Ruimtemeekunde. Hoofdstuk 7
|
|
|
- Anna Verhoeven
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Ruimtemeekunde Hoofdstuk 7 a,,9 m,9 9, 9, 0 m a prisma: 0 0 m piramide: 0 : 80 m e inhoud van het prisma is keer zo groot als de inhoud van de piramide. a ilinder: m kegel: 90 : 60 m e inhoud van de ilinder is keer zo groot als de inhoud van de kegel inhoud G 9: inhoud G a kleine etonvoet: : 9 6,6 dm 6 dm grote etonvoet: 6 6: 8 08,9 dm 09 dm e inhoud van de grote voet is 8 maal groter dan de inhoud van de kleine voet. e grote voet weegt dus 8 90 kg a hoogtelijnen a inhoud z z z inhoud z inhoud inhoud 8 m ml 6 liter 7 a mm 0, dm 0, L a 60 0 d van naar e 60 8 a,,6, dm,9,6, kg a, 6 m liter m a heops:,, 6,6 : 906 m hefren:,,, : m, de ewering klopt dus niet Noordhoff Uitgevers v
2 a, meter 0 7 O a 8, 6, 0 O 0, 0, 0 E 8, 0, 7 F 8, 6, 7 G 0, 6, 7 S,, 0 d T,, a,, 0, 0, 6 G,,, 0, 0 a rhz 6 rhz sz, 0 6 a In de tekening is m m 000 m hoogte van naar is 0 m e horizontale afstand is 000 meter tan 0 : 000 0, 7 d e weg is even lang en heeft hetzelfde hoogtevershil e Tussen elke hoogtelijn komt een even lang wandelpad vanm a rhz, 0 rhz G 9 sz G, 9,, m m m rhz 6 rhz 9 sz 00 0 kaelaan Q 0 00 P f de weg is in de tekening 6 m m 00 meter E of G d m m e m Noordhoff Uitgevers v
3 a, 0, 0 0, 0, 0 0, 0, 8 E, 0, 8 F, 0, 8 O 0 6 a rhz rhz E 900 sz E 0 00 E H d rhz 0 00 rhz O sz O, e O of F f O, rhz ST rhz PS 0,8 0,6 sz PT,,6 F 8 0 m m rhz E 0 00 rhz EH 6 sz H,9 7 a rhz 6 rhz G 900 sz G 9, a H P G 9, rhz 6 rhz 9 sz H rhz rhz H sz H, 9 In diagonaalvlak HE E 0 rhz G 9, rhz GP 900 sz P 9, 8 a e afstand van H tot het punt loodreht onder G is meter rhz 9 rhz sz GH 0 0 GH,6 meter 6 m rhz GH,6 0 rhz H 9 sz G,6 9 Noordhoff Uitgevers v
4 9 a 8 : 7m rhz 7 9 rhz 76 sz 6 tan H ST HS 6,, H 67 rhz 6 rhz 9 sz tan H H 0, H rhz 8 6 rhz 6 6 sz 0 00 tan T TT T 6, T 0 rhz 76 rhz 8 sz 900 m tan P P 0,67 P 0 dus P 0 a rhz F,,76 rhz,8, sz F 9 rhz F,,76 rhz, 0, sz F 6 rhz E,,76 rhz H,, sz EH 6 6 raad F heeft de grootste hoek omdat het het kortste touw is. sin GE E, 0,8 EG e hellingshoek 7 e loodlijn van E op is, m rhz rhz sz 6 sin o s?, sin,, m EF,, 9m 6 a 0 0 h 0 sin o s h 0 h sin 0, m os 0, m e onderrand is, 0, 0,8 m 7 a , 9,7 9,7 sin hellingshoek 0 0,9 de hellingshoek is 8 t/m test jezelf a alle maten in dm geeft een inhoud van: 8,6, dm 0 liter e lengte van de zak gaat van 80 naar 00 m, dat is % meer. Het is de enige maat die verandert dus de inhoud wordt inderdaad % groter. rhz E,,76 rhz G, 9, sz GE Noordhoff Uitgevers v
5 a vooraanziht zijaanziht ovenaanziht opp. grondvlak 6, 6,:, m inhoud flesje is, 7, 80,7 m 8 ml e inhoud van het drinkflesje is dus groter. a in de tekening is,8 m en in werkelijkheid 00 m, dus shaal is : 6 00 :,8 e punten liggen op dezelfde hoogtelijn. Ongeveer meter hoog d a,, 0 F,, G 0,, E, 0,,, 0 ; ; 0, 7 a rhz 6 rhz sz,7 0 E,7 G,7,7 d rhz, 0 rhz G sz G,8 8 e hoogte is te erekenen in de driehoek met shuine zijde a en rehthoekzijde h e andere rehthoekzijde is 0: 7m rhz h 76 rhz 7 9 sz a 6 hoogte h m 9 a, 8, 0 E, 8, 6 0 rhz 8 6 rhz 6 6 sz 0 00 rhz 0 00 rhz G sz G,8 d os G a s G 6 T(=M) 6, 0 0,89 G,8 e vergrotingsfator is 0,, de oppervlakte wordt dus 0, 0, maal zo groot. e oppervlakte van driehoek EF is 0, 8,,7 m, dit is afgerond,6 m 6, e hoogte van de toren op de foto is ongeveer, m m op de tekening is in werkelijkheid 600 m 6m an zou de werkelijke hoogte van de toren, 6 7 m zijn. it is veel hoger dan,86 m, dus Misha heeft ongelijk. 6 Noordhoff Uitgevers v
6 tan,9 0, ,86 sin R, 0, ,8 R, e toren van Suurhusen staat dus shever dan de toren van Pisa F H F 6 a jaar weken kwartalen 6 maanden eeuw 00 jaar d uur 600 seonden e deennium 0 jaar f 0 seonden, minuten g 8 kwartalen jaar h jaar 0, eeuw i kwartier minuten j etmaal uur 6 afstand km, 0, 8,7 tijd min 8 60 Hij fietst met een snelheid van 8,7 km/uur 6 M m, FM 9,8 9, m Oppervlakte driehoek F is 0, 6 9, 7,9 m e totale oppervlakte van de uitslag is 7,9 m 7 6,, 0 8 tan 68, 9 rhz M 9 rhz MF 9 sz F, 8 rhz F, 8 rhz FP 8 6 sz P 9, 8 P is dus 9, 60 hoogte, 6, 0,8 m opp driehoek, 0,8 : 67,7 m 6 inhoud van de vaas: 67,7 9, 997, m 997, m,997 dm liter 6 a :, uur 0, 60 minuten dus uur en minuten.0 uur 6 a 0:80,7 uur 0,7 60 minuten dus uur en minuten. uur : 00 dagen oktoer dagen 9 novemer 67. uur 8 uur 7.uur 7. uur.0 uur 8. uur 68 a : 08 stenen : 8 7 stenen : 0 ij ij 66 m : ij 80 ij 60 m 69 a,6 0,8,76 m,76,,06 m,06 m 6 dm 6 : 80 8 kruiwagens 70 a,,98,, 0,6,7 m,7 m 70 dm 70 liter 70 : 0 7, minuten dus uur en 7, minuten 7,6 m, m,6 m Noordhoff Uitgevers v 7
Hoofdstuk 2 Vlakke meetkunde
Opstap eellijn, hoogtelijn, samen 180 en samen 360 O-1a P 60º R d O-2a O-3a d P x x Q e drie deellijnen van de driehoek gaan inderdaad door één punt. M O Zie opdraht O-2a. U S V T UV is de hoogtelijn op
Hoofdstuk 7 Goniometrie
V-1a 4 Voorkennis 5 C A 5 m B C = 10 5 = 9 ABC is geen rehthoekige driehoek. V-2a 76 14 K m L d M = 10 14 76 = 90 L 0 De rehthoeksn zijn de n LM en KM. De langste is KL. d LM = 0 KM = 16 KL = 900 256 +
Hoofdstuk 6 Goniometrie
Opstap Tangens O-1a EF!1044 32,3 m zije kwaraat zije kwaraat KL 30 m 900 ST 20 m 400 LM 15 m 225 TW? 225 KM? 1125 SW 25 m 625 KM!1125 33,5 m TW!225 15 m O-2a Driehoek PQR is een rehthoekige riehoek omat
Hoofdstuk 8 - Ruimtefiguren
Voorkennis V-1a De oppervlakte van ABC is 12 5 : 2 = 0 m 2. zijde kwadraat AB = 12 144 AC = 5 BC = 25 169 d BC = 169 = 1 m De omtrek van ABC is 5 12 1 = 0 m. BD = 12 4 = 8 m De oppervlakte van BCD is 8
Noordhoff Uitgevers bv
V-1a Voorkennis C A m B C = 10 = 9 ABC is geen rehthoekige driehoek. V-a K m L d M = 10 = 90 L 0 M De rehthoekszijden zijn de zijden LM en KM. De langste zijde is zijde KL. d zijde kwadraat LM = 0 KL =
Hoofdstuk 2 Vlakke meetkunde
Opstap Hoeken, driehoeken en vierhoeken O-1a P = 65 R O-2a O-3a O-4a P A De driehoek is een gelijkzijdige driehoek. M Q P + + N Q De lengte van OP is 3,5 m. De oppervlakte van ^MNO is MN OP : 2 5,4 3,5
Blok 4 - Keuzemenu. Verdieping - Driehoeksmetingen. 1092,33 3, meter = 4,118 km De afstand is ongeveer 4,1 km.
1a a 3a Verieping - Driehoeksmetingen 109,33 3,77 4118 meter = 4,118 km De afstan is ongeveer 4,1 km. 45 L 4,1 km Z Zoetermeer Voorshoten is 68 mm Leien Voorshoten is 94 mm In e tekening is 1 km geteken
vlieger rechthoek ruit parallellogram vierkant
4-1 Vlakke figuren 1a 6 5 4 3 2 A D C 1 B O 1 2 3 4 5 6 d Figuur ABCD is een vlieger. 2a B(5, 1) C(5, 6) D(2, 6) AD BC DC BC AD // BC AD AB 3a 4a d e A B C D E vlieger rehthoek ruit parallellogram vierkant
Hoofdstuk 6 Inhoud uitwerkingen
Kern Prisma en cilinder a De inhoud is G h=,5 = 4,5cm. b Die inhoud is even groot. a De inhoud is G h= ( 4) 8 = 64 cm b Op iedere hoogte geldt dat de doorsnede van het rechte prisma dezelfde oppervlakte
Noordhoff Uitgevers bv
a Gelijkvormigheid ladzijde QR is een vergroting van dus de driehoeken en QR zijn gelijkvormig Q Vergrotingsfator: 7 e twee driehoeken zijn een vergroting van elkaar; alle zijden zijn dus met 7 7 7 dezelfde
Symmetrie en oppervlakte
Symmetrie en oppervlakte Hoofdstuk 5 1 a logoen4 /d 1 1 1 313 414 c logo 1: 180 logo : 180 logo 3: 90 logo 4: 90 d alle logo s zijn puntsymmetrisch 6 a a lijnsymmetrisch draaisymmetrisch puntsymmetrisch
De breedte van de rechthoek is gelijk aan de omtrek van die grote cirkel.
Verieping - De ol 1a De reete van e rehthoek is preies gelijk aan e lengte van e roe irkel op e ol. De omtrek van ie irkel is 2 π 20 125,7 m. De hoogte van e rehthoek is gelijk aan e halve omtrek van e
Blok 3. 3-1 Afronden. 175 : 15 11 rest 10 Ze moet minimaal 12 maanden sparen. b 175 : 6 29 rest 1. Ze moet dan 30,- per maand gaan sparen.
3-1 Afronden 1a 3 (7,6 8,2) 6,6 9,2 3 15,8 6,6 9,2 47,4 6,6 9,2 63,2 63,2 : 8 7,9 Isa staat gemiddeld 7,9 voor wiskunde. Ze krijgt een 8 op haar rapport. 2a 6,139 wordt 6,14 d 8,4311 wordt 8,43 4,097 wordt
8.1 Inhoud prisma en cilinder [1]
8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande
Noordhoff Uitgevers bv
72 Voorkennis V-a Driehoek is een rehthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 5 38,5 m 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 5 30 m 2.
Hoofdstuk 8 - Ruimtefiguren
Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm
Noordhoff Uitgevers bv
-a 34 d e -2-3a -4a //d Extra oefening - asis De ruimtefiguur heeft 8 driehoeken en 5 rehthoeken als grensvlakken. De ruimtefiguur heeft 2 rien en 2 hoekpunten. Sommige rien zijn gestippeld omdat je deze
de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1
H5 RUIMTELIJKE FIGUREN IN HET PLAT VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Minstens 8; zie. Hoogstens 6; zie hieronder:
Blok 4 - Vaardigheden
lok - Vaardigheden Extra oefening - asis -a Het hellingsgetal is 60 = = 0,065. -a De hellingshoek is tan (0,065),6. c De hellingshoek van Raymond is tan ( 60 c 960 tan = geeft tan 6 = 600 = 600 tan 6 9
Hoofdstuk 5 Oppervlakte uitwerkingen
Kern Vlakke figuren a Rechthoek, parallellogram, driehoek Oppervlakte rechthoek = lengte reedte = d Oppervlakte parallellogram = lengte hoogte = d Oppervlakte driehoek = asis hoogte = d a Knip de parallellogram
Hoofdstuk 4 Machtsverbanden
Opstap Derdemachten O-1a I r r r 1 De inhoud van een kuus met r is 1 cm 3. Als I 7 geldt r 3 want 3 3 7. Een kuus met I 7 heeft een rie van 3 cm. c r in cm 1 3 d I in cm 3 1 7 6 1 l in cm 3 9 7 6 3 - -1-3
Noordhoff Uitgevers bv
Extra oefening - asis -1a Van trap 1 is de hellingshoek 17. Van trap is de hellingshoek 14. Van trap 1 is het hellingsgetal 60 = 0,. 00 Van trap is het hellingsgetal 0 = 0,. 10 c De tekening hiernaast
Hoofdstuk 2 - Afstanden
Hoofstuk - fstanen. e afstan vanuit een punt lazije a riehoek R is een rehthoekige riehoek met R 5 en R, us gelt R + R 5 + 9 9 59, en R liggen eien in het vlakeel. R an is R R + 5 + 8 89. r gelt at R met
Hoofdstuk 2 - Plaats en afstand
Voorkennis V-1a Maaike ziet de voorwerpen vanuit Z, het zuiden. b Je eigen tekening. In je tekening staat rechts de vaas met rozen, in het midden de doos tissues en links de waxinelichthouder. V-2a Hoek
25.0 INTRO. 5 a. bc minstens 8 hoogstens AANZICHTEN. 6 minstens 2 hoogstens 4
H5 RUIMTELIJKE FIGUREN IN HET PLAT HAVO 5.0 INTRO 1 5 a a Meestal niet. Nee. Een asketal en een voetal wel; de rugyal en de andere twee niet. d Nee. e Ja (eide perfet rond). f Ja (nauwkeurig op shaal nagemaakt).
H24 GONIOMETRIE VWO. Dus PQ = 24.0 INTRO. 1 a 6 km : = 12 cm b. 5 a 24.1 HOOGTE EN AFSTAND BEPALEN. 2 a factor = 3
H GONIOMETRIE VWO.0 INTRO a 6 km : 0.000 = cm a Dus PQ = 680 = 0, dus zeilt 7 ze 0 meter in minuten. Dat is 0 0 = 800 meter in een uur. Dat is,8 km/u.. HOOGTE EN AFSTAND BEPALEN a factor = 0,6 Diepte put
Goniometrische verhoudingen
Samenvatting 7.1 en 7.2 e onderstaande driehoek heeft een rechte hoek in punt. kan berekend worden als 2 zijden gegeven zijn: r geldt: o (overstaande zijde) tan = overstaande zijde aanliggende zijde =
Goniometrische verhoudingen.
www.betales.nl Samenvatting 7.1 en 7.2 e onderstaande driehoek heeft een rechte hoek in punt. kan berekend worden als 2 zijden gegeven zijn: r geldt: o (overstaande zijde) tan = overstaande zijde aanliggende
Hoofdstuk 2 boek 1 havo b Oppervlakte en inhoud.
Hoofdstuk boek havo b Oppervlakte en inhoud.. Vlakke figuren, oppervlakte.. Het halve cirkeltje boven past precies in het halve cirkeltje onder, dan komt er een rechthoek met breedte en lengte 4 + + +
Vraag Antwoord Scores
Eindexamen wiskunde vmbo gl/tl 00 - II Beoordelingsmodel Tafeltennistafel maximumscore 3 Inhoud = 55 75 Dit is 5 500 (cm 3 ) Dit is 0,55 (m 3 ) (dus meer dan 0,5 (m 3 )) maximumscore 5 Lengte van de tafel
04 Meetkunde. hoofdstuk. 4.1 Uitslagen
hoofdstuk 0 eetkunde bladzijde 06 e schuine muren aan de benedenkant van de woning. e vloeren en de plafonds zijn regelmatige zeshoeken of regelmatige driehoeken. ovenaanzicht:. Uitslagen bladzijde 08
Wiskunde Uitwerkingen Leerjaar 1 - Periode 3 Meetkunde 3D Hoofdstuk 4 t/m 7
Wiskunde Uitwerkingen Leerjaar - Periode Meetkunde oofdstuk t/m 7 oofdstuk. a). a). a) opp. = ribbe ribbe = ribbe = 8 cm inh. = ribbe ribbe ribbe = ribbe =.78 cm opp. = 00 0 + 0 + 00 = 7.900 cm inh. =
6.1 Kijkhoeken[1] Willem-Jan van der Zanden
6.1 Kijkhoeken[1] Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de kijkhoek zien; De twee rode lijnen zijn kijklijnen; De kijklijnen geven de grenzen aan van het gebied dat de persoon
Noordhoff Uitgevers bv
70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm
Oppervlakte en inhoud van ruimtelijke figuren
4 Oppervlakte en inhoud van ruimtelijke figuren BALK EN KUBUS hoogte Figuur lengte reedte In figuur is een alk getekend. Bij een alk zijn steeds de twee tegenover elkaar liggende vlakken gelijk. Alle vlakken
Noordhoff Uitgevers bv
oofdstuk 0 - oeken en afstanden Voorkennis: Verhoudingen ladzijde 78 V-a e hoeken lijven gelijk want alleen de lengte van de zijden verandert en allemaal met dezelfde factor. Zijde met lengte wordt vergroot
Vraag Antwoord Scores
Beoordelingsmodel VMBO GL-TL 00-II Vraag Antwoord Scores Tafeltennistafel maximumscore 3 Inhoud = 55 75 Dit is 5 500 (cm 3 ) Dit is 0,55 (m 3 ) (dus meer dan 0,5 (m 3 )) maximumscore 5 Lengte van de tafel
Antwoorden De juiste ondersteuning
ntwoorden De juiste ondersteuning a. De straal van de cirkel waarover het beweegt is 5. De maximale hoogte van het is dus 5. Het moet dus dm omhoog. b. Het van het tweede blok beweegt over een cirkel met
Noordhoff Uitgevers bv
Voorkennis V-1a - Als je gedeelten van hokjes ij elkaar telt tot hele hokjes, dan passen op eiland A ongeveer 12 roosterhokjes. Op eiland B passen ijna 14 roosterhokjes. V-2a - Eiland A: ongeveer 22 m
Hoofdstuk 2 Oppervlakte en inhoud
Hoofdstuk 2 Oppervlakte en inhoud Les 1 Aant. 2.1 Oppervlakte van vlakke figuren Theorie A: Oppervlakte van vlakke figuren Oppervlakte driehoek = ½ zijde bijbehorende hoogte Oppervlakte parallellogram
Noordhoff Uitgevers bv
V-1a d V-2a 102 ladzijde 138 In werkelijkheid zijn er 3 rien evenwijdig aan rie. In figuur 1 zijn die rien ook evenwijdig getekend. In figuur 2 zijn deze rien zo getekend dat ze elkaar alle vier in hetzelfde
Hoofdstuk 5 - Tekenen en zien
avo deel 1 Uitwerkingen Moderne wiskunde oofdstuk 5 - ekenen en zien ladzijde 138 V-1a d In werkelijkheid zijn er 3 rien evenwijdig aan rie. In figuur 1 zijn die rien ook evenwijdig getekend. In figuur
handleiding pagina s 956 tot 964 1 Handleiding
week 32 les 1 toets en foutenanalyse handleiding pagina s 956 tot 964 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina s 726 en 727: oppervlakte ruimtefiguren pagina 778: tijdstip en tijdsduur
Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud
antekening HVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud Les 1 Oppervlakte driehoeken Oppervlakte driehoek = ½ basis hoogte Oppervlakte parallellogram = basis hoogte Oppervlakte trapezium = ½ (basis + top)
H6 ROOSTERDAM 25.0 INTRO. 5 a. b,c minstens 8: hoogstens 16
H ROOTERDAM 5.0 INTRO 5 a, minstens 8: hoogstens a Meestal niet Nee Een asketal en een voetal wel; de rugyal en de andere twee niet d Nee e Ja (eide perfet rond) f Ja (nauwkeurig op shaal nagemaakt) g
Samenvatting Moderne wiskunde - editie 8
Samenvatting door een scholier 2288 woorden 16 mei 2010 5.7 213 keer beoordeeld Vak Wiskunde Samenvatting Moderne wiskunde - editie 8 4 vmbo gemengd theoretisch H1 Grafieken en vergelijkingen Verbanden
Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1
Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven
7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1
H GONIOMETRIE HAVO.0 INTRO a schaal : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b b ongeveer 8, meter. TEKENEN OP SCHAAL 6 a schaal : b 9 a 7 a (moeilijk nauwkeurig te meten) b schaal
wiskunde CSE GL en TL
Examen VMBO-GL en TL 2019 tijdvak 1 donderdag 16 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 70 punten
de Wageningse Methode Antwoorden H12 GETALLEN EN GRAFIEKEN 1
Hoofdstuk GETALLEN EN GRAFIEKEN.0 INTRO a De slak klimt een uur met onstante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz.,5 m/u 0,5 m/u d 8 uur en 40 minuten tot 0 gram:
Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.
xamen VMO-GL en TL 2013 tijdvak 2 dinsdag 18 juni 13.30-15.30 uur wiskunde CS GL en TL ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten
7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1
H GONIOMETRIE HAVO.0 INTRO a : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b 6 a Schaal :. b 9. TEKENEN OP SCHAAL a 7 a (moeilijk nauwkeurig te meten) b : 000 c Ik meet cm dus in werkelijkheid
1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is.
1 2 1 Wiskunde, zeker duimstok Timmerman Hoe lang iets is. Blokhaak: Timmerman Of een hoek haaks is. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. Zeven munten: een van 1-eurocent, twee van 2-eurocent,
Docentenhandleiding Wiskonopoly
Docentenhandleiding Wiskonopoly Benodigdheden buiten speelbord en bijgevoegde kaarten per spel. 2 dobbelstenen 4 speelstukken (lopers) strijkkralen kompasroos Uitrekenpapier Per spel een soort geldbiljetten
Noordhoff Uitgevers bv
Voorkennis V-a - Als je gedeelten van hokjes ij elkaar telt tot hele hokjes, dan passen op eiland A ongeveer roosterhokjes. Op eiland B passen ijna 4 roosterhokjes. Eiland A is dus ongeveer km groot. Eiland
Vraag Antwoord Scores. M π 35,5 en dit geeft M 3959 ) (cm 2 ) 1 ( ) 2. 93 (2642 4 3959 2642) ) 1 De inhoud van de ton is dus 327 (liter) 1
Eindexamen wiskunde B havo 0 - II Beoordelingsmodel Tonregel van Kepler maximumscore 6 G = B = π 9 ( 64) (cm ) Voor de cirkel op halve hoogte geldt: πr = (met r de straal van de cirkel in cm) Hieruit volgt
Vraag Antwoord Scores
Beoordelingsmodel VMBO GL/TL 2008-I Vraag Antwoord Scores Golfbaan maximumscore 4 Een kijklijn tekenen van het putje langs de punt van de bosrand 90 m in werkelijkheid komt overeen met 6 cm in de tekening
Rekenboek 3 havo/vwo. Antwoorden NOORDHOFF UITGEVERS 2014 REKENBOEK 3 HAVO/VWO ANTWOORDEN 1
Rekenboek havo/vwo Antwoorden NOORDHOFF UITGEVERS 04 REKENBOEK HAVO/VWO ANTWOORDEN Blok Getallen. Bewerkingen a 45 d 6 g 8 b 60 e 90 h 687 c 4 f 56 i 48 a 4 d 000 b 4 000 e 000 c 70 f 0 000 a 7 d 0 b 70
Oplossingen. b) arctan( 4. c) arctan( AC = 4 2, AS = 2 2, NT = 34 (= 2 17), ST = 32 = 4 2 a) 2 arcsin( 2 2
Voorkennis: Goniometrische verhoudingen De officiële benaming voor de inverse van sinus, op je rekenmachine sin 1 is boogsinus, afgekort als arcsin, voor cos 1 : boogcosinus arccos, voor tan 1 : boogtangens
Hoofdstuk 8 Ruimtemeetkunde
Opstap In de ruimte O-1a O-2a d O-3a links T P K L P T L K P P T T voor L L K K T P K L rehts 1 m op de kaart is in werkelijkheid 35 km, dus dan vaart hij 35 km. arrameda adiz hilana de la rontera Lerija
Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur
Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten
G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3
& havo deel 0 anzichten en doorsneden. von chwartzenberg / a et van het voorwerp is een cirkel. b Je moet tegen het (rechter of linker) zijaanzicht aankijken. rechterzijaanzicht I (opg. ) vooraanzicht
Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel.
Herhalingsoefeningen Driehoeksmeting Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Construeer
Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo
Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,
Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen VMBO-KB 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten te behalen.
Wiskunde D Online uitwerking 4 VWO blok 6 les 4
Wiskunde Online uitwerking 4 VWO blok 6 les 4 Paragraaf 4 Het inproduct om hoeken te berekenen Opgave a e hoek is kleiner dan 4, want het dak zelf staat onder een hoek van 45, en de kilgoot loopt schuin
Blok 3 - Vaardigheden
B-a Extra oefening - Basis Ja, x en y zijn omgekeerd evenredig. Bij de tael hoort de formule x y = 70 of y = 70 of x = 70. x y Ja, x en y zijn omgekeerd evenredig. Bij de tael hoort de formule x y = 8
Hoofdstuk 1 KENNISMAKEN 1.0 INTRO
Hoofdstuk 1 KENNISMAKEN 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) Met twee latten die je
Vraag Antwoord Scores. Het verschil is (0,0017 uur, dat is) 6 seconden (of nauwkeuriger) 1
Eindexamen havo wiskunde B 0-II Gevaar op zee maximumscore Na, 7,0 ( 0,7 ) uur komt de UK bij punt S Na,8 6,5 ( 0,697 ) uur komt de Kaliakra bij punt S Het verschil is (0,007 uur, dat is) 6 seconden (of
Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2
OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte
7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a
H7 WORTELS VWO 7.0 INTRO a Zijden grotere vierkant zijn. a Lengte kniplijn is. De oppervlakte van het grote vierkant is = 80, dus de zijden zijn 80. d ;,9 ; 7 ; 7 a Als je onder elkaar zet en vermenigvuldigt:......9..0.00
Blok 6B - Vaardigheden
B-a Etra oefening - Basis Eigenschap C is ook een definitie van een rechthoek. A: Als de diagonalen wel even lang zijn maar elkaar niet middendoor delen, is de vierhoek geen rechthoek. Denk ijvooreeld
Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 woensdag 30 mei uur. Bij dit examen hoort een uitwerkbijlage.
Examen VMO-K 2007 tijdvak 1 woensdag 30 mei 13.30-15.30 uur wiskunde CSE K ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 79 punten te behalen.
H27 WORTELS VWO ; 1,96 ; 7 ; INTRO. 7 a Als je onder elkaar zet en vermenigvuldigt: Dan krijg je op het eind een 9.
H7 WORTELS VWO 7.0 INTRO a a Zijden grotere vierkant zijn. Lengte kniplijn is. De oppervlakte van het grote vierkant is = 80, dus de zijden zijn 80. d ;,9 ; 7 ; 7 a Als je onder elkaar zet en vermenigvuldigt:......9..0.00
wiskunde CSE GL en TL
Examen VMO-GL en TL 2007 tijdvak 1 woensdag 30 mei 13.30-15.30 uur wiskunde SE GL en TL ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 83 punten
De stelling van Pythagoras
De stelling van Pythagoras Inhoud Inhoud... 1 Inleiding... 3 De stelling van Pythagoras... 3.1 De stelling van Pythagoras... 3. De omgekeerde stelling van Pythagoras... 3.3 Bewijs van de stelling van Pythagoras...
Vraag Antwoord Scores. Opmerking Voor elk fout of ontbrekend getal één scorepunt aftrekken tot een maximum van drie scorepunten.
Beoordelingsmodel VMBO KB 00-II Vraag Antwoord Scores Blikken stapelen maximumscore 3 aantal lagen a 3 4 5 6 7 8 9 totaal aantal blikken b 3 6 0 5 8 36 45 Voor elk fout ontbrekend getal één scorepunt aftrekken
Stevin havo Antwoorden hoofdstuk 3 Vectoren en hefbomen ( ) Pagina 1 van 14
Stevin havo Antwoorden hoofdstuk 3 Vectoren en hefomen (2016-05-24) Pagina 1 van 14 Als je een ander antwoord vindt, zijn er minstens twee mogelijkheden: óf dit antwoord is fout, óf jouw antwoord is fout.
Extra oefening en Oefentoets Helpdesk
Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein
Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje
Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Indien van toepassing: schrijf je berekening op. Tekening altijd met geodriehoek en potlood. Omtrek rechthoek
wiskunde CSE GL en TL
Examen VMBO-GL en TL 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten
Doorsnede inhoud vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74250
Auteur VO-content Laatst gewijzigd Licentie Webadres 24 mei 2016 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/74250 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet. Wikiwijs
Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 19 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen VMBO-KB 2016 tijdvak 1 donderdag 19 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 27 vragen. Voor dit examen zijn maximaal 75 punten te behalen.
wiskunde B pilot vwo 2016-I
Formules Goniometrie sin( t+ u) = sin( t)os( u) + os( t)sin( u) sin( t u) = sin( t)os( u) os( t)sin( u) os( t+ u) = os( t)os( u) sin( t)sin( u) os( t u) = os( t)os( u) + sin( t)sin( u) sin( t) = sin( t)os(
Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 woensdag 17 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.
Examen VMBO-KB 2015 tijdvak 2 woensdag 17 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 72 punten te behalen.
Hoofdstuk 12 GETALLEN EN GRAFIEKEN. d e = 1,5p ; p = 3 2 e e euro's kronen f k = 9e ; e =
Hoofdstuk 1 GETALLEN EN GRAFIEKEN 1.0 INTRO 1 a De slak klimt een uur met onstante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz. 1,5 m/u 0,5 m/u d 8 uur en 40 minuten
Hoofdstuk 3: De stelling van Pythagoras
Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We
Hoofdstuk 10 - Hoeken en afstanden
oofdstuk 0 - oeken en afstanden Moderne wiskunde 9e editie vwo deel Voorkennis: Verhoudingen ladzijde 7 V-a e hoeken lijven gelijk want alleen de lengte van de zijden verandert en allemaal met dezelfde
