Hoofdstuk 5 Oppervlakte uitwerkingen
|
|
|
- Joachim de Boer
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Kern Vlakke figuren a Rechthoek, parallellogram, driehoek Oppervlakte rechthoek = lengte reedte = d Oppervlakte parallellogram = lengte hoogte = d Oppervlakte driehoek = asis hoogte = d a Knip de parallellogram via een geschikte hoogtelijn in twee stukken. Leg de stukken als een rechthoek. Een driehoek is de helft van een parallellogram. 3 DE = 74 7 = 5 = 5, oppervlakte = l h= 0 5 = 50 4 CD = 4 (driehoek ADC is een driehoek) BD = 8 4 = 48 = 4 3 oppervlakte = asis hoogte = ( ) 4 = ,86 5 a Oppervlakte trapezium = (som evenwijdige zijden) hoogte = (0 + 4) 5 = 35 ( p+ q) h 6 a :: 3 Voor de helft van de gelijkzijdige driehoek geldt dat de korte rechthoekszijde is en de schuine zijde is. De lange rechthoekszijde is dan = 3 Noordhoff Uitgevers v
2 7 Splits de figuur op in ekende wiskundige vormen. Er is een halve cirkel met straal 3 Een rechthoek van 4 ij 6 Een rechthoekige driehoek met rechthoekszijden en Een rechthoek van ij Een rechthoekige driehoek met rechthoekszijden en 3 Een driehoek met asis 0 en hoogte 3 De totale oppervlakte is: π , 8 a 360 : 5 = 7 De hoekensom in een driehoek is 80. (80 7 ) : = 54 c h = 4sin54 3,4 d 5 (4cos 54 ) (4sin 54 ) 38,0 e De volledige cirkel heeft een oppervlakte van π 4 De vijfhoek heeft een oppervlakte van 38,0 Het verschil tussen eide oppervlakten is het gedeelte dat uiten de vijfhoek valt. Dat moet gedeeld worden door 5 om het gekleurde stuk te krijgen. π 4 38,0,4 5 9 a In de afeelding geldt dat de hoeken ij het middelpunt van de vijfhoek allemaal 36 zijn. Voor de oppervlakte van de vijfhoek geldt O = 5 5sin 36 5cos cm 5sin (5sin 36 ) 98,6 cm c 535, ,6 = 08 cm 0 a Totale oppervlakte = 3 = 6 c Het grondvlak is een gelijkzijdige driehoek met zijden van. Oppervlakte = 6 = 3 d ,5 e ,7 Noordhoff Uitgevers v
3 Kern Prisma en piramide keer vooraanzicht + keer zijkant + keer dakvlak = (8 + 4) = ,3 m Het voorvlak (en achtervlak) is op te splitsen in een vierkant (4 cm ij 4cm), een rechthoekige driehoek met zijden van en 6 cm en een rechthoekige driehoek met zijden van en 4 cm. Linker zijkant 8 6= 48 Onderkant 8 4 = 3 Voorkant = 6 Achterkant 6 Bovenkant = 8 40 Rechter zijkant = 8 0 Totale oppervlakte is , = ,4 cm 4 a De driehoek heeft een asis van m en een hoogte van 5 = 5 Het trapezium heeft zijden van en 3 meter en een hoogte van De oppervlakte van het trapezium is ( + 3) 7 = 7 Totale oppervlakte m 4 + ( ) = = 5. De oppervlakte is ( ) = = a Hoogte + 4 = 5 Opp. trapezium ( + 5) 5 = 6 5 Er zijn 3 trapezia, de totale oppervlakte is ,4 cm 6 a,5 (, 5) =, 5 7 a = 35cm Het volgende doosje heeft een oppervlakte die doosje. De oppervlakte is dus 79 cm c , 5 = 6935, 5 cm (, 5) =, 5 keer zo groot is als die van het kleinste 8 a c 600 =400 cm maal zo groot. Ongeveer 4, cm. 3 maal zo groot. Ongeveer 7,3 cm. Noordhoff Uitgevers v 3
4 9 a maal zo groot. De afmetingen zijn dan 9,7 cm ij 4,7 cm. maal zo groot. De afmetingen zijn dan 4,8 cm ij 0,9 cm. c 50 9,5 0,5 Noordhoff Uitgevers v 4
5 Kern 3 Cilinder, kegel en ol 0 a 30 0 = 300 cm ij 0π Oppervlakte 0π 377 cm a c 0,5π 69,7 cm π 5, 5 86,6 cm 86,6 +,7 0,5π 4,7 cm a Iedere driehoek is een gelijkenige driehoek met tophoek 90 = 8 en asishoeken van = 8 Per driehoek is de oppervlakte gelijk aan cos8 sin8 0,545 m Per rechthoek cos8 0, 657 Totale oppervlakte 0 0, ,657 5 m In werkelijkheid is het oppervlak groter. 3 a De straal is TP = 5. (3-4-5 driehoek) Omtrek van de grondcirkel is π 3= 6π c De straal van de grondcirkel is 3, die van de totale cirkel 5. De cirkelsector is daarom het 3 deel van 5 de volledige cirkel. 3 d π 5 = 5π 47, 5 4 Opp = π r r + r = π r 5 Opp = π r a = 55π. Uit r = 5 volgt a = 5. De hoogte is 5 5 = 6 6 De hoogte van de driehoeken is steeds Opp = , 5 piramide De straal van de grondcirkel van de kegel is De eschrijvende van de sector is Opp kegel = (3 ) π π 89,8, 6 Opp = Opp piramide kegel = = (3 ) = 0 7 Totaal aardoppervlak 4π km Oppervlakte van Nederland is 0,008% van het totale aardoppervlak. Noordhoff Uitgevers v 5
6 8 De afstand van een hoekpunt van de kuus tot het middelpunt van de kuus is gelijk aan de straal van de ol. Die afstand is r = = 3 3 Oppervlakte ol = 4π (3 3) = 08π. Oppervlakte kuus = = 6 Opp :opp = 08π :6= π : ol kuus 9 De oppervlakte wordt vier maal zo groot, dus de dikte moet vier maal zo klein worden, dus 0,005 mm. Noordhoff Uitgevers v 6
7 Kern 4 Samengestelde lichamen 30 a Oppervlakte = π 4 =3 8π 06,87 cm. De uitenkant: ,87 748,59 cm Tunnelwand: π 5 = π 308,50 cm 3 a hoekpunten, 4 vlakken en 4 rien ,4cm c De rand van de hals heeft een oppervlakte van π ,0cm De totale oppervlakte wordt 76,4 cm 3 a Bodem π 5 = 5π Grote cilindermantel 4 π 5 439,8 Kleine cilindermantel π, 5 8,85 Kegelmantel Dit is een afgeknotte kegel waarij de oorspronkelijke kegel een hoogte had van Het deel dat is afgesneden is een kegel met hoogte = π r a π r a = π ( r a r a ) = π (5 5 + ( ),5,5 + ( ) ) 4,5 Bovenkant π 3 = 9π Totale oppervlakte is ongeveer 708. Gewicht = 708 0,,6 = 368 gram 33 a Hoogte 0 3 Manteloppervlak van de kegel is 60 π 60 + (0 3) = 60 π , 4 m Denkeeldig ondergronds deel is van de gehele kegel, dus de oppervlakte is ( ) van de gehele 6 6 manteloppervlakte, dus 36,8 m Zitplaatsen op 696,6 m : = 6348 m Ongeveer 0,5 m per zitplaats. Dat zou net passen, maar wordt wel krap! 34 a π 3 0= 0π 377 m π π ,7 m c De antwoorden van a en en de ovenkant van π 6 = 36π geeft een totale oppervlakte van 840 m 35 a 8 Regelmatig viervlak met rien van 3 cm. c = 54 3 Noordhoff Uitgevers v 7
8 36 a Voor de lengte van de rechthoekszijden van de gelijkenige driehoeken geldt In het ovenaanzicht is te zien dat de diagonaal van de ruit gelijk is aan De ruiten estaan dus uit gelijkzijdige driehoeken. c = 64 3 m = = 4 Noordhoff Uitgevers v 8
Hoofdstuk 2 Oppervlakte en inhoud
Hoofdstuk 2 Oppervlakte en inhoud Les 1 Aant. 2.1 Oppervlakte van vlakke figuren Theorie A: Oppervlakte van vlakke figuren Oppervlakte driehoek = ½ zijde bijbehorende hoogte Oppervlakte parallellogram
Oppervlakte en inhoud van ruimtelijke figuren
4 Oppervlakte en inhoud van ruimtelijke figuren BALK EN KUBUS hoogte Figuur lengte reedte In figuur is een alk getekend. Bij een alk zijn steeds de twee tegenover elkaar liggende vlakken gelijk. Alle vlakken
Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud
antekening HVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud Les 1 Oppervlakte driehoeken Oppervlakte driehoek = ½ basis hoogte Oppervlakte parallellogram = basis hoogte Oppervlakte trapezium = ½ (basis + top)
Hoofdstuk 2 boek 1 havo b Oppervlakte en inhoud.
Hoofdstuk boek havo b Oppervlakte en inhoud.. Vlakke figuren, oppervlakte.. Het halve cirkeltje boven past precies in het halve cirkeltje onder, dan komt er een rechthoek met breedte en lengte 4 + + +
Hoofdstuk 6 Inhoud uitwerkingen
Kern Prisma en cilinder a De inhoud is G h=,5 = 4,5cm. b Die inhoud is even groot. a De inhoud is G h= ( 4) 8 = 64 cm b Op iedere hoogte geldt dat de doorsnede van het rechte prisma dezelfde oppervlakte
Hoofdstuk 8 - Ruimtefiguren
Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm
Oefentoets Versie A. Vak: Wiskunde Onderwerp: Meetkunde Leerjaar: 1 (2017/2018) Periode: 3
Oefentoets Versie A Vak: Wiskunde Onderwerp: Meetkunde Leerjaar: 1 (017/018) Periode: 3 Opmerkingen vooraf: Het gebruik van een rekenmachine en een tabellenboekje is toegestaan. Geef je antwoord alljd
de Wageningse Methode Antwoorden H5 DE RUIMTE IN 1
Hoofdstuk 5 DE RUIMTE IN 6 5. AANZICHTEN EN UITSLAGEN 3 a 7 a kuus ; ol ; c cilinder ; d kegel ; e vijfzijdige piramide ; f alk (vierzijdig prisma) ; g driezijdig prisma ; h zeszijdig prisma ; i alk (vierzijdig
Hoofdstuk 8 - Ruimtefiguren
Voorkennis V-1a De oppervlakte van ABC is 12 5 : 2 = 0 m 2. zijde kwadraat AB = 12 144 AC = 5 BC = 25 169 d BC = 169 = 1 m De omtrek van ABC is 5 12 1 = 0 m. BD = 12 4 = 8 m De oppervlakte van BCD is 8
Hoofdstuk 6 - Oppervlakte en inhoud
Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk - Oppervlakte en inhoud ladzijde 0 V-a Er passen vierkanten in de puzzel dus één vierkant neemt -deel in eslag. De oppervlakte van de puzzel is = 44
04 Meetkunde. hoofdstuk. 4.1 Uitslagen
hoofdstuk 0 eetkunde bladzijde 06 e schuine muren aan de benedenkant van de woning. e vloeren en de plafonds zijn regelmatige zeshoeken of regelmatige driehoeken. ovenaanzicht:. Uitslagen bladzijde 08
7 cilinder. bol. torus. 8 a
.0 INTRO a Een vierkant, een lijnstuk, een vierkant ijvooreeld zo: Het laagste punt is het midden van het grondvlak. Een lijnstuk nij van een kurk aan weerszijden een stuk af, zo dat je aan de ovenkant
Blok 6B - Vaardigheden
B-a Etra oefening - Basis Eigenschap C is ook een definitie van een rechthoek. A: Als de diagonalen wel even lang zijn maar elkaar niet middendoor delen, is de vierhoek geen rechthoek. Denk ijvooreeld
Hoofdstuk 1 KENNISMAKEN 1.0 INTRO
Hoofdstuk 1 KENNISMAKEN c 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) c Met twee latten die
1. rechthoek. 2. vierkant. 3. driehoek.
Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn
d = 8 cm 2 6 A: = 26 m 2 B: = 20 m 2 C: = 18 m 2 D: 20 m 2 E: 26 m 2
H17 PYTHAGORAS 17.1 INTRO 1 b c d 1 4 4 = 8 cm 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine
8 A vijfzijdig prisma ; B kubus ; C vierzijdige piramide. 10 b de laatste. 11 a Bijvoorbeeld: c = 6 cm a,b. 13 b
5.1 NZIN N UISLN 2 8 vijfzijdig prisma ; B kuus ; vierzijdige piramide 9 3 a voor oven zij 10 de laatste 1:200 c 11 a Bijvooreeld: voor oven c 1 2 3 = 6 cm 3 12 a, d nne heeft gelijk. In het zij-en oevnaanzicht
Hoofdstuk 4: Meetkunde
Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair
8.1 Inhoud prisma en cilinder [1]
8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande
6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2
Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine
H24 GONIOMETRIE VWO. Dus PQ = 24.0 INTRO. 1 a 6 km : = 12 cm b. 5 a 24.1 HOOGTE EN AFSTAND BEPALEN. 2 a factor = 3
H GONIOMETRIE VWO.0 INTRO a 6 km : 0.000 = cm a Dus PQ = 680 = 0, dus zeilt 7 ze 0 meter in minuten. Dat is 0 0 = 800 meter in een uur. Dat is,8 km/u.. HOOGTE EN AFSTAND BEPALEN a factor = 0,6 Diepte put
de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1
H5 Ruimtelijke figuren in het plat VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Snij van een kurk aan weerszijden een stuk
Symmetrie en oppervlakte
Symmetrie en oppervlakte Hoofdstuk 5 1 a logoen4 /d 1 1 1 313 414 c logo 1: 180 logo : 180 logo 3: 90 logo 4: 90 d alle logo s zijn puntsymmetrisch 6 a a lijnsymmetrisch draaisymmetrisch puntsymmetrisch
15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.
Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde
Vl. M. Nadruk verboden 1
Vl. M. Nadruk verboden 1 Opgaven 1. Hoeveel graden, minuten en seconden zijn gelijk aan rechte hoek? van een rechte hoek resp van een 2. Als = 25 13 36, = 37 40 56, = 80 12 8 en = 12 36 25, hoe groot is
Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje
Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Indien van toepassing: schrijf je berekening op. Tekening altijd met geodriehoek en potlood. Omtrek rechthoek
1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is.
1 2 1 Wiskunde, zeker duimstok Timmerman Hoe lang iets is. Blokhaak: Timmerman Of een hoek haaks is. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. Zeven munten: een van 1-eurocent, twee van 2-eurocent,
de Wageningse Methode Antwoorden H15 GELIJKVORMIGHEID HAVO 1
Hoofdstuk5 GELIJKVORMIGHEID HAVO 5. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,54 vermenigvuldigd. 5 Ja, want van
Wiskunde Leerjaar 2 - Periode 1 Meetkunde
Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant D zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier
5 De ruimte in = 10 kogels. A = 56 kogels M M N. 11 cm 11 cm. 1 : cm. 2 cm 2 cm. 3 cm. even lang!
31 32 1 2 5 e ruimte in 1 + 3 + 6 = 10 kogels N M M N A 1 + 36 + 10 + 15 + 21 = 56 kogels 11 cm 11 cm 1 : 150 4 cm 2 cm 2 cm 3 cm vooraanzicht bovenaanzicht even lang! vijfzijdig prisma wit Buitendiagonalen:
16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1
Hoofdstuk OPPERVLAKTE HAVO 5 a De rechthoeken zijn bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers.. INTRO Oppervlakte snelweg = 0 km 8 m = 0.000 m 8 m = 360.000 m. Zijde vierkant = 360. 000 = 600
2.1 Cirkel en middelloodlijn [1]
2.1 Cirkel en middelloodlijn [1] Hiernaast staat de cirkel met middelpunt M en straal 2½ cm In het kort: (M, 2½ cm) Op de zwarte cirkel liggen alle punten P met PM = 2½ cm In het rode binnengebied liggen
Antwoorden De juiste ondersteuning
ntwoorden De juiste ondersteuning a. De straal van de cirkel waarover het beweegt is 5. De maximale hoogte van het is dus 5. Het moet dus dm omhoog. b. Het van het tweede blok beweegt over een cirkel met
Oefeningen in verband met tweedegraadsvergelijkingen
Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot
1 Junior Wiskunde Olympiade : tweede ronde
1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk
Herhalingsles 2 Meetkunde 1 Weeroefeningen
Herhalingsles Meetkunde Weeroefeningen HB. MK Kruis aan wat juist is. Deze figuur is een vierhoek, maar geen vierkant. een vierkant, maar geen ruit. een ruit, maar geen vierkant. een vierkant en een ruit.
Pienter 1ASO Extra oefeningen hoofdstuk 7
Extra oefeningen hoofdstuk 7: Vlakke figuren 1 Teken binnen een cirkel met straal 6 cm een tweede cirkel met straal 2 cm. Wat is de kleinste en wat is de grootst mogelijke afstand tussen beide middelpunten?
de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1
Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden
5 ab. 6 a. 22,9 25,95 cm
Hoofdstuk 5 GELIJKVORMIGHEID VWO 5 Vergroten en verkleinen a d 5 a 9 driehoekjes, zie plaatje: a 0,5 :,9, en :, ij 9 inh 7 0,5,57 m ij 7 5 5,9 5,95 m d 6,9 0,7 m 9 e a Die van ij Die van 0 ij 0, die van
G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3
& havo deel 0 anzichten en doorsneden. von chwartzenberg / a et van het voorwerp is een cirkel. b Je moet tegen het (rechter of linker) zijaanzicht aankijken. rechterzijaanzicht I (opg. ) vooraanzicht
7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1
H GONIOMETRIE HAVO.0 INTRO a schaal : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b b ongeveer 8, meter. TEKENEN OP SCHAAL 6 a schaal : b 9 a 7 a (moeilijk nauwkeurig te meten) b schaal
Blok 4 - Vaardigheden
lok - Vaardigheden Extra oefening - asis -a Het hellingsgetal is 60 = = 0,065. -a De hellingshoek is tan (0,065),6. c De hellingshoek van Raymond is tan ( 60 c 960 tan = geeft tan 6 = 600 = 600 tan 6 9
Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1
Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven
9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde
Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek
2. Antwoorden meetkunde
2. Antwoorden meetkunde In dit hoofdstuk zijn de antwoorden op de opgaven over Meetkunde opgenomen. Ze zijn kort en bondig per paragraaf gerangschikt. Dat betekent dat de antwoorden geen uitgebreide uitleg
Oplossingen. b) arctan( 4. c) arctan( AC = 4 2, AS = 2 2, NT = 34 (= 2 17), ST = 32 = 4 2 a) 2 arcsin( 2 2
Voorkennis: Goniometrische verhoudingen De officiële benaming voor de inverse van sinus, op je rekenmachine sin 1 is boogsinus, afgekort als arcsin, voor cos 1 : boogcosinus arccos, voor tan 1 : boogtangens
Noordhoff Uitgevers bv
oofdstuk 0 - oeken en afstanden Voorkennis: Verhoudingen ladzijde 78 V-a e hoeken lijven gelijk want alleen de lengte van de zijden verandert en allemaal met dezelfde factor. Zijde met lengte wordt vergroot
Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo
Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,
Extra oefenmateriaal H10 Kegelsneden
Deel 1 Extra oefenmateriaal H10 Kegelsneden 1. Bereken de inhoud van de volgende twee afgeknotte figuren. 2. Hiernaast zie je een afgeknot zeszijdig prisma. Het grondvlak is een regelmatige zeshoek met
Eindexamen havo wiskunde B 2013-I
Beoordelingsmodel Tornadoschalen maximumscore 80 km/u komt overeen met 77,8 m/s v = 77,8 invullen in de formule geeft F, Dus de intensiteit op de Fujita-schaal is maximumscore De waarde van F is dan minimaal,5
Meetkunde. MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3
Meetkunde MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3 LOCATIE: Noorderpoort Beroepsonderwijs Stadskanaal DOMEINEN: Bouwkunde, Werktuigbouw, Research Instrumentmaker LEERWEG: BOL - MBO Niveau 4 DATUM:
7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1
H GONIOMETRIE HAVO.0 INTRO a : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b 6 a Schaal :. b 9. TEKENEN OP SCHAAL a 7 a (moeilijk nauwkeurig te meten) b : 000 c Ik meet cm dus in werkelijkheid
Blok 3 - Vaardigheden
Havo B deel Uitwerkingen Moderne wiskunde Blok - Vaardigheden ladzijde a AB + AB AB PQ + PQ PQ PQ is diagonaal van een vierkant met zijde en AB is diagonaal in een vierkant met zijde. Dus is PQ vier keer
1 Vlaamse Wiskunde Olympiade : eerste ronde
1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan
Noordhoff Uitgevers bv
V-1a d V-2a 102 ladzijde 138 In werkelijkheid zijn er 3 rien evenwijdig aan rie. In figuur 1 zijn die rien ook evenwijdig getekend. In figuur 2 zijn deze rien zo getekend dat ze elkaar alle vier in hetzelfde
1 Vlaamse Wiskunde Olympiade : eerste ronde
1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R
Oefeningen in verband met tweedegraadsvergelijkingen
Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot
Noordhoff Uitgevers bv
V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.
Hoofdstuk 5 - Tekenen en zien
avo deel 1 Uitwerkingen Moderne wiskunde oofdstuk 5 - ekenen en zien ladzijde 138 V-1a d In werkelijkheid zijn er 3 rien evenwijdig aan rie. In figuur 1 zijn die rien ook evenwijdig getekend. In figuur
Wiskunde Uitwerkingen Leerjaar 1 - Periode 3 Meetkunde 3D Hoofdstuk 4 t/m 7
Wiskunde Uitwerkingen Leerjaar - Periode Meetkunde oofdstuk t/m 7 oofdstuk. a). a). a) opp. = ribbe ribbe = ribbe = 8 cm inh. = ribbe ribbe ribbe = ribbe =.78 cm opp. = 00 0 + 0 + 00 = 7.900 cm inh. =
wiskunde B havo 2015-II
Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen
Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud
Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud 1 Een optische illusie? Welk gebied heeft de grootste oppervlakte: het gele of het donkergroene? Doe eerst een schatting en maak daarna de nodige
Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.
Oefenopgaven oppervlakte en inhoud 1. Bereken de oppervlakte van de driehoeken en parallellogrammen hieronder. 2. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. 3. A. Bereken
4 A: = 10 B: 4 C: 8 D: 8
Hoofdstuk OPPERVLAKTE VWO 0 INTRO A: + 6 = 0 B: C: 8 D: 8 DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0 Daar gaan twee halve
Handig met getallen 4 (HMG4), onderdeel Meetkunde
Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek
Wiskunde D Online uitwerking 4 VWO blok 6 les 4
Wiskunde Online uitwerking 4 VWO blok 6 les 4 Paragraaf 4 Het inproduct om hoeken te berekenen Opgave a e hoek is kleiner dan 4, want het dak zelf staat onder een hoek van 45, en de kilgoot loopt schuin
Opgave 4. Opgave 5. Opgave 6. (5) a) Isoleer de variabele B uit de formule P A B P B. (6) b) Isoleer de variabele B uit de formule
EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 009 Datum: 14 jan 009 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal te
Hoofdstuk 1 KENNISMAKEN 1.0 INTRO
Hoofdstuk 1 KENNISMAKEN 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) Met twee latten die je
Hoofdstuk 10 - Hoeken en afstanden
oofdstuk 0 - oeken en afstanden Moderne wiskunde 9e editie vwo deel Voorkennis: Verhoudingen ladzijde 7 V-a e hoeken lijven gelijk want alleen de lengte van de zijden verandert en allemaal met dezelfde
EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010
EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 010 Datum: 13 januari 010 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal
1 Vlaamse Wiskunde Olympiade : tweede ronde
1 Vlaamse Wiskunde Olympiade 006-007: tweede ronde 1 In een rechthoekige driehoek verdeelt de bissectrice uit een scherpe hoek de overstaande zijde in twee stukken met lengten 4 en 5 (zie figuur) De oppervlakte
vlieger rechthoek ruit parallellogram vierkant
4-1 Vlakke figuren 1a 6 5 4 3 2 A D C 1 B O 1 2 3 4 5 6 d Figuur ABCD is een vlieger. 2a B(5, 1) C(5, 6) D(2, 6) AD BC DC BC AD // BC AD AB 3a 4a d e A B C D E vlieger rehthoek ruit parallellogram vierkant
Aanzichten en inhoud. vwo wiskunde C, domein G: Vorm en ruimte
Aanzichten en inhoud vwo wiskunde C, domein G: Vorm en ruimte 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld in het kader van de nieuwe
5.7. Boekverslag door P woorden 11 januari keer beoordeeld. Wiskunde B
Boekverslag door P. 1778 woorden 11 januari 2012 5.7 103 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Wiskunde Hoofdstuk 1 Formules en Grafieken 1.1 Lineaire verbanden Van de lijn y=ax+b is de
Soorten lijnen. Soorten rechten
Soorten lijnen ik zeg ik teken ik noteer ik weet een punt A A een rechte a a Een rechte heeft geen begin- en eindpunt. een halfrechte [A een halfrechte heeft B] een beginpunt of een eindpunt een lijnstuk
E = mc². E = mc² E = mc² E = mc². E = mc² E = mc² E = mc²
E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² E = mc² De boom en het stokje staan loodrecht op de grond in het park. De boom is 3 en het stokje 1. Hoe lang is de schaduw van het stokje
Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO
Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken
Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO
Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve
Wiskunde Opdrachten Vlakke figuren
Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke
Blok 7 MK vraag 1: een oplossing voor een ruimtelijk probleem vinden
Blok 7 MK vraag : een oplossing voor een ruimtelijk probleem vinden Een oplossing voor een ruimtelijk probleem vinden omtrek vierkant rechthoek parallellogram driehoek zijden of 4 z zijden of 2 (b + h)
Noordhoff Uitgevers bv
V-a Voorkennis: ijzondere figuren ladzijde 30 50 60 = 80 50 60 = 70 d V-a Hoofdstuk 5 - efinities en stellingen Ja, de zwaartelijnen gaan door één punt: het zwaartepunt Ja, de hoogtelijnen gaan door één
Hoofdstuk 3: De stelling van Pythagoras
Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We
Hoofdstuk 2 : VLAKKE FIGUREN
1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.
Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur
Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1,2 Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met
Wiskunde Leerjaar 2 - Periode 1 Meetkunde
Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier
Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.
xamen VMO-GL en TL 2013 tijdvak 2 dinsdag 18 juni 13.30-15.30 uur wiskunde CS GL en TL ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten
Hoofdstuk 9 - Ruimtemeetkunde
oderne wiskunde 9e editie vwo deel 2 Voorkennis: wee soorten tekeningen ladzijde 254 V-1a d wee lijnen zijn evenwijdig als ze elkaar nooit snijden, hoe ver je de lijnen ook doortrekt. In werkelijkheid
Eindexamen wiskunde B1-2 havo 2008-I
Steeds meer vlees In wordt voor de periode 1960-1996 zowel de graanproductie als de vleesproductie per hoofd van de wereldbevolking weergegeven. Hiervoor worden twee verticale assen gebruikt. De ronde
Voorkennis meetkunde (tweede graad)
Voorkennis meetkunde (tweede graad) 1. Vlakke meetkunde Lengten van de zijden en grootte van de hoeken van driehoeken en vierhoeken - De som van de hoeken van een driehoek is 180 - Bij een rechthoekige
Antwoorden Vorm en Ruimte herhaling. Verhoudingen
Antwoorden Vorm en Ruimte herhaling Verhoudingen 1. a. Tegenover elke 4 eenheden A staan 5 eenheden B en omgekeerd. b. 125 ; 80 c. A bevat 800 exemplaren, B bevat 1000 exemplaren. d. x ; y 2. a. 3 : 2
1 Junior Wiskunde Olympiade : tweede ronde
1 Junior Wiskunde Olympiade 2003-2004: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
7.1 Zwaartelijn en hoogtelijn [1]
7.1 Zwaartelijn en hoogtelijn [1] Zwaartelijn: Een zwaartelijn in een driehoek is een lijn die gaat door een hoekpunt en het midden van de overstaande zijde. Een driehoek heeft drie zwaartelijnen. De drie
Junior Wiskunde Olympiade : eerste ronde
Junior Wiskunde lympiade 200-20: eerste ronde. Waaraan is xyz + xyz + xyz gelijk? () 3xyz () 27xyz () x 3 y 3 z 3 () 3x 3 y 3 z 3 () 27x 3 y 3 z 3 2. Welke van volgende ongelijkheden is waar? () 2 > 0,5
