Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.

Maat: px
Weergave met pagina beginnen:

Download "Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder."

Transcriptie

1 Oefenopgaven oppervlakte en inhoud 1. Bereken de oppervlakte van de driehoeken en parallellogrammen hieronder. 2. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.

2 3. A. Bereken de inhoud in m 3 van een container van 7m bij 28 dm bij 240 cm. B. Bereken de inhoud in m 3 van een regenton met een diameter van 76 cm en een hoogte van 1,4 m. C. Bereken de inhoud in m 3 van een blok beton van 15,6 dm bij 82 cm bij 2 m. D. Bereken de inhoud in dm 3 van een regenpijp met een diameter van 12 cm en een hoogte van 3,5 m. 4. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.

3 5. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. 6. Bereken de inhoud van de letters hieronder.

4 7. De atletiekbaan hieronder bestaat uit twee rechte stukken die elk 80 meter lang zijn en twee stukken die worden begrensd door twee halve cirkels. De binnenste cirkel heeft een straal van 34 meter. De baan is 10 meter breed. A. Bereken hoe lang één rondje is langs de binnenkant van de baan. B. Bereken hoe lang één rondje is langs de buitenkant van de baan. C. Bereken de oppervlakte van de baan. 8. A. Bereken CE B. Bereken RT. 9. Een fabrikant verkoopt pakken thee van 4 cm breed, 6 cm lang en 10 cm hoog. Hij verkoopt ze per zes verpakt in een kartonnen doos. Hij heeft drie soorten dozen. In doos A passen zes pakken op elkaar. In doos B passen zes pakken naast elkaar en in doos C passen zes pakken achter elkaar. A. Bereken hoeveel karton hij nodig heeft voor doos A. B. Voor welke doos is het het minste karton nodig? C. Bedenk een verpakking waarvoor je nog minder karton nodig hebt.

5 10. Van een glas (cilinder) en een trechter wordt een regenmeter gemaakt. De diameter van het glas is 5 cm en de hoogte is 27,5 cm. De diameter van de bovenkant van de trechter is 20 cm. A. Bereken de oppervlakte van de bovenkant van de trechter. B. Bereken de inhoud van het glas. 11. Een verfblik heeft een diameter van 8,6 cm en is 10 cm hoog. A. Bereken de inhoud van het blik in liters. B. Om de hele zijkant van het blik zit een etiket. Bereken de oppervlakte van dit etiket. C. Welke inhoud hoort bij een 3 keer zo hoog blik? D. Welke inhoud heeft een blik waarvan de diameter 2,5 keer zo groot is? 12. Benjamin heeft van een groenteblik een etiket gehaald. Het etiket is 18 cm bij 28 cm. Bereken de inhoud van dit blik. Er zijn twee mogelijkheden. Reken deze alle twee uit. 13. Hieronder zie je een gelijkzijdige driehoek met zijden van 66 cm. Bereken de oppervlakte van het donkere gedeelte.

6 14. Bereken de inhoud van de letter hieronder. 15. Bereken de oppervlakte van de volgende figuren:

7 16. Bereken de oppervlakte van de volgende figuren: 17. Bereken de oppervlakte van de driehoeken en parallellogrammen hieronder.

8 Antwoorden oefenopgaven oppervlakte en inhoud 1. Eerste rij: Met de stelling van Pythagoras: DE = 17,89. Dus opp = bxh = 20x17,89 = 357,80 (257,77). JL = 12; JM = 19,62 (stelling); opp = bxh = 19x19,62 = 372,78 (372,81). PR = 13,42 (stelling); opp = bxh = 12x13,42 = 161,04 (161,00). Tweede rij: DB = 10; CD = 11,18 (stelling); opp = bxh:2 = 18x11,18:2 = 100,62. NL = 11,31 (stelling); opp = bxh:2 = 14x11,31:2 = 79,17 (79,20). RS = 8,06 (stelling); SQ = 7,48 (stelling); PQ = 11,48; opp = bxh:2 = 11,48x8,06:2 = 46,26 (46,29). Derde rij: AD = 11,53 (stelling); opp = bxh:2 = 19x11,53:2 = 109,54 (109,56). KN = 16 (stelling); NM = 27,95 (stelling); KM = 43,95; opp = bxh:2 = 43,95x30:2 = 659,25 (659,20). SQ = 34; RS = 36,66 (stelling in driehoek SQR); opp = bxh:2 = 22x36,66:2 = 403,26 (403,27). XY = 11,62 (stelling); opp = bxh:2 = 7x11,62:2 = 40, Eerste figuur: Opp grote cirkel = sxsxπ = 10,5x10,5xπ = 346,36. Opp kleine cirkel = sxsxπ = 7x7xπ = 153,94. Opp donkere gedeelte = 346,36-153,94 = 192,42 dm 2. Tweede figuur: Opp grote cirkel = rxrxπ = 24x24xπ = 1809,56. Opp kleine cirkel = rxrxπ = 8x8xπ = 201,06. Opp donkere gedeelte = 1809,56-7x201,06 = 402,14 cm 2 (402,12). Derde figuur: Opp grote cirkel = rxrxπ = 32x32xπ = 3216,99 cm 2. Opp kleine cirkel = rxrxπ = 12x12xπ = 452,39 cm 2. Opp donkere gedeelte = 3216,99-2x452,39 = 2312,21 cm A. Inhoud container = lxbxh = 7x2,8x2,4 = 47,04 m 3. B. Inhoud regenton = rxrxπxh = 0,38x0,38xπx1,4 = 0,64 m 3.

9 C. Inhoud blok beton = lxbxh = 1,56x0,82x2 = 2,56 m 3. D. Inhoud regenpijp = rxrxπxh = 0,6x0,6xπx35 = 39,58 dm Eerste figuur: Opp grote cirkel = rxrxπ = 32x32xπ = 3216,99 cm 2. Opp kleine cirkel = rxrxπ = 18x18xπ = 1017,88 cm 2. Opp donkere gedeelte = 3216, ,88 = 2199,11 cm 2. Tweede figuur: Opp rechthoek = lxb = 50x50 = 2500 cm 2. Opp cirkel = rxrxπ = 25x25xπ = 1963,50 cm 2. Opp donkere gedeelte = ,50 = 536,50 cm 2. Derde figuur: Opp rechthoek = lxb = 150x100 = Opp cirkel = rxrxπ = 25x25xπ = 1963,50. Opp donkere gedeelte = x1963,50 = 3219 cm Eerste tekening: Hoogte witte driehoek opstaande zijde = 12 (stelling van Pythagoras). Oppervlakte van deze driehoek = bxh:2 = 5x12:2 = 30. Lengte witte driehoek liggende zijde = 14,00 (stelling). Oppervlakte van deze driehoek = bxh:2 = 14x6:2 = 42 (41,99). Hoogte witte driehoek schuine zijde = 7,5 (stelling). Oppervlakte van deze driehoek = bxh:2 = 10x7,5:2 = 37,5. Oppervlakte van hele driehoek = bxh:2 = 39x32:2 = 624. Oppervlakte donkere gedeelte = ,5 = 514,50 (514,51). Tweede tekening: Hoogte witte driehoek = 18,44 (stelling). Oppervlakte witte driehoek = bxh:2 = 12x18,44:2 = 110,64 (110,63). Oppervlakte wit parallellogram = bxh = 11x12 = 132. De basis is = 30, de hoogte is 2x18,44 = 36,88. Oppervlakte hele parallellogram = bxh = 30x36,88 = 1106,40 (1106,35). Oppervlakte donkere gedeelte = 1106,4-2x110,64-2x132 = 621,12 (621,09). 6. Letter E: 6x30x5 = x6x5 = 360 (2x)

10 6x6x5 = 180 Totaal = = 1800 cm 3. Letter N: 6x30x5 = 900 (2x) 12x9x5 = 540 (middenstuk is parallellogram). Totaal = = 2340 cm A. Lengte twee halve cirkels = dxπ = 68xπ = 213,63 m. Totale lengte = ,63 = 373,63 m. B. Lengte twee halve cirkels = dxπ = 88xπ = 276,46 m. Totale lengte = ,46 = 436,46 m. C. Opp grote cirkel = rxrxπ = 44x44xπ = 6082,12 m 2. Opp kleine cirkel = rxrxπ = 34x34xπ = 3631,68 m 2. Opp recht stuk = bxh = 80x10 = 800 m 2. Totale oppervlakte = 6082, , = 4050,44 m A. Opp parallellogram = bxh = 13x11 = 143. Opp parallellogram is ook bxh = 24xCE = 143. Hieruit volgt CE = 143:24 = 5,96. B. PS = 20 (stelling); opp driehoek = bxh:2 = 30x20:2 = 300. Maar ook opp driehoek = bxh:2 = 25xRT:2 = 300. Hieruit volgt RT = A. Doos A is 4 cm breed, 6 cm lang en 60 cm hoog. Voor de voorkant heb je lxh = 4x60 = 240 cm 2 nodig. Voor de achterkant heb je ook 240 cm 2 nodig. Voor de zijkant heb je bxh = 6x60 = 360 cm 2 nodig. Voor de andere zijkant heb je ook 360 cm 2 nodig. Voor de onderkant heb je lxb = 4x6 = 24 cm 2 nodig. Voor de bovenkant heb je ook 24 cm 2 nodig. In totaal heb je 1248 cm 2 karton nodig. B. Doos B is 24 cm bij 6 cm bij 10 cm. Je hebt nodig = 888 cm 2. Doos C is 4 bij 36 bij 10 cm. Je hebt nodig = 1088 cm 2. Voor Doos B heb je het minste karton nodig. C. Zet 3 pakken naast elkaar en 2 pakken achter elkaar.

11 Je krijgt dan een doos van 12 cm bij 12 cm bij 10 cm. Daarvoor is slechts = 768 cm 2 nodig. 10. A. Opp = rxrxπ = 10x10xπ = 314,16 cm 2. B. Inhoud = rxrxπxh = 19,63x27,5 = 539,83 cm 3 (539,96). 11. A. Inhoud = rxrxπxh = 4,3x4,3xπx10 = 580,88 cm 3 = 0,58 liter. B. Omtrek bovenkant = lengte etiket = dxπ = 8,6xπ = 27,02 cm. Breedte etiket = 10 cm; opp etiket = (dxπ)xh = 27,02x10 = 270,20 cm 2 (270,18). C. De inhoud wordt dan 3x0,58 = 1,74 liter. D. De inhoud wordt dan 2,5x2,5x 0,58 = 3,63 liter. 12. Lengte etiket = omtrek blik = 28. Diameter = 28:π = 8,91 cm. Straal = 4,46 cm. Inhoud = rxrxπxh = 4,46x4,46xπx18 = 1124,84 cm 3 (1123,00). of: Lengte etiket = omtrek blik = 18. Diameter = 18:π = 5,73 cm. Straal = 2,86 cm. Inhoud = rxrxπxh = 2,86x2,86xπx28 = 719,52 cm 3 (721,93). 13. Hoogte gelijkzijdige driehoek 57,16 (stelling). Oppervlakte van deze driehoek = bxh:2 = 66x57,16:2 = 1886,28 (1886,20). Oppervlakte halve cirkel = rxrxπ:2 = 15x15xπ:2 = 353,43. De cirkelpunten hebben hoeken van 60 o (het is dus 1 / 6 deel van een cirkel). Oppervlakte cirkelpunt = rxrxπ:6 = 12x12xπ:6 = 75,40. Oppervlakte donkere gedeelte = 1886,28-3x353,43-3x75,40 = 599,79 cm 2 (599,72). 14. Letter W: Je kunt de voorkant verdelen in 2 parallellogrammen en 3 driehoeken.

12 Oppervlakte parallellogram = bxh = 6x24 = 144. Oppervlakte kleine driehoek = bxh:2 = 8x6:2 = 24. Basis grotere driehoek = 6+4 = 10. Oppervlakte grotere driehoek = bxh:2 = 10x10:2 = 50. Totale oppervlakte = = 412. Inhoud = 412x5 = 2060 cm Oppervlakte 1: ,5 = 4,5. Oppervlakte 2: = 12. Oppervlakte 3: 8-0,5-0,5-1,5-1,5 = 4. Oppervlakte 4: 12-1,5-1,5 = 9. Oppervlakte 5: = 5. Oppervlakte 6: rxrxπ = 1,5x1,5xπ = 7, Oppervlakte 1: ,5 = 8,5. Oppervlakte 2: ,5-1-1,5 = 16. Oppervlakte 3: 9-1,5-1,5 = 6. Oppervlakte 4: = 8. Oppervlakte 5: 27-4,5-3,5-2-2 = De oppervlakte van driehoek I = 16x14:2 = 112 cm 2. De oppervlakte van driehoek II = 15x27:2 = 202,5 cm 2. De oppervlakte van driehoek III = 110x63:2 = 3465 cm 2. De oppervlakte van parallellogram I = 32x36 = 1152 cm 2. De oppervlakte van parallellogram II = 9x12 = 108 cm 2. De oppervlakte van parallellogram III = 37x15 = 555 cm 2

4 A: = 10 B: 4 C: 8 D: 8

4 A: = 10 B: 4 C: 8 D: 8 Hoofdstuk OPPERVLAKTE VWO 0 INTRO A: + 6 = 0 B: C: 8 D: 8 DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0 Daar gaan twee halve

Nadere informatie

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Symmetrie en oppervlakte

Symmetrie en oppervlakte Symmetrie en oppervlakte Hoofdstuk 5 1 a logoen4 /d 1 1 1 313 414 c logo 1: 180 logo : 180 logo 3: 90 logo 4: 90 d alle logo s zijn puntsymmetrisch 6 a a lijnsymmetrisch draaisymmetrisch puntsymmetrisch

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.

Nadere informatie

Hoofdstuk 5 Oppervlakte uitwerkingen

Hoofdstuk 5 Oppervlakte uitwerkingen Kern Vlakke figuren a Rechthoek, parallellogram, driehoek Oppervlakte rechthoek = lengte reedte = d Oppervlakte parallellogram = lengte hoogte = d Oppervlakte driehoek = asis hoogte = d a Knip de parallellogram

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B- Van ABC is de asis BC = en de hoogte AD =. De oppervlakte van ABC is : = 9. Van KLM is de asis KM = 5 + 9 = en de hoogte NL. B-a KN = 5 NL = KL = 5 + 69 NL = = De oppervlakte

Nadere informatie

21 Oppervlakte. oppervlakte parallellogram = = 750. Noem de lengte van de lange zijde x, dan oppervlakte parallellogram = 20x

21 Oppervlakte. oppervlakte parallellogram = = 750. Noem de lengte van de lange zijde x, dan oppervlakte parallellogram = 20x 2 Oppervlakte 3 32 2 oppervlakte parallellogram = 25 30 = 750 Noem de lengte van de lange zijde, dan oppervlakte parallellogram = 20 Dus 20 = 750, dus = 37. 45 Oppervlakte kwartcirkel = 3 π 2 2 = π Oppervlakte

Nadere informatie

oppervlakte grondvlak hoogte

oppervlakte grondvlak hoogte OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMO-GL en TL 2007 tijdvak 1 woensdag 30 mei 13.30-15.30 uur wiskunde SE GL en TL ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 83 punten

Nadere informatie

Oefenopgaven Stelling van Pythagoras.

Oefenopgaven Stelling van Pythagoras. Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC

Nadere informatie

Oppervlakte en inhoud van ruimtelijke figuren

Oppervlakte en inhoud van ruimtelijke figuren 4 Oppervlakte en inhoud van ruimtelijke figuren BALK EN KUBUS hoogte Figuur lengte reedte In figuur is een alk getekend. Bij een alk zijn steeds de twee tegenover elkaar liggende vlakken gelijk. Alle vlakken

Nadere informatie

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

9.1 Oppervlakte-eenheden [1]

9.1 Oppervlakte-eenheden [1] 9.1 Oppervlakte-eenheden [1] De omtrek van een figuur bereken je door uit te rekenen hoe lang het is als je één keer langs de rand van de figuur gaat. Omtrek = l + l + l + l + l + l + l + l = 14 + 8 +

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 58 Voorkennis V-1a /A 5 74, /B 1 5 18 en /D 1 5 88 /A 1 /B 1 1 /D 1 5 74 1 18 1 88 5 180 c /B 2 5 104, /C 5 55 en /D 2 5 21 d /B 5 /B 1 1 /B 2 5 18 1 104 5 122 en /D 5 /D 1 1 /D 2 5 88 1 21 5 109, dus

Nadere informatie

1. Bereken. 2. Bereken. Oefenopgaven. F. 2 km = cm G. 3 dm = mm H. 4,5 cm = m I. 250 dm = dam J. 3,12 hm = dm

1. Bereken. 2. Bereken. Oefenopgaven. F. 2 km = cm G. 3 dm = mm H. 4,5 cm = m I. 250 dm = dam J. 3,12 hm = dm Oefenopgaven. 1. Bereken. A. 5 m = cm B. 4 hm = dm C. 3 km = m D. 300 cm = dm E. 2500 m = km F. 2 km = cm G. 3 dm = mm H. 4,5 cm = m I. 250 dm = dam J. 3,12 hm = dm 2. Bereken. A. 3 dm² = cm² B. 4 cm²

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

Oefenopgaven vergroten en verkleinen

Oefenopgaven vergroten en verkleinen Oefenopgaven vergroten en verkleinen 1. Van een rechthoek ABCD zijn de zijden 7 en 11 cm. Rechthoek KLMN is een vergroting van rechthoek ABCD met factor 1,5. A. Bereken de zijden van rechthoek KLMN. B.

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Beoordelingsmodel VMBO GL/TL 2008-I Vraag Antwoord Scores Golfbaan maximumscore 4 Een kijklijn tekenen van het putje langs de punt van de bosrand 90 m in werkelijkheid komt overeen met 6 cm in de tekening

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

Luc Gheysens - Extremumvraagstukken p.1

Luc Gheysens - Extremumvraagstukken p.1 EXTREMUMVRAAGSTUKKEN 1 Bepaal twee getallen x en y waarvan de som 144 is en waarvoor het product maximaal is. En voor welke waarden is het product x 3. y 2 maximaal? 2 Aan de vier hoeken van een vierkantig

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268 Auteur VO-content Laatst gewijzigd Licentie Webadres 24 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74268 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

Teken een diagonaalvlak naar keuze in de originele kubus. Teken dit diagonaalvlak plat op je blad op ware grootte.

Teken een diagonaalvlak naar keuze in de originele kubus. Teken dit diagonaalvlak plat op je blad op ware grootte. Deze toets bestaat uit 11 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn 2 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening, toelichting

Nadere informatie

oppervlakte grondvlak hoogte oppervlakte grondvlak hoogte

oppervlakte grondvlak hoogte oppervlakte grondvlak hoogte Examen Wiskunde VMBO-GL en TL 2007 wiskunde CSE GL GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer

Nadere informatie

04 Meetkunde. hoofdstuk. 4.1 Uitslagen

04 Meetkunde. hoofdstuk. 4.1 Uitslagen hoofdstuk 0 eetkunde bladzijde 06 e schuine muren aan de benedenkant van de woning. e vloeren en de plafonds zijn regelmatige zeshoeken of regelmatige driehoeken. ovenaanzicht:. Uitslagen bladzijde 08

Nadere informatie

Bij het beantwoorden van de vragen 1 tot en met 4 kun je de formule gebruiken.

Bij het beantwoorden van de vragen 1 tot en met 4 kun je de formule gebruiken. Volleybal 1m 1e achterlijn net 2 e achterlijn Marit maakt een werkstuk over volleyballen. Op de foto hierboven zie je hoe Marit een bal onderhands wegslaat. In de tekening ernaast zie je de baan van de

Nadere informatie

Wiskunde Leerjaar 2 - Periode 1 Meetkunde

Wiskunde Leerjaar 2 - Periode 1 Meetkunde Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant D zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier

Nadere informatie

Blok 4 - Vaardigheden

Blok 4 - Vaardigheden lok - Vaardigheden Extra oefening - asis -a Het hellingsgetal is 60 = = 0,065. -a De hellingshoek is tan (0,065),6. c De hellingshoek van Raymond is tan ( 60 c 960 tan = geeft tan 6 = 600 = 600 tan 6 9

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

sfeerlichthouders. Daarnaast staat een tekening van het bovenaanzicht van deze figuur.

sfeerlichthouders. Daarnaast staat een tekening van het bovenaanzicht van deze figuur. SFEERLICHT Op de foto hieronder zie je een houder waarin een sfeerlichtje zit Deze sfeerlichthouder heeft de vorm van een prisma met een gelijkzijdige driehoek als grondvlak 2p 1 Op de foto hieronder zie

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a d e 128 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rehthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 5 28 roostervierkantjes.

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-1a De oppervlakte van ABC is 12 5 : 2 = 0 m 2. zijde kwadraat AB = 12 144 AC = 5 BC = 25 169 d BC = 169 = 1 m De omtrek van ABC is 5 12 1 = 0 m. BD = 12 4 = 8 m De oppervlakte van BCD is 8

Nadere informatie

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras inhoudsopgave 1 de grote lijn applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek 1 de grote lijn hoofdlijn de zijlijn De oppervlakte van rechthoekige driehoeken. Van een

Nadere informatie

Examenopgaven VMBO-GL en TL 2003

Examenopgaven VMBO-GL en TL 2003 Examenopgaven VMBO-GL en TL 2003 tijdvak 1 donderdag 22 mei 13.30-1.30 uur WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO-D Bij dit examen hoort een uitwerkboekje. Dit examen bestaat uit 26 vragen. Voor dit examen

Nadere informatie

Hoofdstuk 21 Oppervlakte 21.0 INTRO

Hoofdstuk 21 Oppervlakte 21.0 INTRO Hoofdstuk Oppervlakte.0 INTRO ls voorbeeld de oppervlakte van : e geblokte rectoek eeft oppervlakte 5 = 0. aar gaan twee alve rectoeken vanaf, één met oppervlakte 5 = 5 en de ander met oppervlakte 5 =

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 woensdag 17 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 woensdag 17 mei uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2017 tijdvak 1 woensdag 17 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 27 vragen. Voor dit examen zijn maximaal 74 punten te behalen.

Nadere informatie

handleiding pagina s 994 tot 1004 1 Handleiding 1.2 Huistaken huistaak 26: bladzijde 841 huistaak 29: bladzijde 919 2 Werkboek 3 Posters

handleiding pagina s 994 tot 1004 1 Handleiding 1.2 Huistaken huistaak 26: bladzijde 841 huistaak 29: bladzijde 919 2 Werkboek 3 Posters week 32 les 1 toets en foutenanalyse handleiding pagina s 994 tot 1004 nuttige informatie 1 Handleiding 1.1 Kopieerbladen pagina 808: tijd, afstand, snelheid pagina 840: oppervlakte berekenen (omstructureren)

Nadere informatie

7 2, 3, 5, 7, 11, 13, 17, 19, 29, 31,

7 2, 3, 5, 7, 11, 13, 17, 19, 29, 31, Hoofdstuk.0 INTRO De som is, of 0, of. Dat zijn de enige met vier mogelijkheden, zie eerste twee kolommen. Som Mogelijkheden Product Manieren om het product te schrijven + 8 + 7 + + 5 8 8 0 8 of 7 of 5

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 3

Uitwerkingen oefeningen hoofdstuk 3 Uitwerkingen oefeningen hoofdstuk 3 3.4.1 Basis Tijd meten 1 Juli heeft 31 dagen. Wanneer 25 juli op zaterdag valt, valt 31 juli dus op een vrijdag. Augustus heeft ook 31 dagen. 1 augustus valt dus op

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

x = 12 of x = -12 x = 5 of x = -5 x = 5 of x = -7 x = 7 of x = x = 2 15 a x(x + 10) = 600 b x = 20 meter 16 x(x + 5) = 24, dus x = 3

x = 12 of x = -12 x = 5 of x = -5 x = 5 of x = -7 x = 7 of x = x = 2 15 a x(x + 10) = 600 b x = 20 meter 16 x(x + 5) = 24, dus x = 3 Hoofdstuk VWO.0 INTRO De som is, of 0, of. Dat zijn de enige met vier mogelijkheden, zie eerste twee kolommen. Som Mogelijkheden Product Manieren om het product te schrijven + 8 + 7 + + 5 8 8 0 8 of 7

Nadere informatie

Pienter 1ASO Extra oefeningen hoofdstuk 7

Pienter 1ASO Extra oefeningen hoofdstuk 7 Extra oefeningen hoofdstuk 7: Vlakke figuren 1 Teken binnen een cirkel met straal 6 cm een tweede cirkel met straal 2 cm. Wat is de kleinste en wat is de grootst mogelijke afstand tussen beide middelpunten?

Nadere informatie

Doorsnede inhoud vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74250

Doorsnede inhoud vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74250 Auteur VO-content Laatst gewijzigd Licentie Webadres 24 mei 2016 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/74250 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet. Wikiwijs

Nadere informatie

Het metriek stelsel. Grootheden en eenheden.

Het metriek stelsel. Grootheden en eenheden. Het metriek stelsel. Metriek komt van meten. Bij het metriek stelsel gaat het om maten, zoals lengte, breedte, hoogte, maar ook om gewicht of inhoud. Er zijn verschillende maten die je moet kennen en die

Nadere informatie

Meten is weten ANTWOORDENBOEK. 88972 Meten is weten. Antwoordenboek. = 95 mm 6 cm = 60 mm 10 cm = 100 mm. 1 cm = 15 mm 9 cm

Meten is weten ANTWOORDENBOEK. 88972 Meten is weten. Antwoordenboek. = 95 mm 6 cm = 60 mm 10 cm = 100 mm. 1 cm = 15 mm 9 cm Meten is weten Antwoordenboek Opdracht 1 1 cm = 10 mm 4 cm = 40 mm 5 mm 4 cm = 45 mm 1 cm = 15 mm 9 cm = 95 mm 6 cm = 60 mm 10 cm = 100 mm Opdracht 2 1 cm = 10 mm 4 cm = 40 mm 1,5 cm = 15 mm 6,5 cm = 65

Nadere informatie

Wiskunde Opdrachten Pythagoras

Wiskunde Opdrachten Pythagoras Wiskunde Opdrachten Pythagoras Opdracht 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en AC. B. Laat door middel van berekening zien dat hoek B van driehoek

Nadere informatie

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is.

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is. Tafeltennistafel Op de foto hiernaast staat een betonnen tafeltennistafel voor buiten. De tafel bestaat uit 2 onderdelen: een cilindervormige poot en een blad dat hierop bevestigd is. Het massieve blad

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 8-II Een zwaartepunt Van een cirkelschijf met middelpunt (, ) en straal is het kwart getekend dat in het eerste kwadrant ligt. De cirkelboog is de grafiek van de functie f die

Nadere informatie

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud 1 Een optische illusie? Welk gebied heeft de grootste oppervlakte: het gele of het donkergroene? Doe eerst een schatting en maak daarna de nodige

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VMBO-KB 2005 WISKUNDE CSE KB. tijdvak 2 dinsdag 21 juni 13.30 15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB 2005 WISKUNDE CSE KB. tijdvak 2 dinsdag 21 juni 13.30 15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2005 tijdvak 2 dinsdag 21 juni 13.30 15.30 uur WISKUNDE CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal 84 punten te behalen.

Nadere informatie

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. xamen VMO-GL en TL 2013 tijdvak 2 dinsdag 18 juni 13.30-15.30 uur wiskunde CS GL en TL ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Thema: Vlakke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74267

Thema: Vlakke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74267 Auteur VO-content Laatst gewijzigd 21 October 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres https://maken.wikiwijs.nl/74267 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Proefwerk VMBO-T3 : Hoofdstuk 6 Oppervlakte en Inhoud Berekening niet opschrijven is altijd fout!! Succes

Proefwerk VMBO-T3 : Hoofdstuk 6 Oppervlakte en Inhoud Berekening niet opschrijven is altijd fout!! Succes Proefwerk VMBO-T3 : Hoofdstuk 6 Oppervlakte en Inhoud Berekening niet opschrijven is altijd fout!! Succes Opdracht 1 Bereken de oppervlakte van de volgende figuren. Schrijf je berekening op. LT OP: Je

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij

Nadere informatie

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek

Nadere informatie

Symmetrie en oppervlakte

Symmetrie en oppervlakte Symmetrie en oppervlakte 1 a loo 4 /d 6 1 212 1 313 414 c loo 1: 180 loo 2: 180 loo 3: 90 loo 4: 90 d alle loo s zijn puntsymmetrisch 7 a 2 a lijnsymmetrisch draaisymmetrisch puntsymmetrisch A B nee C

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 woensdag 17 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 woensdag 17 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2015 tijdvak 2 woensdag 17 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 72 punten te behalen.

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

Opgave 4. Opgave 5. Opgave 6. (5) a) Isoleer de variabele B uit de formule P A B P B. (6) b) Isoleer de variabele B uit de formule

Opgave 4. Opgave 5. Opgave 6. (5) a) Isoleer de variabele B uit de formule P A B P B. (6) b) Isoleer de variabele B uit de formule EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 009 Datum: 14 jan 009 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal te

Nadere informatie

Eindexamen vmbo gl/tl wiskunde I

Eindexamen vmbo gl/tl wiskunde I Beoordelingsmodel Snelwandelen maximumscore 4 50 km is 50 000 meter 3 uur, 35 minuten en 47 seconden is gelijk aan 947 seconden 50 000 = 3,86 (m/s) 947 Het antwoord: 3,9 (m/s) maximumscore maximale snelheid

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

Kaas. foto 1 figuur 1. geheel aantal cm 2.

Kaas. foto 1 figuur 1. geheel aantal cm 2. Kaas Op foto 1 zie je drie stukken kaas. Het zijn delen van een hele, ronde kaas. Het grootste stuk is precies de helft van een hele kaas. Deze halve kaas heeft een vlakke zijkant. De vorm van de vlakke

Nadere informatie

Extra oefeningen: vergelijkingen en ongelijkheden

Extra oefeningen: vergelijkingen en ongelijkheden Extra oefeningen: vergelijkingen en ongelijkheden 1 3 Controleer of de gegeven reële getallen oplossingen zijn van de bijhorende vergelijking. Vergelijking Gegeven reële getallen a) x 7 = 3 5 en b). x

Nadere informatie

M.R. 56 : Overzicht scenario s.

M.R. 56 : Overzicht scenario s. M.R. 56 : Overzicht scenario s. Leerlingengedeelte Schermafdruk uit leerlingenvolgsysteem. Vorderingen per leerling. ALLEMAAL MATEN Leerinhoud Probeer en leerfase (M.R. 56) Oefenreeks(*) A1 Lengte. Tabel

Nadere informatie

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud antekening HVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud Les 1 Oppervlakte driehoeken Oppervlakte driehoek = ½ basis hoogte Oppervlakte parallellogram = basis hoogte Oppervlakte trapezium = ½ (basis + top)

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Aanvulling hoofdstuk 1 uitwerkingen

Aanvulling hoofdstuk 1 uitwerkingen Natuur-scheikunde Aanvulling hoofdstuk 1 uitwerkingen Temperatuur in C en K Metriek stelsel voorvoegsels lengtematen, oppervlaktematen, inhoudsmaten en massa Eenheden van tijd 2 Havo- VWO H. Aelmans SG

Nadere informatie

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Indien van toepassing: schrijf je berekening op. Tekening altijd met geodriehoek en potlood. Omtrek rechthoek

Nadere informatie

Wiskunde Leerjaar 2 - Periode 1 Meetkunde

Wiskunde Leerjaar 2 - Periode 1 Meetkunde Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Junior Wiskunde Olympiade : eerste ronde

Junior Wiskunde Olympiade : eerste ronde Junior Wiskunde lympiade 200-20: eerste ronde. Waaraan is xyz + xyz + xyz gelijk? () 3xyz () 27xyz () x 3 y 3 z 3 () 3x 3 y 3 z 3 () 27x 3 y 3 z 3 2. Welke van volgende ongelijkheden is waar? () 2 > 0,5

Nadere informatie

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I WISKUNDE. MAVO-D / VMBO-gt

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I WISKUNDE. MAVO-D / VMBO-gt UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I VAK: NIVEAU: WISKUNDE MAVO-D / VMBO-gt EXAMEN: 2002-I De uitgever heeft ernaar gestreefd de auteursrechten te regelen volgens de wettelijke

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2006-II

Eindexamen wiskunde B1-2 vwo 2006-II Drinkbak In figuur staat een tekening van een drinkbak voor dieren. De bak bestaat uit drie delen: een rechthoekige, metalen plaat die gebogen is tot een symmetrische goot, een voorkant en een achterkant

Nadere informatie

Oppervlakte ruimtelijke figuren

Oppervlakte ruimtelijke figuren Auteur Laatst gewijzigd Licentie Webadres Esther van Meurs 22 maart 2017 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/98805 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet.

Nadere informatie

Extra oefeningen: de cirkel

Extra oefeningen: de cirkel Extra oefeningen: de cirkel 1. Gegeven een cirkel met middelpunt M en straal r 5 cm en. De lengte van de raaklijnstukken PA PB uit een punt P aan deze cirkel bedraagt 1 cm. Bereken de afstand PM. () PAM

Nadere informatie

Examenopgaven VMBO-KB 2003

Examenopgaven VMBO-KB 2003 Examenopgaven VMBO-KB 2003 tijdvak1 donderdag 22 mei 13.30-15.30 uur WISKUNDE CSE KB WISKUNDE VBO-MAVO-C Bij dit examen hoort een uitwerkboekje. Dit examen bestaat uit 25 opdrachten. Voor dit examen zijn

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 woensdag 30 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 woensdag 30 mei uur. Bij dit examen hoort een uitwerkbijlage. Examen VMO-K 2007 tijdvak 1 woensdag 30 mei 13.30-15.30 uur wiskunde CSE K ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 79 punten te behalen.

Nadere informatie

Hoofdstuk 6 Inhoud uitwerkingen

Hoofdstuk 6 Inhoud uitwerkingen Kern Prisma en cilinder a De inhoud is G h=,5 = 4,5cm. b Die inhoud is even groot. a De inhoud is G h= ( 4) 8 = 64 cm b Op iedere hoogte geldt dat de doorsnede van het rechte prisma dezelfde oppervlakte

Nadere informatie

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven

Nadere informatie

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600.

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal

Nadere informatie