De wortel uit min één. Jaap Top

Maat: px
Weergave met pagina beginnen:

Download "De wortel uit min één. Jaap Top"

Transcriptie

1 De wortel uit min één Jaap Top JBI-RuG & DIAMANT 19 april

2 Marten Toonder, verhaal de minionen (1980) 2

3 3

4 4

5 5

6 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen a + b 1 met reële a, b; meetkundig, als punten met coördinaten (a, b) in het xy-vlak. We gaan op beide in, vergelijk het collegedictaat Differentiaalen integraalrekening, te vinden op 6

7 Alternatief, uitstekende inleiding: 7

8 Een complex getal is een uitdrukking van de vorm a + bi, met a en b reële getallen, en i een nieuw symbool. Is z = a + bi een complex getal, dan heet a R het reële deel van z en b R het imaginaire deel van z. Notatie Re(z) := a resp. Im(z) := b. De verzameling van alle complexe getallen geven we aan met C. Optellen en vermenigvuldigen in C: Laten z = a+bi en w = c+di complexe getallen zijn. Dan en z + w = (a + bi) + (c + di) := (a + c) + (b + d)i zw = (a + bi) (c + di) := (ac bd) + (ad + bc)i. 8

9 We vatten R op als een deel van C, door r R te zien als het complexe getal r + 0i. Evenzo hebben we een zekere deelverzameling van de complexe getallen die we de zuiver imaginaire getallen noemen. Dit zijn de complexe getallen van de vorm 0 + bi. Zo n zuiver imaginair getal schrijven we kortweg als bi. De rekenregels zeggen in het bijzonder dat (bi)(di) = bd, dus het product van twee zuiver imaginaire getallen is een reëel getal. Voor b = d = 1 staat hier dat i 2 = 1. 9

10 Optellen en vermenigvuldigen in C voldoet aan voor R al welbekende regels. Bijvoorbeeld z + w = w + z en zw = wz en ook (z + w)z 2 = zz 2 + wz 2. Complexe getallen z hebben een tegengestelde z, en aftrekken van complexe getallen (z w) betekent net als voor R dat we bij z de tegengestelde van w optellen. Minder evident: elk complex getal z 0 heeft een inverse; dat is een w C zodat zw = 1. Deze inverse wordt, net als in het reële geval, geschreven als z 1. Er geldt (a + bi) 1 = a a 2 + b 2 b a 2 + b 2i, zoals je nagaat door met a + bi te vermenigvuldigen. Dit stelt ons in staat om complexe getallen op elkaar te delen: z/w = z w 1 (mits w 0). 10

11 De complex geconjugeerde van een complex getal z = a + bi is het complexe getal genoteerd als z, gegeven door z := a bi. Merk op dat voor elke z = a + bi 0 het product z z = a 2 + b 2 een positief reëel getal is. Er geldt en 1 z = z z z w z = w z z z Dit zijn formules waarmee in de praktijk snel een quotient van compleze getallen in de vorm a + bi geschreven kan worden. 11

12 Voorbeelden: i = 2 i (2 + i)(2 i) = 2 i 5 = i. Zo ook 3 + 5i 1 + i = (3 + 5i)(1 i) (1 + i)(1 i) = (3 + 5i)(1 i)/2 = 4 + i. 12

13 Is z = a + bi, dan volgt z + z = 2a en z z = 2bi. Dit levert formules voor het reële en het complexe deel van z, namelijk Re(z) = z + z 2 en Im(z) = z z. 2i 13

14 Deze algebraïsche benadering is afkomstig van Rafael Bombelli ( ). 14

15 Je kan op een meetkundige manier naar C kijken door z = a + bi te zien als het punt (a, b) in het xy-vlak R 2. Optellen in C is zo de parallellogramwet voor het optellen van vectoren: a + bi optellen bij c + di is het optellen van de vectoren met beginpunt (0, 0) en eindpunt resp. (a, b) en (c, d). Complexe conjugatie is het overgaan van (a, b) naar (a, b), dus het spiegelen in de x-as. In het bijzonder zie je zo, dat z = z dan en slechts dan, als z met een punt op de x-as correspondeert, oftewel, als z R. We spreken van het complexe vlak. 15

16 De formule z z = a 2 + b 2 als z = a + bi laat zien, dat z z gelijk is aan het kwadraat van de afstand tussen (0, 0) en (a, b). Kortom, met z := z z = a 2 + b 2 wordt een reëel getal gedefiniëerd dat in het meetkundige plaatje de lengte van z (als vector) weergeeft. We noemen dit de absolute waarde van z. Voor reële z stemt dit overeen met de daar gebruikelijke absolute waarde. Er geldt zw = z w en z + w z + w. 16

17 Door z C (mits z 0) te delen door z n absolute waarde z, houden we een complex getal over met absolute waarde 1. Dit ligt dus in het complexe vlak op de cirkel om 0 met straal 1. Elk punt op die cirkel heeft coördinaten (cos α, sin α) waarbij α de hoek is die de lijn door 0 en het punt maakt ten opzichte van de positieve reële as (x-as). De hoek α heet het argument van het complexe getal z, notatie: arg(z). Er geldt z = r (cos α + (sin α)i) waarbij r = z en α = arg(z). 17

18 De meetkundige interpretatie van C wordt toegeschreven aan de accountant/boekhouder Jean Robert Argand ( ) uit Parijs. Hij schreef er in 1806 een boek over. Hij voerde het begrip absolute waarde van een complex getal in. Het complexe vlak heet ook wel het Argand diagram. Eerder gaf de Noorse landmeter Caspar Wessel ( ) in 1799 dezelfde meetkundige interpretatie. Maar hij schreef in het Deens... 18

19 Pagina uit een engelse vertaling van het boek van Argand 19

20 Notatie: e αi := cos α + (sin α)i. Dit is het complexe getal op de eenheidscirkel, met argument gelijk aan α. Merk op: e 0i = 1 + 0i = 1, en ook voor de gebruikelijke e-macht is e 0 = 1. Een berekening waarbij bekende goniometrische identiteiten worden gebruikt, laat zien (cos α + (sin α)i) (cos β + (sin β)i) = cos(α + β) + (sin(α + β))i. Oftewel: e αi e βi = e αi+βi. 20

21 Gegeven complexe getallen z en w, schrijf r = z en s = w en α = arg(z) en β = arg(w). Dan z w = r e αi s e βi = rs e (α+β)i. Meetkundig is vermenigvuldigen dus: de lengtes (absolute waarden) vermenigvuldigen, en de hoeken (argumenten) optellen. 21

22 Voor z = a + bi schrijven we e z = e a+bi := e a e bi. Voor a = 0 is dat de hiervoor gegeven e bi. Voor b = 0 is dat de gewone, reële e a. Er geldt e z+w = e z e w. Voor a = 0 en b = π staat er e πi = cos π + (sin π)i = 1, dus e πi + 1 = 0. Formule van Leonhard Euler ( ). 22

23 Euler voerde e z anders in: hij schreef e z = lim n (1 + z n )n. Invullen z = ix met x reëel, en gebruiken dat 1 cos(x/n) en x/n sin(x/n) als n heel groot, brengt Euler dan, via de formule van de Moivre (cos(α) + i sin(α)) n = cos(nα) + i sin(nα), tot de conclusie e ix = cos(x) + i sin(x). Zie scholierentijdschrift Pythagoras, april 2011 ( De mooiste formule ooit ). 23

24 Zwitserland, 1957 (Euler 250) 24

25 Wat commercieler, lovelymath.com, 2011: 25

26 Toepassing (H.W. Lenstra, Leiden) Zie Gegeven een figuur (tekening) in C. We spreken van een figuur met een Droste effect als er een reëel getal r ±1 is zodat de figuur onder vermenigvuldigen met r in zichzelf overgaat. 26

27 Door de schaling over r bij een Droste effect te combineren met een rotatie over α, krijg je een figuur dat in zichzelf wordt overgevoerd onder vermenigvuldigen met r e αi. Voorbeeld: Escher s Prentententoonstelling (1956), waarbij r 22, 6 en α 2,

28 Stelling: Elke veelterm f(z) over C van positieve graad heeft een nulpunt in C. Dit heet hoofdstelling van de algebra. O.a. bewezen door Argand en door Gauss. Bewijsschets: zou f(z) geen nulpunt hebben, dan is 1/ f(z) overal gedefinieerd. Deze neemt een maximum aan. Na schuiven z z + a: maximum voor z = 0. Na ook nog f(z) delen door f(0): mag aannemen f(0) = 1. Schrijf f(z) = 1 + re αi z k +hogere machten, met k > 0, r > 0. Door voor z een handig gekozen waarde ɛ r 1/k e βi in te vullen, kan je zien dat de aanname maximum in z = 0 tot een tegenspraak leidt. 28

29 Gehelen van Gauss: Z[i], alle m + ni met m, n Z. Met z, w Z[i] zijn ook z ± w en z w in Z[i]. De enige z Z[i] waarvoor ook 1 z Z[i], zijn 1, 1, i, i. In Z[i] kan je delen met rest : zijn z, w Z[i] met w 0, dan bestaan q, r Z[i] zodat z = qw + r en r < w. Bewijs: schrijf z/w = a + bi en rondt a, b af naar de dichtst bijzijnde gehelen m, n. Neem q = m + ni en r = z qw. Dan r / w = r/w = (z/w) q = (a m) + (b n)i < 1, dus r < w. 29

30 Priemen van Gauss zijn de m + ni Z[i] die niet verder te ontbinden zijn: m + ni 1, 1, i, i en als m + ni = z w voor zekere z, w Z[i], dan zit ofwel z, ofwel w in {1, 1, i, i}. Uit deling met rest volgt, dat elke z Z[i] met z 0 te schrijven is als z = uπ e πe n n met n 0 en u = ±1, ±i en de π j priemen van Gauss. Voorbeeld: 1 + i, 3, 2 + i, 1 + 2i, 7, 11, 2 + 3i, 3 + 2i, 1 + 4i, 4 + i zijn priemen van Gauss. 30

31 Is z = a + bi Z[i], dan is z z = a 2 + b 2 een geheel getal 0. Er geldt z z = 1 alleen als z = 1, 1, i, i. Ook is z w z w = (z z) (w w). Hieruit volgt, dat als w w een priemgetal is, dan is w een priem van Gauss. Elk priemgetal p van de vorm 4k + 1 is te schrijven als som van twee kwadraten: p = a 2 + b 2 = (a + bi)(a bi). Hierin zijn dus a ± bi priemen van Gauss. 31

32 Elk priemgetal p van de vorm 4k + 3 is zelf een priem van Gauss. Immers, zou p = z w waarbij zowel z als w niet ±1, ±i zijn, dan is zz > 1 en ww > 1 en zzww = p 2. Dus zz = ww = p. Dit geeft een oplossing van de vergelijking a 2 + b 2 = p met gehele a, b. Eentje van a, b is oneven en de andere even. Van de kwadraten a 2, b 2 is er daarom een deelbaar door 4, de andere is van de vorm (2l + 1) 2 = 4(l 2 + l) + 1. De som a 2 + b 2 is dus van de vorm 4k + 1, tegenspraak. Dus inderdaad is zo n p een priem van Gauss. 32

33 Ter gelegenheid van het International Congress of Mathematicians in Amsterdam in 1954, liet de wis en natuurkundige Balthasar van der Pol ( ) door linnenfabrikant E.J.F. van Dissel & Zn (Eindhoven) theedoeken maken met priemen van Gauss erop. 33

34 34

35 Toepassing: Groningen: 2010, bachelorscriptie van Henk-Jaap Stelwagen, π = 3, nauwkeurig benaderen met behulp van de priemen van Gauss (en ook met die van Eisenstein: net zoiets voor Z[ ]...). Basis: tan(π/4) = 1, dus π/4 = arctan(1). Nu nog die arctangens nauwkeurig benaderen... 35

36 arctan(x) = x 1 3 x x5 1 7 x x9..., immers, klopt als x = 0, en afgeleide links is rechts is 1 1+x2, en afgeleide 1 x 2 + x 4 x 6 + x 8... Dit herkennen als meetkundige reeks geeft eveneens 1 1+x 2. Invullen x = 1 geeft π = 4 ( ), een formule bedacht door de Schotse wis en sterrenkundige James Gregory ( ). 36

37 Probleem: heel veel termen nodig om een acceptabele nauwkeurigheid te krijgen. Voorbeeld: 100 termen geeft π 3, 1316, 1000 termen geeft π 3, 1406, termen geeft π 3, De gebruikte reeks convergeert erg langzaam. Dat probleem treedt niet op als arctan(x) voor veel kleinere x met deze reeks wordt benaderd. 37

38 Strategie: vind getallen z 1 = m 1 + i, z 2 = m 2 + i,..., z t = m t + i in Z[i] met alle m j groot, en zo, dat voor zekere gehele n. z 1 z 2... z t = n + ni Voor elke j is dan arg(z j ) = arctan( m 1 ), en de som van die j argumenten is π/4. Dus π = 4 arctan(1/m 1 ) + 4 arctan(1/m 2 ) arctan(1/m t ) en als de m j groot zijn, is dit nauwkeurig met de arctangens reeks te benaderen. 38

39 Hoe vind je zulke z j = m j + i? Stelwagen: kies een stel priemen van Gauss (bijvoorbeeld de kleinste 100), zodat als w er in zit dan ook w. Maak een collectie gehelen van Gauss m+i, die in hun priemontbinding alleen maar priemen van Gauss uit de gekozen selectie hebben. 39

40 Nu zoek je daaruit producten die iets geheels maal 1+i opleveren. Dat geldt, als in het product de priem 1 + i een oneven aantal keren voorkomt; elke andere priem w evenvaak voorkomt als w. Met lineaire algebra vind je die producten gemakkelijk! (278+I) 37 (268+I) 9 (255+I) 19 (191+I) 14 (157+I) 23 (117+I) 7 (50+I) 19 (32+I) is zo n product, en met ongeveer 30 termen van de arctangens reeks levert dat 100 correcte decimalen van π. 40

41 Kees Stip ( Trijntje Fop ): Op een bok In Siddeburen was een bok die machtsverhief en worteltrok. Die bok heeft onlangs onverschrokken de wortel uit zichzelf getrokken, waarna hij zonder ongerief zich weer in het kwadraat verhief. Maar t feit waardoor hij voort zal leven is, dat hij achteraf nog even de massa die hem huldigde met vijf vermenigvuldige. 41

42 Siddeburen, bok gemaakt door Ron van Dijk 42

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top IWI-RuG & DIAMANT j.top@rug.nl 20 maart 2007 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

Complexe getallen. Jaap Top

Complexe getallen. Jaap Top Complexe getallen Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 16 december 2014 (studiedag voor leraren wiskunde) 1 ( er verwijst naar Leopold Kronecker), uit een tekst (1893) na diens overlijden geschreven

Nadere informatie

Me e r dan ree le getallen. Jaap Top

Me e r dan ree le getallen. Jaap Top Me e r dan ree le getallen Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 21 maart 2017 1 2 Marten Toonder, verhaal de minionen (1980) 3 4 5 Niccolò Tartaglia (1500 1557) 6 Tartaglia gebruikte vierkantswortels

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden 10.0 Voorkennis 5 1 6 6 cos( ) = -cos( ) = -½ 3 [cos is x-coördinaat] 5 1 3 3 sin( ) = -sin( ) = -½ 3 [sin is y-coördinaat] 1 Voorbeeld 1: Getekend is de lijn k: y = ½x 1. De richtingshoek α van de lijn

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

Complexe getallen. 5.1 Constructie van de complexe getallen

Complexe getallen. 5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Lineaire algebra 1 najaar Complexe getallen

Lineaire algebra 1 najaar Complexe getallen Lineaire algebra 1 najaar 2008 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 + 1 steeds

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

5.1 Constructie van de complexe getallen

5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

Complexe getallen. José Lagerberg. November, Universiteit van Amsterdam. José Lagerberg (FNWI) Complexe getallen November, / 30

Complexe getallen. José Lagerberg. November, Universiteit van Amsterdam. José Lagerberg (FNWI) Complexe getallen November, / 30 Complexe getallen José Lagerberg Universiteit van Amsterdam November, 2017 José Lagerberg (FNWI) Complexe getallen November, 2017 1 / 30 1 Complexe getallen en complexe e-machten Complexe getallen en complexe

Nadere informatie

Praktische opdracht Wiskunde B Complexe Getallen

Praktische opdracht Wiskunde B Complexe Getallen Praktische opdracht Wiskunde B Complexe Get Praktische-opdracht door een scholier 1750 woorden 12 mei 2003 5,2 86 keer beoordeeld Vak Wiskunde B Inleiding Deze praktische opdracht wiskunde heeft als onderwerp:

Nadere informatie

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 8 Complexe getallen (versie 22 augustus 2011) Inhoudsopgave 1 De getallenverzameling C 1 2 Het complex vlak of het vlak van Gauss 7 3 Vierkantsvergelijkingen

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

Hoofdstuk 8 : Complexe getallen

Hoofdstuk 8 : Complexe getallen 1 Hoofdstuk 8 : Complexe getallen Les 1 Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen getallen : (1) N = Natuurlijke getallen = 1,2,3,.. (2) Z = Gehele

Nadere informatie

Wiskunde 2 voor kunstmatige intelligentie (BKI 316) Bernd Souvignier

Wiskunde 2 voor kunstmatige intelligentie (BKI 316) Bernd Souvignier Wiskunde 2 voor kunstmatige intelligentie (BKI 316) Bernd Souvignier najaar 2004 Deel I Voortgezette Analyse Les 1 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

1E HUISWERKOPDRACHT CONTINUE WISKUNDE E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk

Nadere informatie

Mathematical Modelling

Mathematical Modelling Mathematical Modelling Ruud van Damme Creation date: 21-08-08 Overzicht 1 Inleiding 2 Overzicht 1 Inleiding 2 Bijeenkomsten Vrijdagmiddagen: 13:45 17:30 (tijden in benadering) 13:45-14:15: nabespreken

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.1, maandag K. P. Hart Faculteit EWI TU Delft Delft, 18 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 31 Outline 1 Section I.1 Complex numbers K. P. Hart

Nadere informatie

2 Modulus en argument

2 Modulus en argument Modulus en argument Verkennen Modulus en argument Inleiding Verkennen Probeer zelf te bedenken hoe je een complex getal kunt opschrijven vanuit de draaihoek en de lengte van de bijbehorende vector. Uitleg

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Mathematical Modelling

Mathematical Modelling 1 / 95 Mathematical Modelling Ruud van Damme Creation date: 21-08-08 Last adapt: 30-08-09 2 / 95 Overzicht 1 Inleiding 2 Complexe getallen: rekenen 3 Complexe getallen: iets meer dan rekenen alleen 3 /

Nadere informatie

z 1 z 2 r 2 r 1 z 2 z 1 r 1 r 2

z 1 z 2 r 2 r 1 z 2 z 1 r 1 r 2 Lesbrief 10 Complexe getallen 1 Het complexe vlak Zoals we ons reële getallen kunnen voorstellen als de punten van een lijn waarop 0 en 1 zijn vastgelegd, zo kunnen we ons de complexe getallen voorstellen

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet).

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet). Moddergooien n.a.v. 31 augustus Allereerst: hartelijk dank voor de vragen; als dat zo doorgaat en als jullie zo blijven komen en ook nog eens huiswerk maken, dan weet ik zeker dat ik dicht bij 100% ga

Nadere informatie

tripels van Pythagoras Jaap Top

tripels van Pythagoras Jaap Top tripels van Pythagoras Jaap Top BI-RuG & DIAMANT 9 en 10 en 11 april 2019 (collegecarrousel, Groningen) 1 Over natuurlijke getallen en Pythagoras: c b a a 2 + b 2 = c 2 2 Oplossingen in natuurlijke getallen

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =

Nadere informatie

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde In onderstaande zelftest zijn de vragen gebundeld die als voorbeeldvragen zijn opgenomen in de bijhorende overzichten van de verwachte voorkennis wiskunde. Naast de vragen over strikt noodzakelijke voorkennis,

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

ProefToelatingstoets Wiskunde B

ProefToelatingstoets Wiskunde B Uitwerking ProefToelatingstoets Wiskunde B Hulpmiddelen :tentamenpapier,kladpapier, een eenvoudige rekenmachine (dus geen grafische of programmeerbare rekenmachine) De te bepalen punten per opgave staan

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/7 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Algebra en meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 25 april 2018 1 Presentatie en opgeloste oefeningen zijn digitaal beschikbaar

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Functietheorie (2Y480) op 25 november 1998, uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Functietheorie (2Y480) op 25 november 1998, uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Functietheorie (2Y480) op 25 november 1998, 9.00-12.00 uur. Dit tentamen bestaat uit 5 opgaven. De uitwerkingen van deze opgaven dienen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op ,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op , 1 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking van het tentamen Functietheorie (2Y480) op 25-11-1998, 9.00-12.00 uur Opgave 1 1. Formuleer de Cauchy-Riemann-vergelijkingen.

Nadere informatie

eerste en laatste cijfers Jaap Top

eerste en laatste cijfers Jaap Top eerste en laatste cijfers Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 3-10 april 2013 (Collegecarrousel, Groningen) 1 laatste, eerste?! over getallen 2,..., 101,..., 2014,...... laatste cijfers hiervan: 2,...,

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Complexe getallen in context

Complexe getallen in context Complexe getallen in context voor wiskunde D ( 5 VWO) R.A.C. Dames H. van Gendt Versie, november 006 Deze module is ontwikkeld in opdracht van ctwo. Copyright 006 R.Dames en H. van Gendt Inhoud Inhoud...3

Nadere informatie

Bijzondere kettingbreuken

Bijzondere kettingbreuken Hoofdstuk 15 Bijzondere kettingbreuken 15.1 Kwadratische getallen In het vorige hoofdstuk hebben we gezien dat 2 = 1, 2, 2, 2, 2, 2, 2,.... Men kan zich afvragen waarom we vanaf zeker moment alleen maar

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten. WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel:

14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel: 14.0 Voorkennis Sinusregel: In elke ABC geldt de sinusregel: a b c sin sin sin Voorbeeld 1: Gegeven is ΔABC met c = 1, α = 54 en β = 6 Bereken a in twee decimalen nauwkeurig. a c sin sin a 1 sin54 sin64

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Paragraaf 8.1 : Eenheidscirkel

Paragraaf 8.1 : Eenheidscirkel Hoofdstuk 8 Goniometrische functies (H4 Wis B) Pagina 1 van 10 Paragraaf 8.1 : Eenheidscirkel Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat

Nadere informatie

Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048

Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048 Blz: 1/5 04 09 09 1.1 STELLING VAN PYTHAGORAS ouwregel tot Pythagoras: formulering. 07 09 09 11 09 09 14 09 09 18 09 09 21 09 09 22 09 09 25 09 09 29 09 09 01 10 09 02 10 09 06 10 09 08 10 09 09 10 09

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.1, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 21 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 32 Outline 1 K. P. Hart TW2040: Complexe Functietheorie

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Complexe getallen in context

Complexe getallen in context Complexe getallen in context voor wiskunde D ( 5 VWO) R.A.C. Dames H. van Gendt Versie 4, juni 0 In deze vierde versie zijn alleen een aantal zetfouten verbeterd. Inhoudelijk is deze versie geheel gelijk

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

COMPLEXE GETALLEN. voor Wiskunde D. Jan van de Craats

COMPLEXE GETALLEN. voor Wiskunde D. Jan van de Craats COMPLEXE GETALLEN voor Wiskunde D Jan van de Craats Voorlopige versie, 11 juni 007 Illustraties en LATEX-opmaak: Jan van de Craats Prof. dr. J. van de Craats is hoogleraar in de wiskunde aan de Universiteit

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4 Juliaverzamelingen en de Mandelbrotverzameling In de eerste twee colleges hebben we gezien hoe het itereren van een eenvoudige afbeelding tot ingewikkelde verschijnselen leidt. Nu gaan we dit soort afbeeldingen

Nadere informatie

Uitwerkingen van de opgaven uit Pi

Uitwerkingen van de opgaven uit Pi Uitwerkingen van de opgaven uit Pi Frits Beukers January 3, 2006 Opgave 2.3. Bedoeling van deze opgave is dat we alleen een schatting geven op grond van de gevonden tabel. Er worden geen bewijzen of precieze

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies voor beginners Jan van de Craats Universiteit van Amsterdam Open Universiteit craats@science.uva.nl Complexe getallen worden

Nadere informatie

2 de Bachelor IR 2 de Bachelor Fysica

2 de Bachelor IR 2 de Bachelor Fysica de Bachelor IR de Bachelor Fysica 6 augustus 05 Er worden 4 vragen gesteld. Vul op ieder blad je naam in. Motiveer of bewijs iedere uitspraak. Los alle vragen op, op een apart blad! Het examen duurt u30.

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

1 Introductie. 2 Oppervlakteformules

1 Introductie. 2 Oppervlakteformules Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie

Nadere informatie

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff Oneindig in Wiskunde & Informatica Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft Tom Verhoeff Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica http://www.win.tue.nl/~wstomv/

Nadere informatie

Examen Complexe Analyse vrijdag 20 juni 2014, 14:00 18:00 uur Auditorium De Molen. Het examen bestaat uit 4 schriftelijke vragen.

Examen Complexe Analyse vrijdag 20 juni 2014, 14:00 18:00 uur Auditorium De Molen. Het examen bestaat uit 4 schriftelijke vragen. Examen Complexe Analyse vrijdag 0 juni 04, 4:00 8:00 uur Auditorium De Molen Naam: Studierichting: Het examen bestaat uit 4 schriftelijke vragen. Elke vraag telt even zwaar mee. Het boek Visual Complex

Nadere informatie

Appendix Inversie bekeken vanuit een complex standpunt

Appendix Inversie bekeken vanuit een complex standpunt Bijlage bij Inversie Appendix Inversie bekeken vanuit een complex standpunt In dee paragraaf gaan we op een andere manier kijken naar inversie. We doen dat met behulp van de complexe getallen. We veronderstellen

Nadere informatie

Wanneer zijn veelvouden van proniks proniks?

Wanneer zijn veelvouden van proniks proniks? 1 Uitwerking puzzel 92-1 Wanneer zijn veelvouden van proniks proniks? Harm Bakker noemde het: pro-niks voor-niks De puzzel was voor een groot deel afkomstig van Frits Göbel. Een pronik is een getal dat

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies.

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. 03 college 5: meer technieken In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. Opmerking over de notatie. Net als in het

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe

Nadere informatie

Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek

Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek Uitwerkingen worden beschikbaar gesteld op de dinsdagavond voorafgaande aan het volgende college

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, maandag K. P. Hart Faculteit EWI TU Delft Delft, 30 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 33 Outline 1 2 Algemeenheden Gedrag op de rand Machtreeksen

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (2Y480) op 22 november 1999,

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (2Y480) op 22 november 1999, TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Functietheorie (Y480) op november 999, 4.00-7.00 uur Formuleer de uitwerkingen der opgaven duidelijk en schrijf ze overzichtelijk

Nadere informatie

Inhoud. Oefeningen Hoekberekeningen. 2

Inhoud. Oefeningen Hoekberekeningen. 2 Inhoud 1 Hoekberekeningen. Basisvergelijkingen. 4.1 Vergelijkingen van het type sin u = sin v............. 4. Vergelijkingen van het type cos u = cos v............. 8. Vergelijkingen van het type tan u

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.3, maandag K. P. Hart Faculteit EWI TU Delft Delft, 2 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 34 Outline 1 Conforme afbeeldingen 2 K. P. Hart TW2040:

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013 Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Op weg naar de Riemann Hypothese

Op weg naar de Riemann Hypothese R.C. Pollé Op weg naar de Riemann Hypothese Doctoraalscriptie, verdedigd op 7 april 2006 Scriptiebegeleider: Dr. H. Finkelnberg Mathematisch Instituut, Universiteit Leiden 1 Inhoudsopgave 1 Inleiding 5

Nadere informatie

Eindexamen vwo wiskunde B pilot 2013-I

Eindexamen vwo wiskunde B pilot 2013-I Eindeamen vwo wiskunde pilot 03-I Formules Goniometrie sin( t u) sintcosu costsinu sin( t u) sintcosu costsinu cos( t u) costcosu sintsinu cos( t u) costcosu sintsinu sin( t) sintcost cos( t) cos t sin

Nadere informatie

Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat niet alleen voorkennis in de zin dat moet u al gehad hebben en kennen, maar ook in de

Nadere informatie

COMPLEXE GETALLEN. voor Wiskunde D. Jan van de Craats

COMPLEXE GETALLEN. voor Wiskunde D. Jan van de Craats COMPLEXE GETALLEN voor Wiskunde D Jan van de Craats Herziene versie, 3 augustus 007 Illustraties en LATEX-opmaak: Jan van de Craats Prof. dr. J. van de Craats is hoogleraar in de wiskunde aan de Universiteit

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk

Nadere informatie