Meten en experimenteren

Maat: px
Weergave met pagina beginnen:

Download "Meten en experimenteren"

Transcriptie

1 Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq

2 Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt in de semester In deze les wordt een samenvatting gegeven van de formules nodig in het practicum fysica Deel I: Toevallige veranderlijken Bronnen van onzekerheden Bepalen van de statistische onzekerheid Steekproef, histogram Karakterisatie van de steekproef: gemiddelde, variantie, standaarddeviatie Centrale limietstelling: normale of gaussische verdeling Herhaalde metingen: gemiddelde en variantie Deel II: Voortplanten van statistische onzekerheden Deel III: Lineair verband tussen grootheden Bepalen beste rechte met methode der kleinste kwadraten iet lineaire problemen Deel IV: Presentatie van resultaten Aantal beduidende cijfers, afronden van getalwaarden Grafieken, tabellen, eenheden etc p

3 Deel I Toevallige of stochastische veranderlijken Bronnen van onzekerheden Bepalen van de statistische onzekerheid: Steekproef Histogram Karakterisatie van de steekproef: gemiddelde, variantie en standaarddeviatie Centrale limietstelling: normale of gaussische verdeling Herhaalde metingen: gemiddelde en variantie p3

4 I. Toevallige veranderlijken experiment = meting van een bepaalde grootheid x uitgevoerd met een bepaald instrument volgens een bepaalde procedure Een experiment wordt meestal beïnvloed door verschillende factoren: vb bepaling verbruik van een auto, meten valversnelling Het resultaat van een experiment is meestal nooit exact reproduceerbaar De verschillende waarnemingen of resultaten van een experiment vertonen een spreiding Men noemt de grootheid x (het resultaat van het experiment) een toevallige of stochastische veranderlijke p4

5 I. Bronnen van onzekerheden Statistische onzekerheden Te wijten aan toevallige fluctuaties in de metingen De onzekerheid op de conclusie uit de metingen verkleint wanneer men beschikt over een grotere steekproef Systematische onzekerheden Reproduceerbare metingen omwille van beperking meettoestel Bvb weegschaal meet tot op 0,0g nauwkeurig Reproduceerbare afwijkingen te wijten aan slecht afgesteld apparaat Bvb amperemeter meet systematisch te hoge stroom De metingen herhalen geeft geen betere nauwkeurigheid en geeft niet meer zekerheid over de conclusies uit de proef Blunders = fouten die niet ingeschat kunnen worden p5

6 I. Bepaling statistische onzekerheid: steekproef Men wil meestal uit het experiment een fysische grootheid bepalen, bvb de valversnelling Elk experiment wordt beïnvloed door verschillende willekeurige factoren Het is dus best om een groot aantal experimenten uit te voeren, at random (willekeurig) gekozen Dit is een steekproef waaruit men conclusies wenst te trekken over de fysische grootheid Men bekomt een verzameling gegevens {x,x,x 3, x n } p6

7 I. Karakterisatie steekproef a het uitvoeren van n experimenten beschikt men over een verzameling gegevens {x,x,x 3, x n } Men kan deze verzameling beschrijven met behulp van de volgende empirische grootheden : Het aantal gegevens Het steekproefgemiddelde: maat voor de locatie van de gegevens De steekproefvariantie en de -standaarddeviatie: maat voor de spreiding van de gegevens De gegevens worden vaak grafisch voorgesteld in een histogram p7

8 I. Histogram - inleiding Gegevens indelen in klassen men telt het aantal per klasse Het histogram geeft een eerste informatie over de uitkomst van het experiment: gemiddelde en spreiding, subklassen, De keuze van de breedte van de klassen hangt af van de nauwkeurigheid waarmee men de grootheid gemeten heeft, van het aantal gegevens Voorbeelden : Men meet de lengte van 00 houten staafjes van ongeveer 00mm Men meet de lengte van 00 willekeurig gekozen mannen in Brussel p8

9 I. histogram: 00 metingen lengte balk in 0 klassen van elk mm breed in 4 klassen van elk,5mm breed Het histogram met 0 klassen geeft meer informatie over de structuur van de steekproef dan het histogram met 4 klassen. p9

10 I. histogram: Lengte 00 mannen In 0 klassen van 6cm In 60 klassen van cm In 300 klassen van 0,cm Het histogram met 60 klassen geeft voldoende informatie over de structuur van de steekproef en er zijn voldoende elementen in elke klasse. Het histogram met 0 klassen geeft te weinig informatie over de structuur. In het histogram met 300 klassen zijn er in sommige klassen te weinig elementen. p0

11 I. Karakterisatie steekproef Een steekproef met n metingen wordt gekarakteriseerd door de volgende grootheden: Rekenkundig gemiddelde: kental van de locatie schatting verwachtingswaarde μ x n xi n i = = Steekproefvariantie: kental van de spreiding schatting variantie σ s = x x i n i= n ( ) Standaardafwijking of standaarddeviatie s = s p

12 I. Gemiddelde en standaarddeviatie Lengteverdeling van 00 staafjes van ongeveer 00mm Gemiddelde waarde = 00mm Standaarddeviatie = mm p

13 I. Centrale limietstelling voor een oneindig (heel groot) aantal metingen kan elke verdeling benaderd worden door de normale verdeling. M.a.w. de theorie van de onzekerheden mag gebaseerd worden op de normale verdeling Steekproef is nooit oneindig groot. Men benadert dus verwachtingswaarde μ door rekenkundig gemiddelde x variantie σ door steekproefvariantie s Voorbeeld : meting lengte staafjes 00 of metingen p3

14 I. ormale of gaussische verdeling gemiddelde waarde μ standaardafwijking σ Variantie σ Waarschijnlijkheids verdeling f(x) f ( x) = e σ π μ = σ lim i= i= x - ( x-μ ) σ = lim ( x ) i μ i frequentie [-;0,7] [0;0,45] [0;] [0;,4] Grootheid x p4

15 I. ormale of gaussische verdeling 68% van de metingen ligt in het interval [µ-σ, µ+σ] 95% van de metingen ligt in het interval [µ-σ, µ+σ] 99,7% van de metingen ligt in het interval [µ-3σ, µ+3σ] ( x-μ) - ( ) f x = e σ σ π p5

16 I. metingen lengte staafjes 00 metingen metingen + normale verdeling lengte(mm) Het histogram met metingen benadert goed een normale verdeling p6

17 I. Herhaalde metingen : gemiddelde met onzekerheid De metingen herhalen levert een resultaat met een kleinere statistische onzekerheid Wanneer men gelijkwaardige metingen uitvoert van een grootheid x, {x i, i=,}, dan zijn het steekproefgemiddelde de steekproefvariantie Onzekerheid op het steekproefgemiddelde s s s met s = = = x x x s x s = xi i= = xi x x i= ± ( ) s p7

18 Deel II Voorplanten van statistische onzekerheden p8

19 II. Bewerkingen met toevallige variabelen De metingen uitgevoerd in een of meerdere experimenten zijn zelden zelf het eindresultaat waarin men geïnteresseerd is De proeven uitgevoerd in de fysica bestaan meestal uit metingen van verschillende grootheden, elk met een statistische onzekerheid Bewerkingen met die metingen leiden tot het eindresultaat verwerking van de gegevens Hoe moet men de onzekerheid bepalen op het eindresultaat? Dit gebeurt d.m.v. voortplanting van onzekerheden p9

20 II. Voorbeeld: bepaling snelheid auto Voor één afstand doen we metingen van de tijd t Verband tussen de afstand en de tijd: x = v( t t ) + x veronderstel t = 0, x = 0 De snelheid wordt dan We berekenen de gemiddelde tijd met onzekerheid als De afstand is gekend met een nauwkeurigheid s x Vraag: wat is de onzekerheid op de snelheid? v = x t t s t = = i= t i i= ( t t ) i p0

21 II. Voorplanten van onzekerheden beschouw een variabele z=f(u,v), een functie van variabelen bvb snelheid als functie van afstand en gemiddelde tijd Voor elke meting van z geldt Voor metingen {z i, i=,} bekomt men het gemiddelde z en de variantie σ = lim ( z z ) z =? fuv (,) Vraag is Voor een lineair verband geldt deze relatie altijd Voor een niet-linear verband geldt deze relatie bij benadering. De functie f(u,v) wordt rond het gemiddelde gelineariseerd z z = f( u, v ) i i i i= i? p

22 II. Voorplanten van onzekerheden Dit geschiedt door een ontwikkeling in Taylorreeks rond het punt ( u, v) f f f( u, v) = f( u, v) + ( u u) + ( v v) +... u v uv, uv, Termen van de en hogere orde worden verwaarloosd dus ( ) ( ) ( ) ( zi z) f ui, vi f u, v ( ui u) + ( vi v) u uv, v uv, f f p

23 II. Voortplanten van onzekerheden 3 De variantie op z wordt σ f f z = lim ( zi z ) lim ( ui u) u, v ( vi v) u, v i= + i= u v f f = lim ( ) ( ) + lim ( ) ( ) u v ui u vi v i= i= + lim ( ui u)( vi v) i= f u f v p3

24 II. Voortplanten van onzekerheden 4 resultaat ( f z u ) v( f ) f σ σ + σ + σ f uv u v u v Partieel afgeleiden van f(u,v) naar u en v σ u = variantie van de verdeling van variabele u = kwadraat van onzekerheid op u De covariantie σ uv is nul voor niet gecorreleerde veranderlijken, wat in alle practica het geval is p4

25 II. Voortplanten van onzekerheden 5 In hetgevalvan hetvoorbeeldkrijgenwedan: waarbij v = x t v v σ σ ( ) + σ ( ) x t v x t σ s, σ s, σ s t x x v v t resultaat v ± σ v p5

26 Deel III Bepalen van de beste rechte door de metingen Methode van de kleinste kwadraten iet lineaire problemen p6

27 Een lineaire fysische wet Voorbeeld : bepaling veerconstante Een veer wordt opgehangen aan een punt men hangt achtereenvolgens verschillende massa s onderaan de veer dit veroorzaakt een elongatie van de veer men meet de positie x van het onderste punt van de veer als functie van de massa m x 0 x Massa m veer p7

28 Bepalen van de beste rechte - voorbeeld Fysische wet g k( x x ) = mg of x = m+ x k k = veerconstante 0 0 x positie x(cm) elongatie vd veer ifv massa massa(g) g=valversnelling m vraag: wat is de veerconstante k voor deze veer? Of: welke is de beste schatting van k uit deze metingen? de beste schatting van k geeft de beste rechte door de meetpunten (m,x) Hoe bepaalt men de beste rechte door de meetpunten? Met de methode van de kleinste kwadraten. x p8

29 Methode van de kleinste kwadraten Met een steekproef van metingen {x i,y i ±σ i } schat men de beste rechte y=ax+b de beste schatting wordt bekomen door minimisatie van de χ χ ( ) [ ] = y i axi + b i= σ i Vbverloopvan χ als functie van parameter a(rico) χ chi minimum a rico a p9

30 Methode van de kleinste kwadraten Het minimum van de χ functie wordt bekomen door de partieel afgeleiden naar de parameters a en b gelijk aan nul te zetten χ a Geeft een stelsel met vgl en onbekenden a a Oplossing naar a en b: zie syllabus formules (5),(6) χ = 0, = 0 b x x x y i i i i + b = i= σ i i= σi i= σi x i i + b = i= σ i i= σi i= σi y Parameters a,b van beste rechte a,b p30

31 Schatting van onzekerheden op a,b Bvb a a x y x y = Δ i i i i i= σ i i= σi i= σi i= σi Onzekerheid op a en b wordt bekomen door voortplanten van onzekerheden σ σ a a = σ i i= yi b b = σ i i= yi Uitwerking:zie syllabus formules (7) en (8) p3

32 Indien de fysische wet geen rechte volgt De methode van de kleinste kwadraten is steeds geldig. Men berekent de χ en leidt af naar de parameters om het minimum te vinden. Dit kan uitgevoerd worden met de Mathematica fit functies. Bvb voor valbeweging χ = ( y ) i gti i= σ i Men kan het probleem ook lineariseren Bvb valbeweging: indien men t ipv t als x variabele gebruikt bekomt men een rechte waarvan de richtingscoëfficient = g y = gt p3

33 Deel IV Presentatie van resultaten Aantal beduidende cijfers Afronden van getalwaarden Grafieken, tabellen, eenheden etc p33

34 Aantal beduidende cijfers Meest LIKSE cijfer ( 0) is meest beduidende cijfer Geen decimaal punt : minst beduidende cijfer is meest RECHTSE cijfer ( 0) Wel decimaal punt : : minst beduidende cijfer is meest RECHTSE cijfer, ook al is dit 0 Aantal beduidende cijfers = aantal tussen meest en minst beduidende cijfers 580 : 3 beduidende cijfers 580, : 4 beduidende cijfers 0,0094 : beduidende cijfers 3,00 x 0 4 : 4 beduidende cijfers p34

35 Afronden van getalwaarden Resultaat van de proef: hoeveel beduidende cijfers moet men geven? Men rond eerst de onzekerheid op het resultaat af tot of 3 beduidende cijfers Men kiest de meest aangepaste eenheden, bvb keuze tussen,0mm (3 beduidende cijfers) 0,cm ( beduidend cijfer) Dan rond men het resultaat zelf af tot hetzelfde aantal decimalen als de onzekerheid p35

36 Grafieken, tabellen, eenheden Tabellen en grafieken geven een duidelijk overzicht van de metingen gebruik ze! Grafiek: geef assen een naam en eenheden Kies de schaal zodanig dat de gegevens over het gehele gebied verspreid zijn Geef duidelijk de schalen aan van de assen Tabel: zet bovenaan de naam van de grootheid en de eenheden Vergeet eenheden niet bij het geven van resultaten van metingen en berekeningen Zet titels boven grafieken en tabellen p36

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

Tentamen Planning 2de semester Wetenschappelijk verslag Lenzen en Hydrodynamica. 17 februari 2006 Meten en experimenteren 1

Tentamen Planning 2de semester Wetenschappelijk verslag Lenzen en Hydrodynamica. 17 februari 2006 Meten en experimenteren 1 Tentamen Planning 2de semester Wetenschappelijk verslag Lenzen en Hydrodynamica 17 februari 2006 Meten en experimenteren 1 tentamen Wie minimum 10/20 heeft behaald op het tentamen is vrijgesteld van het

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) en Tentamen Inleiding Experimentele Fysica voor Combi s (3NA10) d.d. 31 oktober 2011 van 9:00 12:00 uur Vul de

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

Foutenleer 1. dr. P.S. Peijzel

Foutenleer 1. dr. P.S. Peijzel Foutenleer 1 dr. P.S. Peijzel In dit hoofdstuk zal een inleiding in de foutenleer gegeven worden. Foutenleer is een onderdeel van statistiek dat gebruikt wordt om een uitspraak te kunnen doen over fouten

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie

Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Statistiek voor Natuurkunde Opgavenserie 4: Lineaire regressie Inleveren: Uiterlijk 15 februari voor 16.00 in mijn postvakje Afspraken Overleg is toegestaan, maar iedereen levert zijn eigen werk in. Overschrijven

Nadere informatie

Proefopstelling Tekening van je opstelling en beschrijving van de uitvoering van de proef.

Proefopstelling Tekening van je opstelling en beschrijving van de uitvoering van de proef. Practicum 1: Meetonzekerheid in slingertijd Practicum uitgevoerd door: R.H.M. Willems Hoe nauwkeurig is een meting? Onderzoeksvragen Hoe groot is de slingertijd van een 70 cm lange slinger? Waardoor wordt

Nadere informatie

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A.

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A. Grootheden en eenheden Kwalitatieve en kwantitatieve waarnemingen Een kwalitatieve waarneming is wanneer je meet zonder bijvoorbeeld een meetlat. Je ziet dat een paard hoger is dan een muis. Een kwantitatieve

Nadere informatie

HOOFDSTUK VII REGRESSIE ANALYSE

HOOFDSTUK VII REGRESSIE ANALYSE HOOFDSTUK VII REGRESSIE ANALYSE 1 DOEL VAN REGRESSIE ANALYSE De relatie te bestuderen tussen een response variabele en een verzameling verklarende variabelen 1. LINEAIRE REGRESSIE Veronderstel dat gegevens

Nadere informatie

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag Practicum algemeen 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag 1 Diagrammen maken Onafhankelijke grootheid en afhankelijke grootheid In veel experimenten wordt

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

vwo: Het maken van een natuurkunde-verslag vs 21062011

vwo: Het maken van een natuurkunde-verslag vs 21062011 Het maken van een verslag voor natuurkunde, vwo versie Deze tekst vind je op www.agtijmensen.nl: Een voorbeeld van een verslag Daar vind je ook een po of pws verslag dat wat uitgebreider is. Gebruik volledige

Nadere informatie

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6 HOOFDSTUK III SCHATTEN VAN PARAMETERS Schatters e Betrouwbaarheidsitervalle 3. HET GEMIDDELDE VAN EEN NV Steekproef uit ee ormaal verdeelde populatie De kasveraderlijke X, X, X 3,..., X zij N(µ, σ) verdeeld

Nadere informatie

Theorie: Het maken van een verslag (Herhaling klas 2)

Theorie: Het maken van een verslag (Herhaling klas 2) Theorie: Het maken van een verslag (Herhaling klas 2) Onderdelen Een verslag van een experiment bestaat uit vier onderdelen: - inleiding: De inleiding is het administratieve deel van je verslag. De onderzoeksvraag

Nadere informatie

Inleidende begrippen over foutentheorie

Inleidende begrippen over foutentheorie Hoofdstuk 1 Inleidende begrippen over foutentheorie Doelstellingen 1. leren omgaan met fouten op een meting 2. kennis van statistische basisbegrippen 3. meetgegevens verwerken en interpreteren (in Excell)

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.2 Kansveranderlijken en verdelingen 1 Veranderlijken Beschouw een toevallig experiment met uitkomstenverzameling V (eindig of oneindig), de verzameling van alle gebeurtenissen

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN

HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN HOOFDSTUK IV TOETSEN VAN STATISTISCHE HYPOTHESEN 4.1 PARAMETERTOESTEN 1 A. Toetsen van het gemiddelde Beschouw een steekproef X 1, X,, X n van n onafhankelijke N(µ, σ) verdeelde kansveranderlijken Men

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

introductie kansen pauze meer kansen random variabelen transformaties ten slotte

introductie kansen pauze meer kansen random variabelen transformaties ten slotte toetsende statistiek week 1: kansen en random variabelen Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 4: Probability: The Study of Randomness 4.1: Randomness 4.2: Probability

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen

Nadere informatie

Overzicht statistiek 5N4p

Overzicht statistiek 5N4p Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

Significante cijfers en meetonzekerheid

Significante cijfers en meetonzekerheid Inhoud Significante cijfers en meetonzekerheid... 2 Significante cijfers... 2 Wetenschappelijke notatie... 3 Meetonzekerheid... 3 Significante cijfers en meetonzekerheid... 4 Opgaven... 5 Opgave 1... 5

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Beschrijvend statistiek

Beschrijvend statistiek 1 Beschrijvend statistiek 1. In een school werd het intelligentiequotiënt gemeten van de leerlingen van het zesde jaar (zie tabel). De getallen werden afgerond tot op de eenheid. De berekeningen mogen

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

2 Spreidingsvoortplanting

2 Spreidingsvoortplanting Spreidingsvoortplanting Spreidingsvoortplanting In het vorige hoofdstuk hebben we ons beiggehouden met eenvoudige analyses achteraf van meetgegeven. Naast analyse achteraf van data is het ook belangrijk

Nadere informatie

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule:

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule: Voorbeeldmeetrapport (eenparig versnelde beweging stopwatch en meetlat) Eenparig versnelde beweging stopwatch en meetlat. Doel van de proef Een kogel die van een helling afrolt, voert een eenparig versnelde

Nadere informatie

De 42 e Internationale Natuurkunde Olympiade Bangkok, Thailand Experimentele toets Donderdag 14 juli 2011

De 42 e Internationale Natuurkunde Olympiade Bangkok, Thailand Experimentele toets Donderdag 14 juli 2011 Lees dit eerst: De 42 e Internationale Natuurkunde Olympiade Bangkok, Thailand Experimentele toets Donderdag 14 juli 2011 1. Er zijn twee experimenten. Voor elk experiment wordt maximaal 10 punten toegekend.

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Inleiding tot de meettheorie

Inleiding tot de meettheorie Inleiding tot de meettheorie Meten is het toekennen van cijfers aan voorwerpen. Koeien Koeien in een kudde, studenten in een auditorium, mensen met een bepaalde stoornis, leerlingen met meer dan 15 in

Nadere informatie

Statistiek voor A.I. College 2. Donderdag 13 September 2012

Statistiek voor A.I. College 2. Donderdag 13 September 2012 Statistiek voor A.I. College 2 Donderdag 13 September 2012 1 / 42 1 Beschrijvende statistiek 2 / 42 Extrapolatie 3 / 42 Verkiezingen 2012 4 / 42 Verkiezingen 2012 5 / 42 1 Beschrijvende statistiek Vandaag:

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie

Examen Kansrekening en Wiskundige Statistiek: oplossingen

Examen Kansrekening en Wiskundige Statistiek: oplossingen Examen Kansrekening en Wiskundige Statistiek: oplossingen S. Vansteelandt Academiejaar 006-007 1. Een team van onderzoekers wil nagaan of een bepaald geneesmiddel Triptan meer effectief is dan aspirine

Nadere informatie

Wisnet-HBO update nov. 2008

Wisnet-HBO update nov. 2008 Lineair verband Lineair verband Wisnet-HBO update nov. 28 Twee grootheden hebben een lineair verband als je in een grafiek de ene grootheid tegen de ander uitzet en je ziet een rechte lijn. Bijvoorbeeld:

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Medische statistiek 1 Les 1: Waarschijnlijkheidrekening I Theorie A Inleidende defenities V: de verzameling van alle mogelijke uitkomsten A,B,... : een gebeurtenis is een verzameling uitkomsten in V Q

Nadere informatie

Statistiek: Herhaling en aanvulling

Statistiek: Herhaling en aanvulling Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,

Nadere informatie

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets

introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets introductie Wilcoxon s rank sum toets Wilcoxon s signed rank toets toetsende statistiek week 1: kansen en random variabelen week : de steekproevenverdeling week 3: schatten en toetsen: de z-toets week : het toetsen van gemiddelden: de t-toets week 5: het toetsen van varianties:

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

M V. Inleiding opdrachten. Opgave 1. Meetinstrumenten en grootheden. Vul het schema in. stopwatch. liniaal. thermometer. spanning.

M V. Inleiding opdrachten. Opgave 1. Meetinstrumenten en grootheden. Vul het schema in. stopwatch. liniaal. thermometer. spanning. Inleiding opdrachten Opgave 1. Meetinstrumenten en grootheden Vul het schema in. Meetinstrument Grootheid stopwatch liniaal thermometer spanning hoek van inval oppervlak Opgave. Formules Leg de betekenis

Nadere informatie

REKENTECHNIEKEN - OPLOSSINGEN

REKENTECHNIEKEN - OPLOSSINGEN REKENTECHNIEKEN - OPLOSSINGEN 1] 3,52 m + 13,6 cm =? 3,52 m 3,52 m - 2 13,6 cm 0,136 m - 3 3,656 m eindresultaat 3,66 m 2 cijfers na komma en afronden naar boven 3,52 m 352 cm - 0 13,6 cm 13,6 cm - 1 365,6

Nadere informatie

Vermogen snelheid van de NXT

Vermogen snelheid van de NXT Vermogen snelheid van de NXT Inleiding In deze meting gaan we op zoek naar een duidelijk verband tussen de vermogens die je kunt instellen op de LEGO NXT en de snelheid van het standaardwagentje uit het

Nadere informatie

Inleiding statistiek

Inleiding statistiek Inleiding Statistiek Pagina 1 uit 8 Inleiding statistiek 1. Inleiding In deze oefeningensessie is het de bedoeling jullie vertrouwd te maken met een aantal basisbegrippen van de statistiek, meer bepaald

Nadere informatie

Statistiek: Vorm van de verdeling 1/4/2014. dr. Brenda Casteleyn

Statistiek: Vorm van de verdeling 1/4/2014. dr. Brenda Casteleyn Statistiek: Vorm van de verdeling /4/204 . Theorie Enkel de theorie die nodig is voor de oefeningen is hierin opgenomen. Scheefheid of asymmetrie Indien de meetwaarden links van de mediaan meer spreiding

Nadere informatie

Inleiding tot de natuurkunde

Inleiding tot de natuurkunde OBC Inleiding tot de Natuurkunde 01-08-2010 W.Tomassen Pagina 1 Hoofdstuk 1 : Hoe haal ik hoge cijfers. 1. Maak van elke paragraaf een samenvatting. (Titels, vet/schuin gedrukte tekst, opsommingen en plaatsjes.)

Nadere informatie

Klantonderzoek: statistiek!

Klantonderzoek: statistiek! Klantonderzoek: statistiek! Statistiek bij klantonderzoek Om de resultaten van klantonderzoek juist te interpreteren is het belangrijk de juiste analyses uit te voeren. Vaak worden de mogelijkheden van

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Zeldzame en extreme gebeurtenissen

Zeldzame en extreme gebeurtenissen 24 March 215 Outline 1 Inleiding 2 Extreme gebeurtenissen 3 4 Staarten 5 Het maximum 6 Kwantielen 23 maart 215 Het Financieele Dagblad Vijf grootste rampen (verzekerd kapitaal) 1 Orkaan Katrina (25, MU$

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

Foutenberekeningen Allround-laboranten

Foutenberekeningen Allround-laboranten Allround-laboranten Inhoudsopgave INHOUDSOPGAVE... 2 LEERDOELEN :... 3 1. INLEIDING.... 4 2. DE ABSOLUTE FOUT... 5 3. DE KOW-METHODE... 6 4. DE RELATIEVE FOUT... 6 5. GROOTHEDEN VERMENIGVULDIGEN EN DELEN....

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie

Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Statistiek en Data Analyse Opgavenserie 3: Lineaire regressie Inleveren: uiterlijk maandag 6 februari 16.00 bij Marianne Jonker (Kamer: R3.46) Afspraken De opdrachten maak je in tweetallen. Schrijf duidelijk

Nadere informatie

Toegepaste Statistiek, Dag 7 1

Toegepaste Statistiek, Dag 7 1 Toegepaste Statistiek, Dag 7 1 Statistiek: Afkomstig uit het Duits: De studie van politieke feiten en cijfers. Afgeleid uit het latijn: status, staat, toestand Belangrijkste associatie: beschrijvende statistiek

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

Verwachtingswaarde, Variantie en Standaarddeviatie

Verwachtingswaarde, Variantie en Standaarddeviatie Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)

Nadere informatie

Financiële economie. Opbrengsvoet en risico van een aandeel

Financiële economie. Opbrengsvoet en risico van een aandeel Financiële economie Opbrengsvoet en risico van een aandeel Financiële economen gebruiken de wiskundige verwachting E(x) van de opbrengstvoet x als een maatstaf van de verwachte opbrengstvoet, en de standaardafwijking

Nadere informatie

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE DEEL 3 INDUCTIEVE STATISTIEK INHOUD H 10: INLEIDING TOT DE INDUCTIEVE STATISTIEK H 11: PUNTSCHATTING 11.1 ALGEMEEN 11.1.1 Definities 11.1.2 Eigenschappen 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE 11.3

Nadere informatie

Rekenen en wiskunde ( bb kb gl/tl )

Rekenen en wiskunde ( bb kb gl/tl ) Tussendoelen Rekenen en wiskunde Rekenen en wiskunde ( bb kb gl/tl ) vmbo = Basis Inzicht en handelen Vaktaal wiskunde Vaktaal wiskunde gebruiken voor het ordenen van het eigen denken en voor uitleg aan

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Zeldzame en extreme gebeurtenissen

Zeldzame en extreme gebeurtenissen Zeldzame en extreme gebeurtenissen Ruud H. Koning 19 March 29 Outline 1 Extreme gebeurtenissen 2 3 Staarten 4 Het maximum 5 Kwantielen Ruud H. Koning Zeldzame en extreme gebeurtenissen 19 March 29 2 /

Nadere informatie

Experiment: massadichtheid

Experiment: massadichtheid Inleiding In deze workshop willen we aan de hand van een praktijkvoorbeeld voor de lessen fysica in het derde jaar aangeven hoe de TI-83 plus een handig hulpmiddel kan zijn bij het verwerken van meetresultaten.

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

variantie: achtergronden en berekening

variantie: achtergronden en berekening variantie: achtergronden en berekening Hugo Quené opleiding Taalwetenschap Universiteit Utrecht 8 sept 1995 aangepast 8 mei 007 1 berekening variantie Als je de variantie met de hand moet uitrekenen, is

Nadere informatie

Elektro-magnetisme Q B Q A

Elektro-magnetisme Q B Q A Elektro-magnetisme 1. Een lading QA =4Q bevindt zich in de buurt van een tweede lading QB = Q. In welk punt zal de resulterende kracht op een kleine positieve lading QC gelijk zijn aan nul? X O P Y

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies

Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies Opgeloste Oefeningen Hoofdstuk 6: Steekproeven en empirische distributies 6.. Uit een normaal verdeeld universum X met gemiddelde waarde µ = en standaardafwijking σ = worden 0 onafhankelijke steekproefwaarden

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Het examenprogramma wiskunde A havo

Het examenprogramma wiskunde A havo Het examenprogramma wiskunde A havo Conferentie Hallo HBO, hier HAVO, 28 september 2016 Eindrapport van de vernieuwingscommissie ctwo: Wiskunde A op havo bereidt voor op hbo-opleidingen in met name de

Nadere informatie

Onderwijsbehoeften: - Korte instructie - Afhankelijk van de resultaten Test jezelf toevoegen Toepassing en Verdieping

Onderwijsbehoeften: - Korte instructie - Afhankelijk van de resultaten Test jezelf toevoegen Toepassing en Verdieping Verdiepend Basisarrange ment Naam leerlingen Groep BBL 1 Wiskunde Leertijd; 5 keer per week 45 minuten werken aan de basisdoelen. - 5 keer per week 45 minuten basisdoelen toepassen in verdiepende contexten.

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

Formules Excel Bedrijfsstatistiek

Formules Excel Bedrijfsstatistiek Formules Excel Bedrijfsstatistiek Hoofdstuk 2 Data en hun voorstelling AANTAL.ALS vb: AANTAL.ALS(A1 :B6,H1) Telt hoeveel keer (frequentie) de waarde die in H1 zit in A1:B6 voorkomt. Vooral bedoeld voor

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Woensdag 7 Oktober 1 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie 2 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie

Nadere informatie

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel)

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) In 1947 werd in opdracht van N.V. Magazijn De Bijenkorf een statistisch onderzoek verricht naar de lichaamsafmetingen van de Nederlandse

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2 1 INLEIDING 1 Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2 Volg stap voor stap de tekst en los de vragen op. Bedoeling is dat je op het einde van de rit een verzorgd verslag afgeeft

Nadere informatie

Examen VWO. wiskunde B1,2

Examen VWO. wiskunde B1,2 wiskunde B,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 2 juni 3.30 6.30 uur 20 06 Voor dit examen zijn maximaal 84 punten te behalen; het examen bestaat uit 8 vragen. Voor

Nadere informatie

Financiële economie. Luc Hens 7 maart Opbrengsvoet en risico van een aandeel

Financiële economie. Luc Hens 7 maart Opbrengsvoet en risico van een aandeel Financiële economie Luc Hens 7 maart 2016 Opbrengsvoet en risico van een aandeel Financiële economen gebruiken de wiskundige verwachting E(x) van de opbrengstvoet x als een maatstaf van de verwachte opbrengstvoet,

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Werkwijzers. 1 Wetenschappelijke methode 2 Practicumverslag 3 Formules 4 Tabellen en grafieken 5 Rechtevenredigheid 6 Op zijn kop optellen

Werkwijzers. 1 Wetenschappelijke methode 2 Practicumverslag 3 Formules 4 Tabellen en grafieken 5 Rechtevenredigheid 6 Op zijn kop optellen Werkwijzers 1 Wetenschappelijke methode 2 Practicumverslag 3 ormules 4 Tabellen en grafieken 5 Rechtevenredigheid 6 Op zijn kop optellen Werkwijzer 1 Wetenschappelijke methode Als je de natuur onderzoekt

Nadere informatie

De eerste stappen met de TI-Nspire 2.1 voor de derde graad

De eerste stappen met de TI-Nspire 2.1 voor de derde graad De eerste stappen met TI-Nspire 2.1 voor de derde graad. Technisch Instituut Heilig Hart, Hasselt Inleiding Ik gebruik al twee jaar de TI-Nspire CAS in de derde graad TSO in de klassen 6TIW( 8 uur wiskunde)

Nadere informatie

Wiskundige vaardigheden

Wiskundige vaardigheden Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

Paragraaf 1.1 : Lineaire functies en Modulus

Paragraaf 1.1 : Lineaire functies en Modulus Hoofdstuk 1 Functies en Grafieken (V4 Wis B) Pagina 1 van 9 Paragraaf 1.1 : Lineaire functies en Modulus Les 1 : Lineaire Formules Definities Algemene formule van een lijn : y = ax + b a = hellingsgetal

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

Experiment: Meet de lengte, de breedte en de dikte van je schoolagenda en noteer de resultaten in onderstaande tabel:

Experiment: Meet de lengte, de breedte en de dikte van je schoolagenda en noteer de resultaten in onderstaande tabel: Deel 2: Metingen 2.1 Meten Experiment: Meet de lengte, de breedte en de dikte van je schoolagenda en noteer de resultaten in onderstaande tabel: Lengte (......) Breedte (......) Dikte (......) De grootheid

Nadere informatie

Foutenberekeningen. Inhoudsopgave

Foutenberekeningen. Inhoudsopgave Inhoudsopgave Leerdoelen :... 3 1. Inleiding.... 4 2. De absolute fout... 5 3. De KOW-methode... 7 4. Grootheden optellen of aftrekken.... 8 5. De relatieve fout...10 6. grootheden vermenigvuldigen en

Nadere informatie

Examen VWO. wiskunde B1

Examen VWO. wiskunde B1 wiskunde B Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Woensdag juni 3.30 6.30 uur 0 06 Voor dit eamen zijn maimaal 84 punten te behalen; het eamen bestaat uit 9 vragen. Voor elk vraagnummer

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je op welke manier centrum- en spreidingsmaten je helpen bij de interpretatie van statistische gegevens. Je leert ook dat grafische voorstellingen

Nadere informatie