van het vlak op zichzelf heet een transformatie van het vlak. Als T 1 en T 2 transformaties zijn, wordt de transformatie T 1 gevolgd door

Nadere informatie

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen Wiskunde oefentoets hoofdstuk 0: Meetkundige berekeningen Iedere antwoord dient gemotiveerd te worden, anders worden er geen punten toegekend. Gebruik van grafische rekenmachine is toegestaan. Succes!

Nadere informatie