Meten en experimenteren

Maat: px
Weergave met pagina beginnen:

Download "Meten en experimenteren"

Transcriptie

1 Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 5 oktober 007 Catherine De Clercq

2 Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt in de semester In deze les wordt een samenvatting gegeven van de formules nodig in het practicum fysica Deel I: Deel II: Deel III: Toevallige veranderlijken, Steekproef Beschrijving van gegevens, Histogram Gemiddelde en standaarddeviatie ormale of gaussische verdeling Fouten en onzekerheden Herhaalde metingen: gemiddelde en variantie Bewerkingen met stochastische veranderlijken Voortplanten van statistische onzekerheden Bepalen van de beste rechte door de metingen Methode van de kleinste kwadraten iet lineaire problemen Deel IV: Presentatie van resultaten Aantal beduidende cijfers, Afronden van getalwaarden Grafieken, tabellen, eenheden etc p

3 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie ormale verdeling Fouten en onzekerheden p3

4 Toevallige veranderlijken experiment = meting van een bepaalde grootheid x uitgevoerd met een bepaald instrument volgens een bepaalde procedure Een experiment wordt meestal beïnvloed door verschillende factoren: vb bepaling verbruik van een auto, meten valversnelling Het resultaat van een experiment is nooit exact reproduceerbaar De verschillende waarnemingen of resultaten van een experiment vertonen een spreiding Men noemt de grootheid x (het resultaat van het experiment) een toevallige of stochastische veranderlijke p4

5 Keuze van de steekproef Men wil meestal uit het experiment een fysische grootheid bepalen, bvb de valversnelling Elk experiment wordt beïnvloed door verschillende willekeurige factoren Het is dus best om een groot aantal experimenten uit te voeren, at random (willekeurig) gekozen Dit is een steekproef waaruit men conclusies wenst te trekken over de fysische grootheid Men bekomt een verzameling gegevens {x,x,x 3, x n } p5

6 Beschrijving van gegevens a het uitvoeren van n experimenten beschikt men over een verzameling gegevens {x,x,x 3, x n } Men kan deze verzameling beschrijven met behulp van de volgende empirische grootheden : Het aantal gegevens Het steekproefgemiddelde: maat voor de locatie van de gegevens De steekproefvariantie en de -standaardafwijking: maat voor de spreiding van de gegevens De gegevens worden vaak voorgesteld in een histogram p6

7 Histogram De gegevens worden ingedeeld in klassen Het histogram geeft een eerste informatie over structuren (pieken, uniform..) in de verdeling van gemeten grootheid De keuze van de breedte van de klassen hangt af van de nauwkeurigheid waarmee men de grootheid gemeten heeft, van het aantal gegevens Voorbeelden : Men meet de lengte van een balk van 0cm met een lat met onderverdelingen van mm Men meet de lengte van 00 willekeurig gekozen mannen in Brussel p7

8 00 metingen lengte balk mm lat in 0 klassen van elk mm breed in 4 klassen van elk,5mm breed Het histogram met 0 klassen geeft meer informatie over de structuur van de steekproef dan het histogrammet 4 klassen. p8

9 Lengte 00 mannen In 0 klassen In 60 klassen In 300 klassen Het histogram met 60 klassen geeft voldoende informatie over de structuur van de steekproef en er zijn voldoende elementen in elke klasse. Het histogram met 0 klassen geeft te weinig informatie over de structuur. In het histogram met 300 klassen zijn er in sommige klassen te weinig elementen. p9

10 Gemiddelde en standaarddeviatie Een steekproef met n gegevens wordt gekarakteriseerd door de volgende grootheden: Rekenkundig gemiddelde x n xi n i = = Variantie s = x x i n n i= ( ) Standaardafwijking of standaarddeviatie = s p0

11 Gemiddelde en standaarddeviatie 00 metingen van de lengte van een balk van 0cm met een lat met mm onderverdelingen Gemiddelde waarde = 00mm Standaarddeviatie = mm p

12 ormale of gaussische verdeling Indien de steekproef oneindig groot wordt dan volgt de verdeling van de gemeten grootheid een normale of gaussische verdeling met gemiddelde waarde µ standaardafwijking σ Variantie σ Waarschijnlijkheids verdeling f(x) ( x-µ ) - ( ) f x = e σ σ π frequentie Grootheid x p

13 ormale of gaussische verdeling 68% van de metingen ligt in het interval [µ-σ, µ+σ] 95% van de metingen ligt in het interval [µ-σ, µ+σ] 99,7% van de metingen ligt in het interval [µ-3σ, µ+3σ] f ( x) = e σ π ( x-µ ) σ = lim i µ i= - σ ( x ) p3

14 ormale verdeling en steekproef Steekproef is nooit oneindig groot Men benadert Gemiddelde µ door rekenkundig gemiddelde x variantie σ door steekproefvariantie s Standaardafwijking σ = statistische onzekerheid op één meting van de grootheid Voorbeeld : meting lengte balk 00 of 0000 metingen p4

15 00 en 0000 metingen lengte balk 00 metingen 0000 metingen + normale verdeling Het histogram met 0000 metingen benadert goed een normale verdeling p5

16 Fouten en onzekerheden Statistische onzekerheden Te wijten aan toevallige fluctuaties in de metingen De onzekerheid op de conclusie uit de metingen verkleint wanneer men beschikt over een grotere steekproef Men spreekt vaak van statistische fout Blunders = fouten die niet ingeschat kunnen worden Systematische fouten Reproduceerbare fouten te wijten aan slecht afgesteld apparaat Bvb amperemeter meet systematisch te hoge stroom De metingen herhalen geeft geen betere nauwkeurigheid en geeft niet meer zekerheid over de conclusies uit de proef p6

17 Deel II Herhaalde metingen: gemiddelde en variantie Bewerkingen met stochastische veranderlijken Voorplanten van statistische onzekerheden p7

18 Een enkele meting Elk meetinstrument laat toe metingen uit te voeren met een bepaalde onzekerheid Bvb weegschaal meet op 0,0g nauwkeurig Bvb lat meet op mm nauwkeurig Voor de meetapparaten die in het practicum gebruikt zullen worden wordt de nauwkeurigheid gegeven in de syllabus of op het apparaat zelf otatie: x i ± s i bvb m= 50,00± 0,0 ( ) g p8

19 Herhaalde metingen De metingen herhalen levert een resultaat met een kleinere onzekerheid Wanneer men metingen uitvoert van een grootheid x, elk men een bepaalde onzekerheid s i x ± s ; i =, { } i i Dan zijn het gewogen gemiddelde en zijn variantie wx i i i= = en x= met gewichten i = w i wi i= i= x s w s i p9

20 Herhaalde metingen met zelfde onzekerheid Indien alle metingen dezelfde onzekerheid s bezitten (of hetzelfde gewicht) dan worden het gemiddelde en zijn onzekerheid i x x = x s = i= s Bvb 00 metingen van 00mm lange balk met lat met mm nauwkeurigheid geven: Elke meting : onzekerheid s = mm Gemiddelde : onzekerheid s x = mm/ 00 = mm/0 p0

21 Bewerkingen met toevallige variabelen De metingen uitgevoerd in een of meerdere experimenten zijn zelden zelf het eindresultaat waarin men geïnteresseerd is Eenvoudig geval: ik bepaal mijn gewicht door elke ochtend op de weegschaal te staan De proeven uitgevoerd in de fysica bestaan meestal uit metingen van verschillende grootheden, elk met een onzekerheid Bewerkingen met die metingen leiden tot het eindresultaat p

22 Voorbeeld: bepaling valversnelling bepaling valversnelling g: laat een kogel vanop een hoogte vallen en meet de tijd tot die de grond raakt Metingen van hoogte y en tijd t, elk met een statistische onzekerheid Valbeweging y = y0 + v0t+ at met y0 = 0 en v0 = 0 De valversnelling g wordt Vraag: welke is de onzekerheid op g? g = y t p

23 Voorplanten van onzekerheden Voor een groot aantal metingen van een stochastische variabele heeft deze variabele een normale verdeling de onzekerheid op één enkele meting gelijk is aan de standaarddeviatie van de normale verdeling Voor een variabele z=f(u,v), een functie van variabelen (bvb hoogte en tijd bij valversnelling), geldt Vraag is σ z = i i i z = = lim i f( u, v ) f(,)? uv σ i= z ( x x ) = lim i= ( z ) i z? p3

24 Voorplanten van onzekerheden De vraag is nu z = fuv (,)? Voor een lineair verband geldt deze relatie altijd Voor een niet-linear verband geldt deze relatie bij benadering. De functie f(u,v) wordt rond het maximum van de multidimensionele waarschijnlijkheidsverdeling benaderd door een raakvlak Dit geschiedt door een ontwikkeling in Taylorreeks rond het punt ( u, v) f f f( u, v) = f( u, v) + ( u u) + ( v v) +... u v uv, uv, Termen van de en hogere orde worden verwaarloosd p4

25 Voortplanten van onzekerheden 3 ( ) ( ) ( ) ( zi z) f ui, vi f u, v ( ui u) + ( vi v) u uv, v uv, f f De variantie op z wordt σ f f z lim ( ui u) u, v ( vi v) u, v + i= u v f f = lim ( ) ( ) + lim ( ) ( ) u v ui u vi v i= i= f f + lim ( ui u)( vi v) u v i= p5

26 Voortplanten van onzekerheden 4 ( f z u ) v( f ) f σ σ + σ + σ f uv u v u v De covariantie σ uv is nul voor niet gecorreleerde veranderlijken, wat in alle practica het geval is Voorbeeld: men bepaalt de snelheid van een auto uit de metingen van afstand x en tijd t Voor de steekproefvariantie geldt σ s, σ s, σ s ( ) x x t t v v v = x t v v σ σ ( ) + σ ( ) x t v x t resultaat v = v ± σ v p6

27 Deel III Bepalen van de beste rechte door de metingen Methode van de kleinste kwadraten iet lineaire problemen p7

28 Een lineaire fysische wet Voorbeeld : bepaling veerconstante Een veer wordt opgehangen aan een punt men hangt achtereenvolgens verschillende massa s onderaan de veer dit veroorzaakt een elongatie van de veer men meet de positie x van het onderste punt van de veer als functie van de massa m positie(cm elongatie vd veer ifv massa Blauw = Meetpunten Alle posities zijn gemeten met dezelfde onzekerheid massa(g) p8

29 Bepalen van de beste rechte - voorbeeld Fysische wet g k( x x ) = mg of x = m+ x k k = veerconstante g=valversnelling 0 0 x positie(cm elongatie vd veer ifv massa vraag: wat is de veerconstante k voor deze veer? Of: welke is de beste schatting van k uit deze metingen? de beste schatting van k geeft de beste rechte door de meetpunten (m,x) Hoe bepaalt men de beste rechte door de meetpunten? Met de methode van de kleinste kwadraten massa(g) p9

30 Methode van de kleinste kwadraten Uit metingen {x i,y i ±σ i } schat men de beste rechte y=ax+b de beste schatting wordt bekomen door minimisatie van de χ χ ( ) = y i axi b i= σ i Vbverloopvan χ als functie van parameter a(rico) voor proef veer χ chi minimum rico a a p30

31 Methode van de kleinste kwadraten Het minimum van de χ functie wordt bekomen door partieel af te leiden naar de parameters a en b χ a χ = 0, = 0 b Parameters a,b van beste rechte Algemene oplossing: zie cursus statistiek Indien alle metingen y i dezelfde onzekerheid σ y bezitten bekomt men een eenvoudig stelsel van vergelijkingen en onbekenden Oplossing van het stelsel:. Eerst de vergelijking oplossen naar b. Deze oplossing substitueren in ste vergelijking geeft a 3. Dit invullen in oplossing voor b bekomen in stap. p3

32 Oplossen van stelsel naar a en b stel δ = xi xi i= i= a = x y x y δ i i i i i= i= i= Alle metingen hebben dezelfde onzekerheid s y b= x y x x y δ i i i i i i= i= i= i= p3

33 Schatting van onzekerheden op a,b Voortplanten van onzekerheden op y i naar a,b σ σ a a = σ i i= yi b b = σ i i= yi σ i = σ y i In de praktijk is de onzekerheid σ y vaak niet gekend en kan berekend worden uit σ σ a = σ y δ σ y b = xi δ i = σ y = sy = ( yi axi b) i= p33

34 Indien de fysische wet geen rechte volgt De methode van de kleinste kwadraten is steeds geldig. Men berekent de χ en leidt af naar de parameters om het minimum te vinden zie cursus statistiek en Mathematica Bvb voor valbeweging χ = ( y gt ) i i i= σ i Men kan het probleem lineariseren Bvb valbeweging: indien men t ipv t als x variabele gebruikt bekomt men een rechte waarvan de richtingscoëfficient = g y = gt p34

35 Deel IV Presentatie van resultaten Aantal beduidende cijfers Afronden van getalwaarden Grafieken, tabellen, eenheden etc p35

36 Aantal beduidende cijfers Meest LIKSE cijfer ( 0) is meest beduidende cijfer Geen decimaal punt : minst beduidende cijfer is meest RECHTSE cijfer ( 0) Wel decimaal punt : : minst beduidende cijfer is meest RECHTSE cijfer, ook al is dit 0 Aantal beduidende cijfers = aantal tussen meest en minst beduidende cijfers 580 : 3 beduidende cijfers 580, : 4 beduidende cijfers 0,0094 : beduidende cijfers 3,00 x 0 4 : 4 beduidende cijfers p36

37 Afronden van getalwaarden Resultaat van de proef: hoeveel beduidende cijfers moet men geven? Men rond eerst de onzekerheid op het resultaat (de fout ) af tot of 3 beduidende cijfers Men kiest de meest aangepaste eenheden, bvb keuze tussen,0mm (3 bed cijfers) 0,cm ( bed cijfer) Dan rond men het resultaat zelf af tot hetzelfde aantal decimalen als de fout p37

38 Grafieken, tabellen, eenheden Tabellen en grafieken geven een duidelijk overzicht van de metingen gebruik ze! Grafiek: geef assen een naam en eenheden Kies de schaal zodanig dat de gegevens over het gehele gebied verspreid zijn Geef duidelijk de schalen aan van de assen Tabel: zet bovenaan de naam van de grootheid en de eenheden Vergeet eenheden niet bij het geven van resultaten van metingen en berekeningen Zet titels boven grafieken en tabellen p38

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding Zie syllabus voor details 16 februari 2011 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor

Nadere informatie

Tentamen Planning 2de semester Wetenschappelijk verslag Lenzen en Hydrodynamica. 17 februari 2006 Meten en experimenteren 1

Tentamen Planning 2de semester Wetenschappelijk verslag Lenzen en Hydrodynamica. 17 februari 2006 Meten en experimenteren 1 Tentamen Planning 2de semester Wetenschappelijk verslag Lenzen en Hydrodynamica 17 februari 2006 Meten en experimenteren 1 tentamen Wie minimum 10/20 heeft behaald op het tentamen is vrijgesteld van het

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel 2. 6 november 2015 van 10:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel 2. 6 november 2015 van 10:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Eindtoets Experimentele Fysica 1 (3A1X1) - Deel 2 6 november 2015 van 10:00 12:00 uur Puntenwaardering voor de opgaven: Opgave 1: a) 4; b) 6; c) 5 Opgave 2: a) 5; b) 3;

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

1. Statistiek gebruiken 1

1. Statistiek gebruiken 1 Hoofdstuk 0 Inhoudsopgave 1. Statistiek gebruiken 1 2. Gegevens beschrijven 3 2.1 Verschillende soorten gegevens......................................... 3 2.2 Staafdiagrammen en histogrammen....................................

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) en Tentamen Inleiding Experimentele Fysica voor Combi s (3NA10) d.d. 31 oktober 2011 van 9:00 12:00 uur Vul de

Nadere informatie

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) Tentamen Inleiding Experimentele Fysica (3AA10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) Tentamen Inleiding Experimentele Fysica (3AA10) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) Tentamen Inleiding Experimentele Fysica (3AA10) d.d. 30 oktober 2009 van 9:00 12:00 uur Vul de presentiekaart

Nadere informatie

Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8

Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting door N. 1410 woorden 6 januari 2013 5,4 13 keer beoordeeld Vak Methode Wiskunde Getal en Ruimte 7.1 toenamediagrammen Interval

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Les 2 / 3: Meetschalen en Parameters

Les 2 / 3: Meetschalen en Parameters Les 2 / 3: Meetschalen en Parameters I Theorie: A. Algemeen : V is de verzameling van alle mogelijke uitkomsten van een toevallig experiment. Een veranderlijke of stochastiek is een afbeelding G die aan

Nadere informatie

Examen Statistiek I Feedback

Examen Statistiek I Feedback Examen Statistiek I Feedback Bij elke vraag is alternatief A correct. Bij de trekking van een persoon uit een populatie beschouwt men de gebeurtenissen A (met bril), B (hooggeschoold) en C (mannelijk).

Nadere informatie

Sterrenkunde Praktikum 1 Fouten en fitten

Sterrenkunde Praktikum 1 Fouten en fitten Sterrenkunde Praktikum 1 Fouten en fitten Paul van der Werf 12 februari 2008 1 Inleiding In de sterrenkunde werken we vaak met zwakke signalen, of met grote hoeveelheden metingen van verschillende nauwkeurigheid.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel november 2016 van 14:30 16:30 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel november 2016 van 14:30 16:30 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Eindtoets Experimentele Fysica 1 (3A1X1) - Deel 2 11 november 2016 van 14:30 16:30 uur DIT DEEL VAN DE EINDTOETS BESTAAT UIT 6 OPGAVEN LET OP: ER ZITTEN 2 BIJLAGEN BIJ

Nadere informatie

Proefopstelling Tekening van je opstelling en beschrijving van de uitvoering van de proef.

Proefopstelling Tekening van je opstelling en beschrijving van de uitvoering van de proef. Practicum 1: Meetonzekerheid in slingertijd Practicum uitgevoerd door: R.H.M. Willems Hoe nauwkeurig is een meting? Onderzoeksvragen Hoe groot is de slingertijd van een 70 cm lange slinger? Waardoor wordt

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses Vandaag Onderzoeksmethoden: Statistiek 3 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap Centrale limietstelling

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

Theorie: Het maken van een verslag (Herhaling klas 2)

Theorie: Het maken van een verslag (Herhaling klas 2) Theorie: Het maken van een verslag (Herhaling klas 2) Onderdelen Een verslag van een experiment bestaat uit vier onderdelen: - inleiding: De inleiding is het administratieve deel van je verslag. De onderzoeksvraag

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Introductie periode 2b. Onderdeel Foutenleer 1

Introductie periode 2b. Onderdeel Foutenleer 1 Introductie periode 2b Onderdeel Foutenleer 1 Assistenten: Lai Mei Tang / Vera Kaats Susan Kersjes Maurice Mourad Sandra Veen Marieke Bode Piter Miedema Inhoud: Wat is foutenleer, en wat heeft Excel daar

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag Practicum algemeen 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag 1 Diagrammen maken Onafhankelijke grootheid en afhankelijke grootheid In veel experimenten wordt

Nadere informatie

Foutenleer 1. dr. P.S. Peijzel

Foutenleer 1. dr. P.S. Peijzel Foutenleer 1 dr. P.S. Peijzel In dit hoofdstuk zal een inleiding in de foutenleer gegeven worden. Foutenleer is een onderdeel van statistiek dat gebruikt wordt om een uitspraak te kunnen doen over fouten

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

Hoofdstuk 3 Statistiek: het toetsen

Hoofdstuk 3 Statistiek: het toetsen Hoofdstuk 3 Statistiek: het toetsen 3.1 Schatten: Er moet een verbinding worden gelegd tussen de steekproefgrootheden en populatieparameters, willen we op basis van de een iets kunnen zeggen over de ander.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel januari 2014 van 14:50 17:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel januari 2014 van 14:50 17:00 uur TECHISCHE UIVERSITEIT EIDHOVE Eindtoets Experimentele Fysica 1 (3A1X1) - Deel januari 014 van 14:50 17:00 uur Gebruik van dictaat, aantekeningen en laptop computer is niet toegestaan Gebruik van (grafische)

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule:

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule: Voorbeeldmeetrapport (eenparig versnelde beweging stopwatch en meetlat) Eenparig versnelde beweging stopwatch en meetlat. Doel van de proef Een kogel die van een helling afrolt, voert een eenparig versnelde

Nadere informatie

Significante cijfers en meetonzekerheid

Significante cijfers en meetonzekerheid Inhoud Significante cijfers en meetonzekerheid... 2 Significante cijfers... 2 Wetenschappelijke notatie... 4 Meetonzekerheid... 4 Significante cijfers en meetonzekerheid... 5 Opgaven... 6 Opgave 1... 6

Nadere informatie

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A.

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A. Grootheden en eenheden Kwalitatieve en kwantitatieve waarnemingen Een kwalitatieve waarneming is wanneer je meet zonder bijvoorbeeld een meetlat. Je ziet dat een paard hoger is dan een muis. Een kwantitatieve

Nadere informatie

Les 1: de normale distributie

Les 1: de normale distributie Les 1: de normale distributie Elke Debrie 1 Statistiek 2 e Bachelor in de Biomedische Wetenschappen 18 oktober 2018 1 Met dank aan Koen Van den Berge Indeling lessen Elke bullet point is een week. R en

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN. Continue Verdelingen 1 A. De uniforme (of rechthoekige) verdeling Kansdichtheid en cumulatieve frequentiefunctie Voor x < a f(x) = 0 F(x) = 0 Voor a x

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen Vandaag Onderzoeksmethoden: Statistiek 2 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Theoretische kansverdelingen

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

BETROUWBAARHEIDSINTERVALLEN VANUIT VERSCHILLENDE HOEKEN BELICHT. S.A.R. Bus

BETROUWBAARHEIDSINTERVALLEN VANUIT VERSCHILLENDE HOEKEN BELICHT. S.A.R. Bus BETROUWBAARHEIDSINTERVALLEN VANUIT VERSCHILLENDE HOEKEN BELICHT S.A.R. Bus WAAR DENK JE AAN BIJ BETROUWBAARHEIDSINTERVALLEN? Wie van jullie gebruikt betrouwbaarheidsintervallen? WAAROM BETROUWBAARHEIDSINTERVALLEN???

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Exact Periode 9.1. Rekenvaardigheid Controlekaarten

Exact Periode 9.1. Rekenvaardigheid Controlekaarten Exact Periode 9.1 Rekenvaardigheid Controlekaarten Rekenvaardigheid Opfrissen - Gebruik rekenmachine - Significantie - Afronden - Wetenschappelijke notatie - Eenheden omrekenen Exact Periode 9.1 2 Rekenmachine

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Naam: Klas: Practicum veerconstante

Naam: Klas: Practicum veerconstante Naam: Klas: Practicum veerconstante stap Bouw de opstelling zoals hiernaast is weergegeven. stap 2 Hang achtereenvolgens verschillende massa's aan een spiraalveer en meet bij elke massa de veerlengte in

Nadere informatie

Gegevensverwerving en verwerking

Gegevensverwerving en verwerking Gegevensverwerving en verwerking Staalname - aantal stalen/replicaten - grootte staal - apparatuur Experimentele setup Bibliotheek Statistiek - beschrijvend - variantie-analyse - correlatie - regressie

Nadere informatie

vwo: Het maken van een natuurkunde-verslag vs 21062011

vwo: Het maken van een natuurkunde-verslag vs 21062011 Het maken van een verslag voor natuurkunde, vwo versie Deze tekst vind je op www.agtijmensen.nl: Een voorbeeld van een verslag Daar vind je ook een po of pws verslag dat wat uitgebreider is. Gebruik volledige

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) en Tentamen Inleiding Experimentele Fysica (3NA10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) en Tentamen Inleiding Experimentele Fysica (3NA10) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) en Tentamen Inleiding Experimentele Fysica (3NA10) d.d. 23 januari 2012 van 9:00 12:00 uur Vul de presentiekaart

Nadere informatie

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen

Nadere informatie

Je kunt al: -de centrummaten en spreidingsmaten gebruiken -een spreidingsdiagram gebruiken als grafische weergave van twee variabelen

Je kunt al: -de centrummaten en spreidingsmaten gebruiken -een spreidingsdiagram gebruiken als grafische weergave van twee variabelen Lesbrief: Correlatie en Regressie Leerlingmateriaal Je leert nu: -een correlatiecoëfficient gebruiken als maat voor het statistische verband tussen beide variabelen -een regressielijn te tekenen die een

Nadere informatie

Hoofdstuk 5: Steekproevendistributies

Hoofdstuk 5: Steekproevendistributies Hoofdstuk 5: Steekproevendistributies Inleiding Statistische gevolgtrekkingen worden gebruikt om conclusies over een populatie of proces te trekken op basis van data. Deze data wordt samengevat door middel

Nadere informatie

Inleiding Applicatie Software - Statgraphics

Inleiding Applicatie Software - Statgraphics Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een

Nadere informatie

Inleiding statistiek

Inleiding statistiek Inleiding Statistiek Pagina 1 uit 8 Inleiding statistiek 1. Inleiding In deze oefeningensessie is het de bedoeling jullie vertrouwd te maken met een aantal basisbegrippen van de statistiek, meer bepaald

Nadere informatie

LOPUC. Een manier om problemen aan te pakken

LOPUC. Een manier om problemen aan te pakken LOPUC Een manier om problemen aan te pakken LOPUC Lees de opgave goed, zodat je precies weet wat er gevraagd wordt. Zoek naar grootheden en eenheden. Schrijf de gegevens die je nodig denkt te hebben overzichtelijk

Nadere informatie

Financiële economie. Opbrengsvoet en risico van een aandeel

Financiële economie. Opbrengsvoet en risico van een aandeel Financiële economie Opbrengsvoet en risico van een aandeel Financiële economen gebruiken de wiskundige verwachting E(x) van de opbrengstvoet x als een maatstaf van de verwachte opbrengstvoet, en de standaardafwijking

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur Kansrekening en statistiek wi2105in deel 2 27 januari 2010, 14.00 16.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN

HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN Inleiding Statistische gevolgtrekkingen (statistical inference) gaan over het trekken van conclusies over een populatie op basis van steekproefdata.

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

Kengetal Antwoord Nee Nee Ja Nee Ja Ja Nee Toetsgrootheid 1,152 1,113 2,048 1,295 1,152 1,113 0,607

Kengetal Antwoord Nee Nee Ja Nee Ja Ja Nee Toetsgrootheid 1,152 1,113 2,048 1,295 1,152 1,113 0,607 1. Om na te gaan of de gemiddelde bijdrage dezelfde is voor ziekenkas A en voor ziekenkas B heeft men op een toevallige wijze 30 personen geselecteerd waarvan 15 aangesloten zijn bij ziekenkas A en 15

Nadere informatie

Foutenberekeningen Allround-laboranten

Foutenberekeningen Allround-laboranten Allround-laboranten Inhoudsopgave INHOUDSOPGAVE... 2 LEERDOELEN :... 3 1. INLEIDING.... 4 2. DE ABSOLUTE FOUT... 5 3. DE KOW-METHODE... 6 4. DE RELATIEVE FOUT... 6 5. GROOTHEDEN VERMENIGVULDIGEN EN DELEN....

Nadere informatie

Meetkundige Dienst

Meetkundige Dienst Notitie Ministerie van Verkeer en Waterstaat Directoraat-Generaal Rijkswaterstaat Meetkundige Dienst Aan Monitoring Maas projectgroep Van Ardis Bollweg Marc Crombaghs Regine Brügelmann Erik de Min Doorkiesnummer

Nadere informatie

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6 HOOFDSTUK III SCHATTEN VAN PARAMETERS Schatters e Betrouwbaarheidsitervalle 3. HET GEMIDDELDE VAN EEN NV Steekproef uit ee ormaal verdeelde populatie De kasveraderlijke X, X, X 3,..., X zij N(µ, σ) verdeeld

Nadere informatie

Voorbeelden van gebruik van 5 VUSTAT-apps

Voorbeelden van gebruik van 5 VUSTAT-apps Voorbeelden van gebruik van 5 VUSTAT-apps Piet van Blokland Begrijpen van statistiek door simulaties en visualisaties Hoe kun je deze apps gebruiken bij het statistiek onderwijs? De apps van VUSTAT zijn

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

Inleidende begrippen over foutentheorie

Inleidende begrippen over foutentheorie Hoofdstuk 1 Inleidende begrippen over foutentheorie Doelstellingen 1. leren omgaan met fouten op een meting 2. kennis van statistische basisbegrippen 3. meetgegevens verwerken en interpreteren (in Excell)

Nadere informatie

Inleiding tot de natuurkunde

Inleiding tot de natuurkunde OBC Inleiding tot de Natuurkunde 01-08-2010 W.Tomassen Pagina 1 Hoofdstuk 1 : Hoe haal ik hoge cijfers. 1. Maak van elke paragraaf een samenvatting. (Titels, vet/schuin gedrukte tekst, opsommingen en plaatsjes.)

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Hoofdstuk 1 Beweging in beeld. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 1 Beweging in beeld. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 1 Beweging in beeld Gemaakt als toevoeging op methode Natuurkunde Overal 1.1 Beweging vastleggen Het verschil tussen afstand en verplaatsing De verplaatsing (x) is de netto verplaatsing en de

Nadere informatie

M V. Inleiding opdrachten. Opgave 1. Meetinstrumenten en grootheden. Vul het schema in. stopwatch. liniaal. thermometer. spanning.

M V. Inleiding opdrachten. Opgave 1. Meetinstrumenten en grootheden. Vul het schema in. stopwatch. liniaal. thermometer. spanning. Inleiding opdrachten Opgave 1. Meetinstrumenten en grootheden Vul het schema in. Meetinstrument Grootheid stopwatch liniaal thermometer spanning hoek van inval oppervlak Opgave. Formules Leg de betekenis

Nadere informatie

Statistiek voor A.I. College 10. Donderdag 18 Oktober

Statistiek voor A.I. College 10. Donderdag 18 Oktober Statistiek voor A.I. College 10 Donderdag 18 Oktober 1 / 28 Huffington Post poll verkiezingen VS - 12 Oktober 2012 2 / 28 Gallup poll verkiezingen VS - 15 Oktober 2012 3 / 28 Jullie - onderzoek Kimberly,

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Significante cijfers en meetonzekerheid

Significante cijfers en meetonzekerheid Inhoud Significante cijfers en meetonzekerheid... 2 Significante cijfers... 2 Wetenschappelijke notatie... 3 Meetonzekerheid... 3 Significante cijfers en meetonzekerheid... 4 Opgaven... 5 Opgave 1... 5

Nadere informatie

werkcollege 5 - P&D7: Population distributions - P&D8: Sampling variability and Sampling distributions

werkcollege 5 - P&D7: Population distributions - P&D8: Sampling variability and Sampling distributions cursus 4 mei 2012 werkcollege 5 - P&D7: Population distributions - P&D8: Sampling variability and Sampling distributions Huiswerk P&D, opgaven Chapter 6: 9, 19, 25, 33 P&D, opgaven Appendix A: 1, 9 doen

Nadere informatie

HOOFDSTUK 7: STATISTISCHE GEVOLGTREKKINGEN VOOR DISTRIBUTIES

HOOFDSTUK 7: STATISTISCHE GEVOLGTREKKINGEN VOOR DISTRIBUTIES HOOFDSTUK 7: STATISTISCHE GEVOLGTREKKINGEN VOOR DISTRIBUTIES 7.1 Het gemiddelde van een populatie Standaarddeviatie van de populatie en de steekproef In het vorige deel is bij de significantietoets uitgegaan

Nadere informatie

Klantonderzoek: statistiek!

Klantonderzoek: statistiek! Klantonderzoek: statistiek! Statistiek bij klantonderzoek Om de resultaten van klantonderzoek juist te interpreteren is het belangrijk de juiste analyses uit te voeren. Vaak worden de mogelijkheden van

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Oefenvragen bij Statistics for Business and Economics van Newbold

Oefenvragen bij Statistics for Business and Economics van Newbold Oefenvragen bij Statistics for Business and Economics van Newbold Hoofdstuk 1 1. Wat is het verschil tussen populatie en sample? De populatie is de complete set van items waar de onderzoeker in geïnteresseerd

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

4900 snelheid = = 50 m/s Grootheden en eenheden. Havo 4 Hoofdstuk 1 Uitwerkingen

4900 snelheid = = 50 m/s Grootheden en eenheden. Havo 4 Hoofdstuk 1 Uitwerkingen 1.1 Grootheden en eenheden Opgave 1 a Kwantitatieve metingen zijn metingen waarbij je de waarneming uitdrukt in een getal, meestal met een eenheid. De volgende metingen zijn kwantitatief: het aantal kinderen

Nadere informatie

Financiële economie. Luc Hens 7 maart Opbrengsvoet en risico van een aandeel

Financiële economie. Luc Hens 7 maart Opbrengsvoet en risico van een aandeel Financiële economie Luc Hens 7 maart 2016 Opbrengsvoet en risico van een aandeel Financiële economen gebruiken de wiskundige verwachting E(x) van de opbrengstvoet x als een maatstaf van de verwachte opbrengstvoet,

Nadere informatie

Belangrijke concepten & conventies

Belangrijke concepten & conventies Belangrijke concepten & conventies Lieven Clement 2 de bach. in de Biologie, Chemie, Biochemie en Biotechnologie en Biomedische Wetenschappen statomics, Ghent University lieven.clement@ugent.be 1/27 Inleiding

Nadere informatie

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 12 : Regressie en correlatie Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Regressie en correlatie p 1/26 Regressielijn Vraag : vind het

Nadere informatie

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch

Nadere informatie

Titel: De titel moet kort zijn en toch aangeven waar het onderzoek over gaat. Een subtitel kan uitkomst bieden. Een bijpassend plaatje is leuk.

Titel: De titel moet kort zijn en toch aangeven waar het onderzoek over gaat. Een subtitel kan uitkomst bieden. Een bijpassend plaatje is leuk. Het maken van een verslag voor natuurkunde Deze tekst vind je op www.agtijmensen.nl: Een voorbeeld van een verslag Daar vind je ook een po of pws verslag dat wat uitgebreider is. Gebruik volledige zinnen

Nadere informatie

SOCIALE STATISTIEK (deel 2)

SOCIALE STATISTIEK (deel 2) SOCIALE STATISTIEK (deel 2) D. Vanpaemel KU Leuven D. Vanpaemel (KU Leuven) SOCIALE STATISTIEK (deel 2) 1 / 57 Hoofdstuk 5: Schatters en hun verdeling 5.1 Steekproefgemiddelde als toevalsvariabele D. Vanpaemel

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.2 Kansveranderlijken en verdelingen 1 Veranderlijken Beschouw een toevallig experiment met uitkomstenverzameling V (eindig of oneindig), de verzameling van alle gebeurtenissen

Nadere informatie

Havo 4 - Practicumwedstrijd Versnelling van een karretje

Havo 4 - Practicumwedstrijd Versnelling van een karretje Havo 4 - Practicumwedstrijd Versnelling van een karretje Vandaag gaan jullie een natuurkundig experiment doen in een hele andere vorm dan je gewend bent, namelijk in de vorm van een wedstrijd. Leerdoelen

Nadere informatie