Me e r dan ree le getallen. Jaap Top

Maat: px
Weergave met pagina beginnen:

Download "Me e r dan ree le getallen. Jaap Top"

Transcriptie

1 Me e r dan ree le getallen Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 21 maart

2 2

3 Marten Toonder, verhaal de minionen (1980) 3

4 4

5 5

6 Niccolò Tartaglia ( ) 6

7 Tartaglia gebruikte vierkantswortels uit negatieve getallen. Zo loste hij vergelijkingen als de volgende op: x 3 = 21x Zijn methode, versimpeld weergegeven: substitueer x = a + b, dan x 3 = (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 = 3ab(a + b) + a 3 + b 3 = 3abx + a 3 + b 3. Bij ons: a, b leveren een oplossing als ab = 7 en a 3 + b 3 = 20. 7

8 (x 3 = 21x + 20 volgens Tartaglia, vervolg.) Oplossing(en): x = a + b waarbij ab = 7 en a 3 + b 3 = 20. De condities impliceren a 3 b 3 = 7 3 en a 3 + b 3 = 20, dus a 3, b 3 zijn de twee oplossingen van X 2 20X = 0. Wortelformule: = , dus oplossingen 10 ±

9 (x 3 = 21x + 20 volgens Tartaglia, vervolg.) Oplossing(en): x = a + b met, na eventueel a en b omwisselen, ab = 7 en a 3 = Dit levert (zie verderop!) drie mogelijkheden: a = 2 + 3, dan b = 7/a = 2 3 en x = a + b = 4; a = , dan b = 7/a = dus x = a + b = 5; a = , dan b = 7/a = dus x = 1. 9

10 Controle: inderdaad ( 4) 3 = 21 ( 4) + 20, 5 3 = 21 (5) + 20, ( 1) 3 = 21 ( 1) Dus ondanks dat de methode niet bestaande getallen gebruikt, leidt het tot correcte antwoorden (en niet alleen in dit voorbeeld!). 10

11 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen a + b 1 met reële a, b; meetkundig, als punten met coördinaten (a, b) in het xy-vlak. 11

12 Een complex getal is een uitdrukking van de vorm a + bi, met a en b reële getallen, en i een nieuw symbool. De verzameling van alle complexe getallen geven we aan met C. Optellen en vermenigvuldigen in C: Laten z = a+bi en w = c+di complexe getallen zijn. Dan en z + w = (a + bi) + (c + di) := (a + c) + (b + d)i zw = (a + bi) (c + di) := (ac bd) + (ad + bc)i. 12

13 We vatten R op als een deel van C, door r R te zien als het complexe getal r + 0i. Dus C is een uitbreiding van R. Rekenen in R (optellen, aftrekken, vermenigvuldigen, delen) breidt uit tot rekenen in C, met dezelfde eigenschappen. De rekenregels zeggen in het bijzonder dat i 2 = 1. Dus i is een wortel uit 1. Leonhard Euler ( ) voerde de notatie i in. 13

14 De complex geconjugeerde van een complex getal z = a + bi is het complexe getal genoteerd als z, gegeven door z := a bi. Merk op dat voor elke z = a + bi 0 het product z z = a 2 + b 2 een positief reëel getal is. Er geldt en 1 z = z z z w z = w z z z In de praktijk kan hiermee snel een quotient van complexe getallen in de vorm a + bi geschreven worden. 14

15 Voorbeelden: i = 2 i (2 + i)(2 i) = 2 i 5 = i. Zo ook 3 + 5i 1 + i = (3 + 5i)(1 i) (1 + i)(1 i) = (3 + 5i)(1 i)/2 = 4 + i. 15

16 Deze algebraïsche benadering is afkomstig van Rafael Bombelli ( ), die probeerde iets zinvols te maken van de vreemde methoden van Tartaglia en diens tijdgenoten. 16

17 17

18 Je kan ook meetkundig naar C kijken door z = a + bi te zien als het punt (a, b) in het xy-vlak R 2. Optellen in C is zo de parallellogramwet voor het optellen van vectoren: a + bi optellen bij c + di is het optellen van de vectoren met beginpunt (0, 0) en eindpunt resp. (a, b) en (c, d). Complexe conjugatie is het overgaan van (a, b) naar (a, b), dus het spiegelen in de x-as. In het bijzonder zie je zo, dat z = z dan en slechts dan, als z met een punt op de x-as correspondeert, oftewel, als z R. We spreken van het complexe vlak. 18

19 De formule z z = a 2 + b 2 als z = a + bi laat zien, dat z z gelijk is aan het kwadraat van de afstand tussen (0, 0) en (a, b). Kortom, met z := z z = a 2 + b 2 wordt een reëel getal gedefiniëerd dat in het meetkundige plaatje de lengte van z (als vector) weergeeft. We noemen dit de absolute waarde van z. Voor reële z stemt dit overeen met de daar gebruikelijke absolute waarde. Er geldt zw = z w en z + w z + w. 19

20 Door z C (mits z 0) te delen door z n absolute waarde z, houden we een complex getal over met absolute waarde 1. Dit ligt dus in het complexe vlak op de cirkel om 0 met straal 1. Elk punt op die cirkel heeft coördinaten (cos α, sin α) waarbij α de hoek is die de lijn door 0 en het punt maakt ten opzichte van de positieve reële as (x-as). De hoek α heet het argument van het complexe getal z, notatie: arg(z). Er geldt z = r (cos α + (sin α)i) waarbij r = z en α = arg(z). 20

21 Notatie: e αi := cos α + (sin α)i. Dit is het complexe getal op de eenheidscirkel, met argument gelijk aan α. Merk op: e 0i = 1 + 0i = 1, en ook voor de gebruikelijke e-macht is e 0 = 1. Een berekening waarbij bekende goniometrische identiteiten worden gebruikt, laat zien (cos α + (sin α)i) (cos β + (sin β)i) = cos(α + β) + (sin(α + β))i. Oftewel: e αi e βi = e αi+βi. 21

22 Gegeven complexe getallen z en w, schrijf r = z en s = w en α = arg(z) en β = arg(w). Dan z w = r e αi s e βi = rs e (α+β)i. Meetkundig is vermenigvuldigen dus: de lengtes (absolute waarden) vermenigvuldigen, en de hoeken (argumenten) optellen. 22

23 Opnieuw ons Tartaglia voorbeeld: los op a 3 = a a a is: hoek arg(a) met 3 vermenigvuldigen, absolute waarde a tot de derde macht nemen. Hier: a 3 = = 343, dus a = 7. En arg(a 3 ) = arctan( ) rad, dus arg(a) rad (mod 2π/3). Dan: a 7 e i = 7(cos(0.3335) + i sin(0.3335)) i , en dat blijkt zelfs een exacte oplossing te zijn. De andere twee oplossingen horen bij de overige mogelijkheden voor arg(a). 23

24 De accountant/boekhouder Jean Robert Argand ( ) uit Parijs schreef in 1806 een boek over het meetkundig interpreteren van C. Het complexe vlak heet ook wel het Argand diagram. Iets eerder, op 20 juni 1805 presenteerde William Morgan (de grondlegger van het moderne actuariaat, ) voor de Royal Society in Londen het werk van de Franse priester Adrien- Quentin Buée ( ) die vanwege de Franse Revolutie naar Engeland was gevlucht. Onderwerp: meetkundig interpreteren van negatieve getallen en complexe getallen. De Noorse landmeter Caspar Wessel ( ) gaf al in 1799 dezelfde meetkundige interpretatie. Maar hij schreef in het Deens... 24

25 Buée vermeldt dat al eerder, in 1750, H. Kühn (wiskundeleraar uit Danzig) een meetkundige interpretatie van complexe getallen gaf. Buée is laatdunkend ( Ik denk niet dat ik hoef te praten over omdat hij daar veronderstelt dat 1 = 1 ), hij noemt Mr. Khun (verkeerde naam), en hij verwijst naar het derde nummer van de Mémoires de Petersbourg (verkeerde tijdschrift). Toch had Heinrich Kühn ( ) het prima begrepen. Euler schreef hem in 1735 een serie brieven, bij gebrek aan een adres maar naar de Danzigse (toen nog Königsberg) burgemeester C.L.G. Ehler gestuurd. Onderwerp: hoe maak je, uitgaande van de natuurlijke getallen, achtereenvolgens de negatieve, de rationale, reële, en uiteindelijk complexe. 25

26 Het tijdschrift waarin Kühns artikel (pp ) verscheen 26

27 titelpagina van Kühns artikel 27

28 Plaatjes uit Kühns artikel 28

29 Titelpagina van Argand s boek (1806) 29

30 Voor z = a + bi schrijven we e z = e a+bi := e a e bi. Voor a = 0 is dat de hiervoor gegeven e bi. Voor b = 0 is dat de gewone, reële e a. Er geldt e z+w = e z e w. Voor a = 0 en b = π staat er e πi = cos π + (sin π)i = 1, dus e πi + 1 = 0. Formule van Leonhard Euler ( ). 30

31 Euler voerde e z anders in: hij schreef e z = lim n (1 + z n )n. Invullen z = ix met x reëel, en gebruiken dat 1 cos(x/n) en x/n sin(x/n) als n heel groot, brengt Euler dan, via de formule van de Moivre (cos(α) + i sin(α)) n = cos(nα) + i sin(nα), tot de conclusie e ix = cos(x) + i sin(x). Zie scholierentijdschrift Pythagoras, april 2011 ( De mooiste formule ooit ). 31

32 Zwitserland, 1957 (Euler 250) 32

33 Wat commercieler, lovelymath.com, 2011: 33

34 Voorbeeld: de cosinusregel. a 2 = be αi c 2 = (be αi c)(be αi c) = b 2 + c 2 bc(e αi + e αi ) = b 2 + c 2 2bc cos α. 34

35 Toepassing/voorbeeld (H.W. Lenstra, Leiden) Zie Gegeven een figuur (tekening) in C. We spreken van een figuur met een Droste effect als er een reëel getal r ±1 is zodat de figuur onder vermenigvuldigen met r in zichzelf overgaat. 35

36 Door de schaling over r bij een Droste effect te combineren met een rotatie over α, krijg je een figuur dat in zichzelf wordt overgevoerd onder vermenigvuldigen met r e αi. Voorbeeld: Escher s Prentententoonstelling (1956): r 22, 6 en α 2, 75, dus invariant onder verm. met 20, , 63i. 36

37 Stelling: Elke veelterm f(z) over C van positieve graad heeft een nulpunt in C. Dit heet hoofdstelling van de algebra. O.a. bewezen door Argand (1806) en door Carl Friedrich Gauss ( ) in diens proefschrift (1799). Bewijsschets: zou f(z) geen nulpunt hebben, dan is 1/ f(z) overal gedefinieerd. Deze neemt een maximum aan. Na schuiven z z + a: maximum voor z = 0. Na ook nog f(z) delen door f(0): mag aannemen f(0) = 1. Schrijf f(z) = 1 + re αi z k +hogere machten, met k > 0, r > 0. Door voor z een handig gekozen waarde ɛ r 1/k e βi in te vullen, kan je zien dat de aanname maximum in z = 0 tot een tegenspraak leidt. 37

38 38

39 Gevolg: Op R 2 of R 3 of algemener R n in analogie met C = R 2, met R R n als (zeg) de vectoren {(x, 0,..., 0)}, naast de gewone optelling een vermenigvuldiging maken waarbij de gebruikelijke regels gelden (associatief, distributief, commutatief, en ieder element 0 heeft een inverse), lukt alleen als n = 1 (en dus R n = R) en als n = 2 (en dan R 2 = C). Oorzaak: hebben we zo n structuur op R n, dan voldoet elke v R n aan een vergelijking v m + a m 1 v m a 0 = 0 waarbij alle a j R en bovendien is x n + a m 1 x m a 0 over R niet in factoren van lagere graad te ontbinden. Het resultaat van Gauss impliceert hier m 2, en daarmee is het bewijs zonder veel moeite af te maken. 39

40 Dus na R en R 2 = C niks meer?! Toch wel! De Ierse wiskundige/natuurkundige/sterrenkundige William Rowan Hamilton, en eigenlijk drie jaar voor hij zijn vondst deed ook al de Franse wiskundige (en bankier) Benjamin Olinde Rodrigues, beseften dat als de voorwaarde van commutativiteit (v w = w v) wordt losgelaten, dan bestaat ook op R 4 een vermenigvuldiging met alle nog resterende eigenschappen. Vanwege de 4 in R 4 sprak Hamilton van quaternionen. 40

41 Benjamin Olinde Rodrigues ( ) 41

42 William Rowan Hamilton ( ) 42

43 Het verhaal over Hamiltons ontdekking van de quaternionen is beroemd: naar eigen zeggen, bedacht hij ze tijdens een wandeling met z n vrouw Helen Maria Bayly langs het Royal Canal (Iers: An Chanáil Ríoga) in Dublin op maandag 16 Oktober Hij kerfde het resultaat op een van de stenen van een brug over dat kanaal (Brougham Bridge, nu Broome Bridge). Tegenwoordig staat daar een gedenksteen. 43

44 44

45 45

46 46

47 47

48 Hamilton: begin niet met één, maar met drie (onafhankelijke) wortels uit 1. Die noem je i, j en k. Een punt (a, b, c, d) R 4 noteren we als a + bi + cj + dk. Vermenigvuldigen ervan gaat met de regels i 2 = j 2 = k 2 = 1, ij = ji = k, jk = kj = i, ki = ik = j. 48

49 Zo kom je tot (a + bi + cj + dk) (a + b i + c j + d k) = (aa bb cc dd + (ab + ba + cd dc )i + (ac bd + ca + db )j + (ad + bc cb + da )k. 49

50 De geconjugeerde van z = a + bi + cj + dk definiëren we als z = a bi cj dk. Dan z z = a 2 + b 2 + c 2 + d 2, dit is voor elke quaternion z een reëel getal, en het is zelfs 0 als z 0. Zo is, net als bij complexe getallen, te zien dat elke z 0 een inverse heeft: z 1 = 1 z z z. 50

51 51

52 Als eerbetoon aan W.R. Hamilton worden de quaternionen aangeduid met H. We hebben dus R C H. 52

53 Quaternionen worden toegepast in Natuurkunde, in Robotica, in Getaltheorie en veel meer. Zoals complexe getallen allerlei meetkunde in R 2 kunnen beschrijven, geldt dat voor quaternionen en meetkunde in R 3 en R 4. Voorbeeld: realiseer R 3 als de ruimte R i + R j + R k H. Alle afbeeldingen R 3 R 3 die de oorsprong op z n plek houden en die zowel afstand- als oriëntatie behouden, zijn weer te geven als voor een z H. v z v z 1 53

54 In H hebben we behalve ±i, ±j, ±k nog veel meer wortels uit 1: Stel z = a + bi + cj + dk voldoet aan z 2 = 1. Dan volgt dat z z = 1 en dus z = z. Conclusie: a = 0 en b 2 + c 2 + d 2 = 1, en elke z met deze eigenschappen is een oplossing! (De oplossingen vormen de rand van een bol) 54

55 Houdt het na C en H dan wel op? Ja, als we niet meer eigenschappen willen kwijtraken dan alleen commutativiteit. Nee, als we bovendien bereid zijn de associativiteit (u v) w = u (v w) op te offeren. Daarmee kan op R 8 een Oktaven vermenigvuldiging worden gezet, eerst bedacht in 1843 door Hamiltons vriend John Thomas Graves ( ), maar vooral bekend geworden door de Engelsman Arthur Cayley ( ). En daarmee houdt het werkelijk op... 55

56 Kees Stip ( Trijntje Fop, ): Op een bok In Siddeburen was een bok die machtsverhief en worteltrok. Die bok heeft onlangs onverschrokken de wortel uit zichzelf getrokken, waarna hij zonder ongerief zich weer in het kwadraat verhief. Maar t feit waardoor hij voort zal leven is, dat hij achteraf nog even de massa die hem huldigde met vijf vermenigvuldigde. 56

57 Siddeburen, bok gemaakt door de Groningse beeldhouwer Anton van Dijk 57

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top IWI-RuG & DIAMANT j.top@rug.nl 20 maart 2007 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

Complexe getallen. Jaap Top

Complexe getallen. Jaap Top Complexe getallen Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 16 december 2014 (studiedag voor leraren wiskunde) 1 ( er verwijst naar Leopold Kronecker), uit een tekst (1893) na diens overlijden geschreven

Nadere informatie

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 19 april 2011 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Lineaire algebra 1 najaar Complexe getallen

Lineaire algebra 1 najaar Complexe getallen Lineaire algebra 1 najaar 2008 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 + 1 steeds

Nadere informatie

5.1 Constructie van de complexe getallen

5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

Complexe getallen. 5.1 Constructie van de complexe getallen

Complexe getallen. 5.1 Constructie van de complexe getallen Les 5 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 +1 steeds positief is en in het bijzonder

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

Wiskunde 2 voor kunstmatige intelligentie (BKI 316) Bernd Souvignier

Wiskunde 2 voor kunstmatige intelligentie (BKI 316) Bernd Souvignier Wiskunde 2 voor kunstmatige intelligentie (BKI 316) Bernd Souvignier najaar 2004 Deel I Voortgezette Analyse Les 1 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden

10.0 Voorkennis. cos( ) = -cos( ) = -½ 3. [cos is x-coördinaat] sin( ) = -sin( ) = -½ 3. [sin is y-coördinaat] Willem-Jan van der Zanden 10.0 Voorkennis 5 1 6 6 cos( ) = -cos( ) = -½ 3 [cos is x-coördinaat] 5 1 3 3 sin( ) = -sin( ) = -½ 3 [sin is y-coördinaat] 1 Voorbeeld 1: Getekend is de lijn k: y = ½x 1. De richtingshoek α van de lijn

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Praktische opdracht Wiskunde B Complexe Getallen

Praktische opdracht Wiskunde B Complexe Getallen Praktische opdracht Wiskunde B Complexe Get Praktische-opdracht door een scholier 1750 woorden 12 mei 2003 5,2 86 keer beoordeeld Vak Wiskunde B Inleiding Deze praktische opdracht wiskunde heeft als onderwerp:

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 8 Complexe getallen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 8 Complexe getallen (versie 22 augustus 2011) Inhoudsopgave 1 De getallenverzameling C 1 2 Het complex vlak of het vlak van Gauss 7 3 Vierkantsvergelijkingen

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

Complexe getallen. José Lagerberg. November, Universiteit van Amsterdam. José Lagerberg (FNWI) Complexe getallen November, / 30

Complexe getallen. José Lagerberg. November, Universiteit van Amsterdam. José Lagerberg (FNWI) Complexe getallen November, / 30 Complexe getallen José Lagerberg Universiteit van Amsterdam November, 2017 José Lagerberg (FNWI) Complexe getallen November, 2017 1 / 30 1 Complexe getallen en complexe e-machten Complexe getallen en complexe

Nadere informatie

Hoofdstuk 8 : Complexe getallen

Hoofdstuk 8 : Complexe getallen 1 Hoofdstuk 8 : Complexe getallen Les 1 Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen getallen : (1) N = Natuurlijke getallen = 1,2,3,.. (2) Z = Gehele

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

1 Introductie. 2 Oppervlakteformules

1 Introductie. 2 Oppervlakteformules Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =

Nadere informatie

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

1E HUISWERKOPDRACHT CONTINUE WISKUNDE E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.1, maandag K. P. Hart Faculteit EWI TU Delft Delft, 18 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 31 Outline 1 Section I.1 Complex numbers K. P. Hart

Nadere informatie

Mathematical Modelling

Mathematical Modelling Mathematical Modelling Ruud van Damme Creation date: 21-08-08 Overzicht 1 Inleiding 2 Overzicht 1 Inleiding 2 Bijeenkomsten Vrijdagmiddagen: 13:45 17:30 (tijden in benadering) 13:45-14:15: nabespreken

Nadere informatie

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten. WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4 Juliaverzamelingen en de Mandelbrotverzameling In de eerste twee colleges hebben we gezien hoe het itereren van een eenvoudige afbeelding tot ingewikkelde verschijnselen leidt. Nu gaan we dit soort afbeeldingen

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet).

Op deze manier ligt φ exact vast (als we zouden zeggen 0 φ 2π zouden we de reële getallen dubbelop hebben, en dat willen wij als wiskundigen niet). Moddergooien n.a.v. 31 augustus Allereerst: hartelijk dank voor de vragen; als dat zo doorgaat en als jullie zo blijven komen en ook nog eens huiswerk maken, dan weet ik zeker dat ik dicht bij 100% ga

Nadere informatie

ProefToelatingstoets Wiskunde B

ProefToelatingstoets Wiskunde B Uitwerking ProefToelatingstoets Wiskunde B Hulpmiddelen :tentamenpapier,kladpapier, een eenvoudige rekenmachine (dus geen grafische of programmeerbare rekenmachine) De te bepalen punten per opgave staan

Nadere informatie

z 1 z 2 r 2 r 1 z 2 z 1 r 1 r 2

z 1 z 2 r 2 r 1 z 2 z 1 r 1 r 2 Lesbrief 10 Complexe getallen 1 Het complexe vlak Zoals we ons reële getallen kunnen voorstellen als de punten van een lijn waarop 0 en 1 zijn vastgelegd, zo kunnen we ons de complexe getallen voorstellen

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Mathematical Modelling

Mathematical Modelling 1 / 95 Mathematical Modelling Ruud van Damme Creation date: 21-08-08 Last adapt: 30-08-09 2 / 95 Overzicht 1 Inleiding 2 Complexe getallen: rekenen 3 Complexe getallen: iets meer dan rekenen alleen 3 /

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie Utrecht Les : Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist verzicht colleges. College. Goniometrie 2. Vectoren 2. College 2. Matrixen

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Paragraaf 8.1 : Eenheidscirkel

Paragraaf 8.1 : Eenheidscirkel Hoofdstuk 8 Goniometrische functies (H4 Wis B) Pagina 1 van 10 Paragraaf 8.1 : Eenheidscirkel Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/7 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Algebra en meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 25 april 2018 1 Presentatie en opgeloste oefeningen zijn digitaal beschikbaar

Nadere informatie

2 Modulus en argument

2 Modulus en argument Modulus en argument Verkennen Modulus en argument Inleiding Verkennen Probeer zelf te bedenken hoe je een complex getal kunt opschrijven vanuit de draaihoek en de lengte van de bijbehorende vector. Uitleg

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel:

14.0 Voorkennis. sin sin sin. Sinusregel: In elke ABC geldt de sinusregel: 14.0 Voorkennis Sinusregel: In elke ABC geldt de sinusregel: a b c sin sin sin Voorbeeld 1: Gegeven is ΔABC met c = 1, α = 54 en β = 6 Bereken a in twee decimalen nauwkeurig. a c sin sin a 1 sin54 sin64

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

Analytische Meetkunde. Wiskundedialoog Nijmegen, 13 juni 2017 Jeroen Spandaw

Analytische Meetkunde. Wiskundedialoog Nijmegen, 13 juni 2017 Jeroen Spandaw Analytische Meetkunde Wiskundedialoog Nijmegen, 13 juni 2017 Jeroen Spandaw (j.g.spandaw@tudelft.nl) Samenhangende Wiskunde Synthetische Meetkunde Vectoren Gonio Analyse Algebra Symmetrie Complexe Getallen

Nadere informatie

Conflictmeetkunde, dominante termen, GGD s en = 1.

Conflictmeetkunde, dominante termen, GGD s en = 1. Conflictmeetkunde, dominante termen, GGD s en + =. Jan Stienstra Mathematisch Instituut, Universiteit Utrecht Nationale Wiskunde Dagen, 8+9 januari Samenvatting We laten zien hoe het platte plaatje van

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)!

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)! Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)! Inhoudsopgave! Wiskunde en psychologie! Doelstelling van de module! Opzet van de module! Algebra: reken regels!

Nadere informatie

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden).

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden). Samenvatting door Sterre 1437 woorden 5 mei 2018 7.8 3 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Vocabulair Algebraïsch stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen

Nadere informatie

WI1808TH1/CiTG - Lineaire algebra deel 1

WI1808TH1/CiTG - Lineaire algebra deel 1 WI1808TH1/CiTG - Lineaire algebra deel 1 College 6 26 september 2016 1 Hoofdstuk 3.1 en 3.2 Matrix operaties Optellen van matrices Matrix vermenigvuldigen met een constante Matrices vermenigvuldigen Machten

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 15 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde In onderstaande zelftest zijn de vragen gebundeld die als voorbeeldvragen zijn opgenomen in de bijhorende overzichten van de verwachte voorkennis wiskunde. Naast de vragen over strikt noodzakelijke voorkennis,

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur

Tentamen Calculus 2 25 januari 2010, 9:00-12:00 uur Tentamen Calculus 5 januari 00, 9:00 -:00 uur Je mag geen rekenapparaat gebruiken. De opgaven t.e.m. 6 tellen allemaal even zwaar. Vermeld op elk papier dat je inlevert je naam en je studentnummer. Geef

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

Matrices en Stelsel Lineaire Vergelijkingen

Matrices en Stelsel Lineaire Vergelijkingen Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

Paragraaf 7.1 : Eenheidscirkel en radiaal

Paragraaf 7.1 : Eenheidscirkel en radiaal Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Heb ik in mijn vervolg studie (marine) ook de kennis over complexe getallen of gebruiken ze die daar helemaal niet?

Heb ik in mijn vervolg studie (marine) ook de kennis over complexe getallen of gebruiken ze die daar helemaal niet? Profielwerkstuk door B. 2859 woorden 22 maart 2017 5,4 5 keer beoordeeld Vak Wiskunde B Voorwoord Voor u ligt het profielwerkstuk van Bob Weenink, dit is gemaakt met liefde voor de wiskunde en met interesse

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies voor beginners Jan van de Craats Universiteit van Amsterdam Open Universiteit craats@science.uva.nl Complexe getallen worden

Nadere informatie

Rakende cirkels. We geven eerst wat basiseigenschappen over rakende cirkels en raaklijnen aan een cirkel.

Rakende cirkels. We geven eerst wat basiseigenschappen over rakende cirkels en raaklijnen aan een cirkel. Rakende cirkels Inleiding We geven eerst wat basiseigenschappen over rakende cirkels en raaklijnen aan een cirkel. De raaklijn staat, in het raakpunt T, loodrecht op de straal. Bij uitwendig rakende cirkels

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.3, maandag K. P. Hart Faculteit EWI TU Delft Delft, 2 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 34 Outline 1 Conforme afbeeldingen 2 K. P. Hart TW2040:

Nadere informatie

De meetkunde van de. derdegraadsvergelijking

De meetkunde van de. derdegraadsvergelijking Jan van de Craats De meetkunde van de derdegraadsvergelijking 22 februari 2007 Algemene (complexe) derdegraadsvergelijking met a 1, a 2, a 3 C z 3 3a 1 z 2 + 3a 2 z a 3 = 0 Oplossingen z 1, z 2, z 3 Dan

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Ruimtemeetkunde deel 1

Ruimtemeetkunde deel 1 Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

priemgetallen en verzamelingen Jaap Top

priemgetallen en verzamelingen Jaap Top priemgetallen en verzamelingen Jaap Top IWI-RuG & DIAMANT j.top@rug.nl 21 april 2009 (Collegecaroussel, Groningen) 1 In de biografie Gauss zum Gedächtnis (1862, door de Duitse geoloog Wolfgang Sartorius

Nadere informatie

Complexe getallen. Les 3 Complexe vergelijkingen

Complexe getallen. Les 3 Complexe vergelijkingen Complexe getallen Les 3 Complexe vergelijkingen (Deze les sluit aan bij paragraaf 2, vanaf blz 13, van Inleiding Complexe getallen van de Wageningse Methode) Vooraf Belangrijk om te weten en te gebruiken:

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

Eenheden van orders van getallenvelden

Eenheden van orders van getallenvelden Eenheden van orders van getallenvelden Hoofdstuk 1 Orders 1.1 Definities Definitie 1.1. Een order is een subring O van een ring A zodat 1. A is een ring die een eindig dimensionele algebra is over Q..

Nadere informatie

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff Oneindig in Wiskunde & Informatica Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft Tom Verhoeff Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica http://www.win.tue.nl/~wstomv/

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Snel en exact rekenen in getaltheorie en computeralgebra door middel van benaderingen

Snel en exact rekenen in getaltheorie en computeralgebra door middel van benaderingen Snel en exact rekenen in getaltheorie en computeralgebra door middel van benaderingen Bas Edixhoven Universiteit Leiden 2010/10/25, KNAW Bas Edixhoven (Universiteit Leiden) Getaltheorie en computeralgebra

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe

Nadere informatie

Algebra, Les 18 Nadruk verboden 35

Algebra, Les 18 Nadruk verboden 35 Algebra, Les 18 Nadruk verboden 35 18,1 Ingeklede vergelijkingen In de vorige lessen hebben we de vergelijkingen met één onbekende behandeld Deze vergelijkingen waren echter reeds opgesteld en behoefden

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie