Het getal π. Frits Beukers. Kaleidoscoop, 19 Okt Het getal π Kaleidoscoop, 19 Okt / 36

Maat: px
Weergave met pagina beginnen:

Download "Het getal π. Frits Beukers. Kaleidoscoop, 19 Okt Het getal π Kaleidoscoop, 19 Okt / 36"

Transcriptie

1 Het getal π Frits Beukers Kaleidoscoop, 19 Okt 2009 Het getal π Kaleidoscoop, 19 Okt / 36

2 π-koe Inleiding Het getal π Kaleidoscoop, 19 Okt / 36

3 π-cologne Inleiding Het getal π Kaleidoscoop, 19 Okt / 36

4 De hoofdrolspeler Inleiding Het getal π Kaleidoscoop, 19 Okt / 36

5 Definitie van π Inleiding Het getal π Kaleidoscoop, 19 Okt / 36

6 Volumes met π Cirkel met straal r Omtrek = 2πr Oppervlak = πr 2 Bol met straal r Oppervlak = 4πr 2 Inhoud = 4πr 3 /3 Inleiding Het getal π Kaleidoscoop, 19 Okt / 36

7 Da Vinci s bewijs Inleiding Het getal π Kaleidoscoop, 19 Okt / 36

8 Archimedes, v. Chr. Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

9 Veelhoeken Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

10 In- en omgeschreven veelhoek Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

11 Archimedes relaties Recursies 1 = 1 ( ) Q 2N 2 P N Q N P 2N = P N Q 2N. Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

12 Archimedes relaties Recursies 1 = 1 ( ) Q 2N 2 P N Q N P 2N = P N Q 2N. Formules Q N = N tan π N P N = N sin π N. Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

13 Archimedes benadering N P N Q N π = Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

14 Vervolg Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

15 π-chronologie, deel I Ontdekker(s) Jaar Waarde Decimalen correct Babyloniërs 2000 B.C Egyptenaren 2000 B.C. (16/9) 2 1 Archimedes 250 B.C Tsu Ch ung Chih 480? 355/113 6 Al-Kashi L.van Ceulen Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

16 Ludolph van Ceulen, Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

17 Van Ceulen s grafsteen Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

18 Snellius, Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

19 Snellius idee N P N Q N (2P N + Q N )/ π = Pi-berekening, deel I Het getal π Kaleidoscoop, 19 Okt / 36

20 Isaac Newton, Pi-berekening, deel II Het getal π Kaleidoscoop, 19 Okt / 36

21 Isaac Newton, I am ashamed to tell you how many figures I carried these computations, having no other business at the time Pi-berekening, deel II Het getal π Kaleidoscoop, 19 Okt / 36

22 Leonhard Euler, Pi-berekening, deel II Het getal π Kaleidoscoop, 19 Okt / 36

23 Arctangens Gregory ( ) arctan x = x 1 x x 5 5 x x 9 9 Pi-berekening, deel II Het getal π Kaleidoscoop, 19 Okt / 36

24 Arctangens Gregory ( ) arctan x = x 1 x x 5 5 x x 9 9 Vul hier x = 1 in: Leibniz ( ) π 4 = Pi-berekening, deel II Het getal π Kaleidoscoop, 19 Okt / 36

25 Arctangens identiteiten Machin ( ) π 4 = 4 arctan 1 5 arctan Pi-berekening, deel II Het getal π Kaleidoscoop, 19 Okt / 36

26 Arctangens identiteiten Machin ( ) π 4 = 4 arctan 1 5 arctan Euler π 4 = 5 arctan arctan Pi-berekening, deel II Het getal π Kaleidoscoop, 19 Okt / 36

27 Arctangens identiteiten Machin ( ) π 4 = 4 arctan 1 5 arctan Euler π 4 = 5 arctan arctan Euler π 4 = arctan arctan 1 3. Pi-berekening, deel II Het getal π Kaleidoscoop, 19 Okt / 36

28 π-chronologie, deel II Ontdekker(s) Jaar Decimalen correct Newton Machin W.Shanks (707) Rietweisner et al (ENIAC) Guilloud D.Shanks, Wrench Guilloud, Dichampt Pi-berekening, deel II Het getal π Kaleidoscoop, 19 Okt / 36

29 Carl Friedrich Gauss, Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

30 AGM a 0 = a b 0 = b a 1 = (a 0 + b 0 )/2 b 1 = a 0 b 0 a 2 = (a 1 + b 1 )/2 b 2 = a 1 b 1 a n+1 = (a n + b n )/2 b n+1 = a n b n Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

31 AGM-voorbeeld n a n b n Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

32 AGM-voorbeeld n a n b n Limiet: lim n 1 = 2 1 a n π 0 dx 1 x 4 Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

33 Gauss-Salamin-Brent (1976) Start: a 0 = 2, b 0 = 1, c 0 = 1, d 0 = 1 Recursie voor n 0: a n+1 = (a n + b n )/2 b n+1 = a n b n c n+1 = cn/2 2 n+3 d n+1 = d n c n Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

34 Gauss-Salamin-Brent (1976) Start: a 0 = 2, b 0 = 1, c 0 = 1, d 0 = 1 Recursie voor n 0: a n+1 = (a n + b n )/2 b n+1 = a n b n c n+1 = cn/2 2 n+3 d n+1 = d n c n Dan geldt: 2an 2 lim = π. n d n Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

35 Srinivasa Ramanujan, Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

36 De gebroeders Chudnovsky Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

37 Ramanujan-Chudnovsky formule 1 π = n=0 (4n)! (n!) n 396 4n. Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

38 π-chronologie, deel III Ontdekker(s) Jaar Decimalen correct Guilloud, Bouyer Gosper Kanada, Tamura D & G. Chudnovsky D & G. Chudnovsky Kanada, Takahashi Kanada, Takahashi Kanada, Ushiro, Kuroda Pi-berekening, deel III Het getal π Kaleidoscoop, 19 Okt / 36

39 π-feiten Lambert, 1768 π is irrationaal Conclusies Het getal π Kaleidoscoop, 19 Okt / 36

40 π-feiten Lambert, 1768 π is irrationaal Lindemann, 1882 π is transcendent Conclusies Het getal π Kaleidoscoop, 19 Okt / 36

41 π-feiten Lambert, 1768 π is irrationaal Lindemann, 1882 π is transcendent Gevolg: Kwadratuur van de cirkel is opgelost Conclusies Het getal π Kaleidoscoop, 19 Okt / 36

42 π-vragen Vragen Komt elk rijtje cijfers in de decimale ontwikkeling van π voor? Is π normaal? Is e + π irrationaal, of eπ? Conclusies Het getal π Kaleidoscoop, 19 Okt / 36

43 π-ezelsbruggen How I need a drink, alcoholic of course, after the heavy lectures involving quantum mechanics Conclusies Het getal π Kaleidoscoop, 19 Okt / 36

44 π-ezelsbruggen How I need a drink, alcoholic of course, after the heavy lectures involving quantum mechanics Eva o lief, o zoete hartedief, uw blauwe oogen zijn wreed bedrogen Conclusies Het getal π Kaleidoscoop, 19 Okt / 36

45 Pihenge Conclusies Het getal π Kaleidoscoop, 19 Okt / 36

46 Einde! Conclusies Het getal π Kaleidoscoop, 19 Okt / 36

Uitwerkingen van de opgaven uit Pi

Uitwerkingen van de opgaven uit Pi Uitwerkingen van de opgaven uit Pi Frits Beukers January 3, 2006 Opgave 2.3. Bedoeling van deze opgave is dat we alleen een schatting geven op grond van de gevonden tabel. Er worden geen bewijzen of precieze

Nadere informatie

Praktische opdracht Wiskunde B Pi

Praktische opdracht Wiskunde B Pi Praktische opdracht Wiskunde B Pi Praktische-opdracht door een scholier 3067 woorden 21 maart 2007 5,7 11 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Inhoudsopgave 1.0 Voorwoord 2.0 De geschiedenis

Nadere informatie

6 - Geschiedenis van het getal Pi

6 - Geschiedenis van het getal Pi 6 - Geschiedenis van het getal Pi De opdracht omschrijving voor dit hoofdstuk bestond uit het volgende: F1 - Lees de hoofdstukken 1 t/m 4 en 9 uit het Zebra-boekje Pi. Maak uit de hoofdstukken 2 t/m 4

Nadere informatie

Praktische opdracht Wiskunde B Het getal Pi

Praktische opdracht Wiskunde B Het getal Pi Praktische opdracht Wiskunde B Het getal Pi Praktische-opdracht door een scholier 1760 woorden 2 maart 2006 5,2 19 keer beoordeeld Vak Wiskunde B Inhoudsopgave 1. Inleiding 2. De geschiedenis van π - De

Nadere informatie

Van den cirkel, wortels en π.

Van den cirkel, wortels en π. Van den cirkel, wortels en π. Waarin geleerd wordt te benaderen in veel decimalen Inga Deimen, Maxim Hendriks en Matthijs Pronk 16 06 006 De omgeschreven en ingeschreven veelhoekszijde In Capittel IX van

Nadere informatie

Het naaldenexperiment van Buffon

Het naaldenexperiment van Buffon Het naaldenexperiment van Buffon (Ph. Cara, 3 april 2015) 1 Definitie en korte geschiedenis van π Reeds in 400 v.chr. stelde de Griek Hippocrates vast dat de verhouding tussen de oppervlakte van een cirkelschijf

Nadere informatie

wiskunde B pilot vwo 2017-II

wiskunde B pilot vwo 2017-II Twee machten van maimumscore 5 f' ( ) = ln() + ln() Uit f' ( ) = volgt dat = Dus + = ( = ) Hieruit volgt = a+ a, met a =, moet minimaal zijn De vergelijking a = moet worden opgelost Dit geeft Hieruit volgt

Nadere informatie

Inleiding Vooraf Omtrek cirkel

Inleiding Vooraf Omtrek cirkel Inleiding Vooraf De behoefte om 'iets' met π te doen onstond bij mij toen in een hoofdstuk over omtrek, oppervlakte en inhoud van de tweede klas de cirkel onder handen werd genomen.[1] In de eerste opgave

Nadere informatie

Intro. Ludolphs π. Grieken. Motivatie. Conclusie

Intro. Ludolphs π. Grieken. Motivatie. Conclusie 1 2 3 Van Ceulenjaar 2010 1610 Meester Ludolph 2010 www.ludolphvanceulen.nl 4 www.ludolphvanceulen.nl 5 Van Cirkelkwadraturen Recht en Krom Steven Wepster Departement Wiskunde Universiteit Utrecht NWD,

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

Archimedes en de cirkel

Archimedes en de cirkel Niveau ooo Archimedes en de cirkel De verhouding tussen de omtrek en de diameter van een cirkel heet π en is ongeveer gelijk aan 3,1415965359. Wat je je misschien niet realiseert is dat daar eigenlijk

Nadere informatie

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud antekening HVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud Les 1 Oppervlakte driehoeken Oppervlakte driehoek = ½ basis hoogte Oppervlakte parallellogram = basis hoogte Oppervlakte trapezium = ½ (basis + top)

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Tweede Ronde e tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem werkt (opnieuw) als volgt : een deelnemer start met 0 punten Per goed antwoord

Nadere informatie

wiskunde B pilot havo 2015-I

wiskunde B pilot havo 2015-I Hangar maximumscore Beschrijven hoe de vergelijking 0,006x + 56,6 = 0 opgelost kan worden De oplossingen zijn x,0 ( nauwkeuriger) en x,0 ( nauwkeuriger) Dit geeft een breedte van 86,0 meter Als voor x

Nadere informatie

Drie klassieke problemen De trisectie van de hoek De verdubbeling van de kubus De kwadratuur van de cirkel

Drie klassieke problemen De trisectie van de hoek De verdubbeling van de kubus De kwadratuur van de cirkel Drie klassieke problemen De trisectie van de hoek De verdubbeling van de kubus De kwadratuur van de cirkel mc.vanhoorn@wxs.nl Drie klassieke problemen 1 Inhoudsopgave Constructies Exhaustie Algebraïsche

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.9, maandag K. P. Hart Faculteit EWI TU Delft Delft, 13 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 41 Outline III.6 The Residue Theorem 1 III.6 The

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n

Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n Hoofdstuk 1 Inleidende begrippen 1.1 Definities Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n Voor het tellen van het aantal

Nadere informatie

Paragraaf K.1 : Substitutiemethode

Paragraaf K.1 : Substitutiemethode Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

Priemgetallen en het Riemannvermoeden

Priemgetallen en het Riemannvermoeden Priemgetallen en het Riemannvermoeden Frits Beukers Studium Generale Wageningen, 14 november 2007 Priemgetallen en het Riemannvermoeden Studium Generale 1 / 28 Priemgetallen 2, 3, 5, 7, 11, 13, 17, 19,

Nadere informatie

Wiskunde: de cirkel. CC Naamsvermelding 3.0 Nederland licentie.

Wiskunde: de cirkel. CC Naamsvermelding 3.0 Nederland licentie. Auteur Laatst gewijzigd Licentie Webadres bas ghijssen 29 June 2014 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/51039 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

Cirkel en cirkelsector

Cirkel en cirkelsector middellijn 3 Cirkel en cirkelsector 1 CIRKEL In figuur 1 zien we een cirkel. Het middelpunt van de cirkel duiden we meestal aan met de letter M. Verder onderscheiden we de begrippen diameter (middellijn)

Nadere informatie

1. Hoeveel decimalen van π ken je?

1. Hoeveel decimalen van π ken je? Deze samenvatting is bedoeld voor mijn moeder en alle andere lezers die niet veel van wiskunde weten, maar wel graag willen zien waar ik de afgelopen jaren aan heb gewerkt Wiskundigen verwijs ik graag

Nadere informatie

Oefentoets Versie A. Vak: Wiskunde Onderwerp: Meetkunde Leerjaar: 1 (2017/2018) Periode: 3

Oefentoets Versie A. Vak: Wiskunde Onderwerp: Meetkunde Leerjaar: 1 (2017/2018) Periode: 3 Oefentoets Versie A Vak: Wiskunde Onderwerp: Meetkunde Leerjaar: 1 (017/018) Periode: 3 Opmerkingen vooraf: Het gebruik van een rekenmachine en een tabellenboekje is toegestaan. Geef je antwoord alljd

Nadere informatie

Radboud Universiteit Nijmegen. Eindopdracht Historical Aspects of Classroom Mathematics. π project A A H

Radboud Universiteit Nijmegen. Eindopdracht Historical Aspects of Classroom Mathematics. π project A A H Radboud Universiteit Nijmegen Eindopdracht Historical Aspects of Classroom Mathematics π project A A H H G C O G C F D F D E E Auteurs: Lean Arts Mark Coumans Stefanie Romme 21 juni 2013 1 Inhoudsopgave

Nadere informatie

wiskunde B havo 2019-I

wiskunde B havo 2019-I Formule van Wilson maximumscore Uitgaande van gelijke temperatuur en diepte wordt het verschil in snelheid dus bepaald door het verschil in zoutgehalte Er geldt: v =,9( 7 5),9( 5) Het gevraagde verschil

Nadere informatie

De arbelos. 1 Definitie

De arbelos. 1 Definitie De arbelos 1 Definitie De arbelos is een meetkundige figuur die bestaat uit drie aan elkaar rakende halve cirkels. De raakpunten liggen op een lijn. In onderstaande tekening is de arbelos de paarse figuur.

Nadere informatie

Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam

Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Leve de Wiskunde! 2011 W I N G O! Uw Wingo-master van vandaag: Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam W I N G O = W I S K U N D E - B I N G O W I N G O 17 15 π

Nadere informatie

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20

11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20 .0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

Een touwtje om de aarde

Een touwtje om de aarde Een touwtje om de aarde Quidquid latine dictum sit, altum videtur K. P. Hart Faculty EEMCS TU Delft Leiden, 22 oktober 2014: 13:00 13:45 Vraag 1 Stel je voor dat er een touw strak om de aarde getrokken

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

1 Introductie. 2 Oppervlakteformules

1 Introductie. 2 Oppervlakteformules Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie

Nadere informatie

Hoofdstuk 2 Oppervlakte en inhoud

Hoofdstuk 2 Oppervlakte en inhoud Hoofdstuk 2 Oppervlakte en inhoud Les 1 Aant. 2.1 Oppervlakte van vlakke figuren Theorie A: Oppervlakte van vlakke figuren Oppervlakte driehoek = ½ zijde bijbehorende hoogte Oppervlakte parallellogram

Nadere informatie

Oplossingen. b) arctan( 4. c) arctan( AC = 4 2, AS = 2 2, NT = 34 (= 2 17), ST = 32 = 4 2 a) 2 arcsin( 2 2

Oplossingen. b) arctan( 4. c) arctan( AC = 4 2, AS = 2 2, NT = 34 (= 2 17), ST = 32 = 4 2 a) 2 arcsin( 2 2 Voorkennis: Goniometrische verhoudingen De officiële benaming voor de inverse van sinus, op je rekenmachine sin 1 is boogsinus, afgekort als arcsin, voor cos 1 : boogcosinus arccos, voor tan 1 : boogtangens

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013 Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 6 collegejaar : 8-9 college : 6 build : 2 oktober 28 slides : 38 Vandaag Minecraft globe van remi993 2 erhaalde 3 4 intro VA Drievoudige integralen Section 5.5 Definitie Een rechthoekig blok is

Nadere informatie

Wat kan er (niet) zonder ε-δ?

Wat kan er (niet) zonder ε-δ? Oneindig klein. Wat kan er (niet) zonder ε-δ? Michel Roelens University Colleges Leuven Limburg Maria-Boodschaplyceum Brussel Hilde Eggermont Sint-Pieterscollege Leuven Redactie Uitwiskeling Afgeleide

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.9, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 16 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 46 Outline III.7 Applications of the Residue Theorem

Nadere informatie

Een Nieuwe Wereld uit het Niets

Een Nieuwe Wereld uit het Niets Een Nieuwe Wereld uit het Niets Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@math.rug.nl www.math.rug.nl/~gert Masterclass, 16 april 2009 GV () Werelden uit het niets Masterclass,

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Examen VWO. Wiskunde B Profi

Examen VWO. Wiskunde B Profi Wiskunde B Profi Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak Woensdag 1 juni 13.30 16.30 uur 0 00 Dit eamen bestaat uit 16 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden 10.0 Voorkennis 5 1 6 6 cos( ) = -cos( ) = -½ 3 [cos is x-coördinaat] 5 1 3 3 sin( ) = -sin( ) = -½ 3 [sin is y-coördinaat] 1 Voorbeeld 1: Getekend is de lijn k: y = ½x 1. De richtingshoek α van de lijn

Nadere informatie

11 e editie. Inhoudsopgaven VWO 5

11 e editie. Inhoudsopgaven VWO 5 11 e editie Inhoudsopgaven VWO 5 Inhoudsopgave 5 vwo A 1 Formules herleiden 1-1 Lineaire formules 1-2 Gebroken formules 1-3 Wortelformules 1-4 Machtsformules 1-5 Gemengde opdrachten 2 Statistiek (op computer)

Nadere informatie

Praktische opdracht Wiskunde Archimedes

Praktische opdracht Wiskunde Archimedes Praktische opdracht Wiskunde Archimedes Praktische-opdracht door een scholier 2163 woorden 10 februari 2005 6,3 131 keer beoordeeld Vak Wiskunde Deelvraag 1: Wie was deze man? Archimedes is geboren in

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage. amen VWO 2009 tijdvak dinsdag 2 juni 3.30-6.30 uur wiskunde B,2 Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 9 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer

Nadere informatie

9.1 Oppervlakte-eenheden [1]

9.1 Oppervlakte-eenheden [1] 9.1 Oppervlakte-eenheden [1] De omtrek van een figuur bereken je door uit te rekenen hoe lang het is als je één keer langs de rand van de figuur gaat. Omtrek = l + l + l + l + l + l + l + l = 14 + 8 +

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Wiskunde Uitwerkingen Leerjaar 1 - Periode 3 Meetkunde 3D Hoofdstuk 4 t/m 7

Wiskunde Uitwerkingen Leerjaar 1 - Periode 3 Meetkunde 3D Hoofdstuk 4 t/m 7 Wiskunde Uitwerkingen Leerjaar - Periode Meetkunde oofdstuk t/m 7 oofdstuk. a). a). a) opp. = ribbe ribbe = ribbe = 8 cm inh. = ribbe ribbe ribbe = ribbe =.78 cm opp. = 00 0 + 0 + 00 = 7.900 cm inh. =

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

Eindexamen wiskunde B havo II

Eindexamen wiskunde B havo II Eindexamen wiskunde B havo 009 - II Beoordelingsmodel Kaas maximumscore De oppervlakte van de rechthoek is 0 0 = 00 (cm ) De oppervlakte van de twee halve cirkels is samen π 5 ( 79)(cm ) De oppervlakte

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010 EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 010 Datum: 13 januari 010 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal

Nadere informatie

Opgave 4. Opgave 5. Opgave 6. (5) a) Isoleer de variabele B uit de formule P A B P B. (6) b) Isoleer de variabele B uit de formule

Opgave 4. Opgave 5. Opgave 6. (5) a) Isoleer de variabele B uit de formule P A B P B. (6) b) Isoleer de variabele B uit de formule EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 009 Datum: 14 jan 009 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal te

Nadere informatie

Wat is Pi? Geef een definitie van Pi? pi onderzoeken is als het onderzoeken van het Heelal David Chudnovsky

Wat is Pi? Geef een definitie van Pi? pi onderzoeken is als het onderzoeken van het Heelal David Chudnovsky pi oderzoeke is als het oderzoeke va het Heelal David Chudovsky of liever og het oderzoeke va de wereld oder de zeespiegel, wat we bevide os oder water e alles lijkt vormloos. We hebbe ee lamp odig e oze

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

Meetkunde. MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3

Meetkunde. MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3 Meetkunde MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3 LOCATIE: Noorderpoort Beroepsonderwijs Stadskanaal DOMEINEN: Bouwkunde, Werktuigbouw, Research Instrumentmaker LEERWEG: BOL - MBO Niveau 4 DATUM:

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 3 1,731 5,361 π 3,116 1 Als a 1 3 a 1 3 a m = a met a R + \{0, 1}, dan

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

Cijfer = totaal punten/10 met minimum 1

Cijfer = totaal punten/10 met minimum 1 VOORBLAD SCHRIFTELIJKE TOETSEN OPLEIDING TOETSCODE GROEP Me MeWIS1-T1 MeP1 TOETSDATUM 7 november 011 TIJD 13.00 14.30 uur AANTAL PAGINA S (incl. dit voorblad) 6 DEZE TOETS BESTAAT UIT (aantal) GEBRUIK

Nadere informatie

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 7 Poolcoördinaten (versie 22 augustus 2011) Inhoudsopgave 1 Poolcoördinaten 1 2 Poolvergelijkingen 3 21 Cartesiaanse coördinaten versus poolcoördinaten

Nadere informatie

Rekenen en wiskunde ( bb kb gl/tl )

Rekenen en wiskunde ( bb kb gl/tl ) Tussendoelen Rekenen en Rekenen en ( bb kb gl/tl ) vmbo = Basis Inzicht en handelen Vaktaal Vaktaal herkennen en voor het ordenen van herkennen en voor het ordenen van herkennen en voor het ordenen van

Nadere informatie

Hoofdstuk 8 : Complexe getallen

Hoofdstuk 8 : Complexe getallen 1 Hoofdstuk 8 : Complexe getallen Les 1 Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen getallen : (1) N = Natuurlijke getallen = 1,2,3,.. (2) Z = Gehele

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

Paragraaf 14.0 : Eenheidscirkel

Paragraaf 14.0 : Eenheidscirkel Hoofdstuk 14 Allerlei formules (V6 Wis A) Pagina 1 van 12 Paragraaf 14.0 : Eenheidscirkel De eenheidscirkel met graden Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat

Nadere informatie

De Riemann-hypothese

De Riemann-hypothese De Riemann-hypothese Een miljoenenprobleem Jan van de Craats (UvA) Leve de Wiskunde, UvA, april 04 De Riemann-hypothese De Riemann-hypothese Alle niettriviale nulpunten van de zètafunctie liggen op de

Nadere informatie

Medische rekenen AJK

Medische rekenen AJK Medische rekenen AJK Herhaling Optellen, aftrekken en breuken Optellen Voorbeeld optellen 122

Nadere informatie

WI1708TH Analyse 3. College 5 23 februari Challenge the future

WI1708TH Analyse 3. College 5 23 februari Challenge the future WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide

Nadere informatie

Analyse met infinitesimalen

Analyse met infinitesimalen Analyse met infinitesimalen Hans Vernaeve Universiteit Gent (Hans Vernaeve) 1 / 15 Infinitesimalen in de 17de en 18de eeuw Infinitesimalen = oneindig kleine getallen. Fysisch hulpmiddel om eigenschappen

Nadere informatie

04 Meetkunde. hoofdstuk. 4.1 Uitslagen

04 Meetkunde. hoofdstuk. 4.1 Uitslagen hoofdstuk 0 eetkunde bladzijde 06 e schuine muren aan de benedenkant van de woning. e vloeren en de plafonds zijn regelmatige zeshoeken of regelmatige driehoeken. ovenaanzicht:. Uitslagen bladzijde 08

Nadere informatie

Irrationaliteit en transcendentie

Irrationaliteit en transcendentie Hoofdstuk 9 Irrationaliteit en transcendentie 9. Irrationale getallen In dit hoofdstuk zullen we aannemen dat de lezer weet wat reële getallen zijn, hoewel dat misschien niet helemaal gerechtvaardigd is.

Nadere informatie

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff Oneindig in Wiskunde & Informatica Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft Tom Verhoeff Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica http://www.win.tue.nl/~wstomv/

Nadere informatie

Opgaven bij Numerieke Wiskunde I

Opgaven bij Numerieke Wiskunde I Opgaven bij Numerieke Wiskunde I 7 november 8 1. (a) Gegeven verschillende interpolatiepunten x, x 1, x [a, b], en getallen y, y 1, y, z 1, toon aan dat er hooguit 1 polynoom p P 3 is met p(x i ) = y i,

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 3 en 4: Covariant differentiëren en kromming Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist g 00 Programma

Nadere informatie

Combinatoriek groep 1 & 2: Recursie

Combinatoriek groep 1 & 2: Recursie Combinatoriek groep 1 & : Recursie Trainingsweek juni 008 Inleiding Bij een recursieve definitie van een rij wordt elke volgende term berekend uit de vorige. Een voorbeeld van zo n recursieve definitie

Nadere informatie

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 19 april 2011 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

Paragraaf 8.1 : Eenheidscirkel

Paragraaf 8.1 : Eenheidscirkel Hoofdstuk 8 Goniometrische functies (H4 Wis B) Pagina 1 van 10 Paragraaf 8.1 : Eenheidscirkel Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, maandag K. P. Hart Faculteit EWI TU Delft Delft, 30 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 33 Outline 1 2 Algemeenheden Gedrag op de rand Machtreeksen

Nadere informatie

Antwoorden. 1. Rekenen met complexe getallen

Antwoorden. 1. Rekenen met complexe getallen 1. Rekenen met complexe getallen 1.1 a. 9 b. 9 c. 16 d. i e. 1 1. a. 1 b. 3 c. 1 d. 4 3 e. 3 4 1.3 a. 3 i b. 3 i c. i d. 5 i e. 15 i 1.4 a. 33 i b. 7 i c. 4 3 i d. 3 5 i e. 5 3 i 1.5 a. 1 ± i b. ± i c.

Nadere informatie

Oppervlakte en volume door de eeuwen heen Sneetjes of geen sneetjes: that s the question

Oppervlakte en volume door de eeuwen heen Sneetjes of geen sneetjes: that s the question Oppervlakte en volume door de eeuwen heen Sneetjes of geen sneetjes: that s the question Michel Roelens Deze syllabus bevat enkele fragmenten uit de loep Oppervlakte en volume door de eeuwen heen verschenen

Nadere informatie

wiskunde B pilot havo 2015-I

wiskunde B pilot havo 2015-I Hangar Door constructies in de vorm van een bergparabool te gebruiken, kunnen grote gebouwen zonder inwendige steunpilaren gebouwd worden. Deze manier van bouwen werd begin vorige eeuw veel gebruikt voor

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

Wiskunde 1b Oppervlakte

Wiskunde 1b Oppervlakte PROFESSIONELE BACHELOR IN HET ONDERWIJS SECUNDAIR ONDERWIJS Auteur: Greet Verhelst, Eddy Greunlinx Lector: Academiejaar 2016-2017 Inhoudsopgave 1 Veelhoekig gebied... 4 2 van een veelhoekig gebied...

Nadere informatie

Calculus I, 19/10/2015

Calculus I, 19/10/2015 Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,

Nadere informatie

Faculteit Wiskunde en Informatica VECTORANALYSE

Faculteit Wiskunde en Informatica VECTORANALYSE 12 Faculteit Wiskunde en Informatica Aanvulling 4 VECTOANALYE 2WA15 2006/2007 Hoofdstuk 4 De stelling van Gauss (divergentie-stelling) 4.1 Inleiding Dit hoofdstuk is gewijd aan slechts één stelling. De

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2019 tijdvak 1 donderdag 16 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 70 punten

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten

Nadere informatie

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme Wiskunde voor kunstmatige intelligentie, 006 Les Speciale functies We ebben in de vorige les een aantal elementaire functies bekeken en iervoor gezien oe we deze functies kunnen afleiden. In wezen waren

Nadere informatie

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )

sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x ) G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(

Nadere informatie

Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 2012

Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 2012 Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 202 Cor Kraaikamp August 24, 202 Cor Kraaikamp () Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Videoles Discrete dynamische modellen

Videoles Discrete dynamische modellen Videoles Discrete dyamische modelle Discrete dyamische modelle Orietatie Algebraisch Algebraisch/ umeriek Numeriek Maak de volgede rijtjes af: Puzzele met rijtjes a. 2 4 6 8 10 - b. 1 2 4 8 16 - c. 1 2

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

De eerste waarden van pi zijn bijna zeker gevonden door metingen.

De eerste waarden van pi zijn bijna zeker gevonden door metingen. Dag van de Wiskunde 8 november 006 Pi π Philip Bogaert Pi = 3,49638979338466 Het onmeetbare getal, dat is pi. Maar op de rekenmachine bestaat wel degelijk Een knop voor dat niet-te-benaderen getal. Wie,

Nadere informatie