Systeemtheorie en Regeltechniek
|
|
|
- Bart Kuiper
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Systeemtheorie en Regeltehnie Oefenzitting Lineaire Tijds-invariante (LTI) Disrete tijdssystemen: Oplossen van de differentievergelijing
2 Hoe unnen we een system voorstellen? Vershillende mogelijheden: o o o o o Blo-diagram Toestandsbeshrijving / state spae representation Differentie- / differentiaalvergelijing Impulsresponsie Transferfuntie n i m ai * y[ i] bi *u[ i] ( ) i x[ ] A x[ ] B u[ ]. y[ ] C x[ ] D u[ ]. u[-2] x u[-] x u[] 2 [email protected]
3 Lineaire Homogene differentievergelijing n i Orde n ai * y[ i] ( ) Voorgestelde oplossing : lineaire ombinatie van termen van de vorm r Invullen van r in de differentievergelijing levert: n i i a i * r ( ) = arateristiee vgl Aan deze gelijheid is ehter enel voldaan als r een nulpunt van de bovenstaande n-degraads veeltermvgl is. 3 [email protected]
4 Lineaire Homogene differentievergelijing Dus voor nulpunten r j is de oplossing van de vorm: y[ ] n j * r j j Met r j een nulpunt van de arateristiee vgl. Ehter, voor m-voudige nulpunten zijn oo er oo oplossingstermen van de vorm j m * r,..., * r j (Verifieer dit op een simpel voorbeeld, bv. y[+2] - 4 y[+] + 4 y[] = ) 4 [email protected]
5 Lineaire Homogene differentievergelijing Een reële veeltermvgl an oo paren omplex toegevoegde nulpunten hebben: jφ -jφ rj R e, rj R e ( rj*) jrj jrj Omdat dan de oëffiiënten oo omplex toegevoegd moeten zijn, nl. j R e, R j -j j e ( j *) Kunnen beide oplossingstermen samengenomen worden en hershreven als volgt (formule van Euler): j * rj jrj 2 R R os( ) (Toon aan dat dit effetief zo is) 5 [email protected]
6 Lineaire Homogene differentievergelijing De oeffiienten n unnen bepaald worden adhv de beginvoorwaarden y[] y[n-] Deze leiden tot het stelsel: y[] n j... y[ n ] j n j * r j j * r n j n 6 [email protected]
7 Lineaire niet-homogene differentievergelijing General form: n i A linear ombination of inputs results in the same linear ombination of the outputs resulting from eah input individually. (~linearity) m ai * y[ i] bi *u[ i] ( ) i The equation an thus be solved for eah input individually and the results added together afterwards. The resulting partiular solutions an then be added to the general form of the homogenous solution. 7 [email protected]
8 Lineaire niet-homogene differentievergelijing n i ai * y[ i] b *u[ i] ( ) i Ingang u[] is gegeven, hoe bepalen we y[]? Mer op: totale oplossing y tot [] = y hom [] + y part [] aan de beginvoorwaarden y tot [], y8 tot [], voldaan is. m i. Bepaal eerst de algemene oplossing voor de overeenomstige homogene differentievergelijing y hom []. Bepaal de oeffiienten i nog niet! 2. Stel een geshite partiuliere oplossing y part [] voor (zie tabel) en bepaal via de methode van de onbepaalde oeffiienten (= substitutie van de partiuliere oplossing in de differentievergelijing) de parameters α i. 3. Bepaal de oeffiienten i van de homogene termen zodat [email protected]
9 Lineaire niet-homogene differentievergelijing De reden waarom eerst de homogene oplossing gezoht moet worden: o o als deze termen van dezelfde vorm als de ingang u[] bevat, dan moet een partiuliere opl. voorgesteld worden met termen die een hogere graad in bevatten dan normaal. Anders zal door de partiuliere opl. niet aan de diff. vgl. voldaan unnen worden. 9 [email protected]
10 Lineaire niet-homogene differentievergelijing Voorbeeld: y[] - 4 y[-] + 4 y[-2] = 2. (Probeer zelf eerst uit!) o Homogene opl. van de vorm o Partiuliere opl. van de vorm a 2 + a 2 + a o o o We zetten a = a = omdat deze termen oo deel zijn van de homogene opl. (en hun oeffiienten dus later via en door de beginvwden bepaald zullen worden). Uiteindelije partiuliere opl. is dus uitsluitend van de vorm a Mer op dat als men enel een partiuliere opl. van de vorm 2 beshouwt, nooit aan de diff. vgl voldaan an zijn [email protected]
11 Partiuliere oplossingen: (ursus p3.4)
12 Opgave Oefening Oefening 3.8 uit de ursus: Stel de differentievergelijing op voor de evolutie van het aantal onijnenparen als we de volgende veronderstellingen maen: o Een mannelij en vrouwelij onijn worden geboren bij el paar volwassen onijnen op het einde van iedere maand; o een pasgeboren paar onijnen heeft zijn eerste nageslaht op de ouderdom van twee maand o Eenmaal bijeen gebraht zal een paar onijnen bij elaar blijven en blijft het altijd produeren volgens de vorige twee veronderstellingen Wat is het aantal onijnenparen dat men beomt na 2 maand als men vertret met een pasgeboren paar op maand nul? Los hiervoor de opgestelde differentievergelijing op! 2 [email protected]
13 Oplossing Oefening In deze oplossing: y = # onijnenparen Differentievergelijing: (Fibonai) Y[] = y[-] + y[-2] Karateristiee veelterm: λ 2 λ = Nulpunten: 2 5, [email protected]
14 Oplossing Oefening 4 Homogene oplossing: Beginvoorwaarden: Waardes van i : y ) 2 5 ( ) 2 5 ( ] [ 2 ) 2 5 ( ) 2 5 ( [] [] 2 2 y y ) 5 5 ( ), 5 5 ( 2 [email protected]
15 Opgave Oefening 2 Een LTI-systeem met een ingang u[] wordt gearateriseerd door de differentievergelijing y[] 4 y[-] + 4y[-2] = u[]. De aangelegde ingang is van de vorm u[] = *a os(φ) met a = 4 en φ = π. y[] =, y[] = 2. o Bepaal de uitgang y[] van het systeem. Los hiervoor de differentievergelijing op. Hint: de oplossing bestaat uit een homogeen en een partiulier deel. o Teen het blodiagram van het systeem o Bepaal de toestandsbeshrijving van het systeem (de resulterende matries A,B,C en D zijn nog nodig in oefening 4). o (Bepaal de begintoestanden x[] van het systeem. ) 5 [email protected]
16 Oplossing Oefening 2 Homogene oplossing: (dubbel nulpunt 2) y homogeen[ ] (2) 2(2) Partiuliere oplossing:!! mer op dat u[] = (-4)!! y part[ ] ( 4) ( 4) Part. Opl. Invullen in diff. vgl: ( 4) ( 4) 4 2 ( 4) ( 4) ( 4) 4 ( 4) ( 2)( 4) 2 ( 4) 6 ( )( 4) ( 4) (-4) (moet gelden!!!) [email protected]
17 Oplossing Oefening 2 In het algemeen geldt voor oeffiienten d i, e i : ( i d i )*( 4) ( i e )* ( 4) i!! ( i d i ) en ( i e i ) Hierdoor unnen we de ingevulde diff.vgl. uit de vorige slide hershrijven tot 2 aparte vgln waaruit de 2 onbeenden gevonden unnen worden: 8 α, α [email protected]
18 Oplossing Oefening 2 8 Totale oplossing ogeen part tot y y y (2) * (2) 4) ( * 9 4 4) ( 27 8 ] [ ] [ ] [ 2 hom Beginvoorwaarden: 9 6, y[], y[] 2 [email protected]
19 Oplossing Oefening 2 Blodiagram uit hershreven diff.vgl.: y[] = 4 y[-] - 4y[-2] + u[]. y[-2] x y[-] x 2 u[] y[] Toestandsbeshrijving: x[ ] A x[ ] B u[ ]. y[ ] C x[ ] D u[ ]. 9 A 4 C 4, B 4 4, D [email protected]
20 Opgave Oefening 3 Modelleer het signaal u[] = *a os(φ) met a = 4 en φ = π als de uitgang van een autonoom LTI-systeem. o Bepaal de differentievergelijing van dit LTI-systeem. Hint: shrijf eerst u[], u[+], als een lineaire ombinatie van een aantal basisfunties. Een signaal van de vorm n *a os(φ + φ ) heeft 2(n+) mogelije basisfunties. Deze zijn: a os(φ),, n *a * os(φ) en a * sin(φ),, n *a *sin(φ). o Teen het blodiagram van het systeem o Bepaal de toestandsbeshrijving van het autonoom systeem (de resulterende matries F en G zijn nog nodig in oefening 4) o Bepaal de begintoestanden x[] van het systeem. Hint: gebrui hiervoor de toestandsbeshrijving. 2 [email protected]
21 Oplossing Oefening 3 2 Een autonoom (zonder ingang dus) LTI-systeem met een uitgang u[] an altijd gearateriseerd worden door een diff.vgl. van de vorm: We zoeen dus een lineair verband tussen u[], u[+],, u[+n]. ] [... ] [ ] [,... met, ] [ a oo : of ), ( i] * u[ a T n i i n u u U U n [email protected]
22 Oplossing Oefening 3 Mer op dat u[].. u[+n], als we ze uitshrijven en vereenvoudigen, zelf lineaire ombinaties zijn van enele basisfunties. Voor u[] = (-4) zijn dit slehts 2 basisfunties: (-4) en (-4). Hierdoor is de vetor U te shrijven als U[] (n+)x = A (n+)x2 *b[] 2x met b[ ] ( 4) ( 4) 22 [email protected]
23 Oplossing Oefening 3 Dus : a T (zie oef. 2) A A b[] T a a T U[] a T (!) A Dit wil zeggen dat ele vetor a die in de nulruimte van A T ligt voldoet aan de voorwaarde a T U[] = en dus tot een geldige differentievergelijing leidt. 23 [email protected]
24 Oplossing Oefening 3 A T heeft dimensie 2x(n+) en heeft dus reeds een nulruimte voor n = 2. Als we dus u[].. u[+2] uitshrijven ifv voorheenvermelde basisfunties rijgen we: A T A T a 6a Zo rijgen we bv : u[ 2] a 2, a 8a 2 8 u[ ] 6u[] 24 [email protected]
25 Alternatieve Oplossing Oefening 3 Deze oefening on sneller opgelost worden door op te meren dat een uitgang van de vorm (-4)^ voor een autonoom systeem (met een lineaire homogene differentievergelijing dus) slehts mogelij is als de arateristiee vgl twee nulpunten -4 heeft, en dus een fator (r + 4) 2 bevat. Zo omen we voor een minimaal systeem ((r + 4) 2 =) oo diret bij de oplossing u[+2] + 8u[+] + 6 u[] =. 25 [email protected]
26 Oplossing Oefening 3 Blodiagram uit hershreven diff.vgl.: u[] = -8 u[-] 6u[-2]. u[-2] u[-] x x u[] Toestandsbeshrijving: x,2 [ ] F x,2 [ ]. F 6 8 u[ ] G x,2 [ ]. 26 G 6 8 [email protected]
27 Oplossing Oefening 3 Begintoestand x[] te vinden via toestandsbeshrijving: u[] G x[] u[ ] GF x[] x[] u[] GF x[] [email protected]
28 Opgave Oefening 4 Een LTI-systeem met een ingang wordt gearateriseerd door de differentievergelijing y[] 4 y[-] + 4y[-2] = u[]. De aangelegde ingang is van de vorm u[] = *a os(φ) met a = 4 en φ = π (fr. Oefening 2 en 3). Modelleer als een asadeshaeling van twee systemen, gebrui hiervoor de blodiagrammen uit oefening 2 en 3. o Bepaal de toestandsbeshrijving van het resulterende systeem. Hint: Gebrui de matries A,B,C,D,F en G uit de vorige oefeningen om deze toestandsbeshrijving eenvoudig in blomatrixvorm neer te shrijven. Noem de resulterende matries van deze toestandsbeshrijving A* en C*. o Gebrui de nieuw beomen matrix A* om de uitgang van het autonoom systeem te bepalen. Hint: De uitgangen van dit autonoom systeem zijn volledig bepaald door de eigenwaardes van A* (de polen/ resonanties van het systeem) en de beginvoorwaarden en/of begintoestanden van het systeem. 28 [email protected]
29 Oplossing Oefening 4 Mbv blodiagrammen uit oef. 2 en 3: u[-2] u[-] x x 2 y[-2] y[-] x 3 x u[] + y[] Mbv toestandsbeshrijvingen uit oef. 2 en 3: x,2,3,4 y[ ] [ C ] * x A,2,3,4 * x [ ].,2,3,4 [ ]. 29 A * C F BG * DG A C [email protected]
30 Oplossing Oefening 4 De uitgang van het volledige systeem wordt bepaald door de nulpunten van zijn arateristiee vgl (zie oef.). Deze an oo opgesteld worden als det(a * - λ*i 4 ) =. De nulpunten van de arateristiee vgl zijn dus oo de eigenwaardes van A *. De eigenwaardes van deze onderdriehoes-blodiagonaalmatrix zijn gelij aan de eigenwaardes van A en die van F. (resp. 2,2,-4,-4). De oplossing is dus van de vorm:.. 4 unnen dan bepaald worden via: y y [ ] (2) 2 (2) 3( 4) 4 ( * * [ ] C A x[] y[]... y[3]... 4 (en zijn uiteraard dezelfde als in oef 2.) 3 4) [email protected]
31 e 3
32 e 32
Oplossen van lineaire differentiaalvergelijkingen met behulp van de methode van Leibniz-MacLaurin
Oplossen van lineaire differentiaalvergelijingen met behulp van de methode van Leibniz-MacLaurin Calculus II voor S, F, MNW 7 november 2005 1 De n-de afgeleide van het product van twee functies Voor we
-- III De variatiemethode berust voor de grondtoestand op het volgende theorema:
-- III - 1 - HOOFDSTUK III VARIATIEREKENING Alleen voor enele zeer eenvoudige systemen an de Schrödinger Vergeliing exact worden opgelost, in alle andere gevallen moeten benaderingen worden toegepast.
Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden.
- 239 - Naam:... Klas:... Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. Eventjes herhalen!!! Voor een vergelijking van de eerste graad, herleid op nul, is het linkerlid een veelterm
OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0
Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,
Differentiequotiënten en Getallenrijen
Lesbrief 4 Binomiaalcoëfficiënten, Differentiequotiënten en Getallenrijen Binomiaalcoëfficiënten Het is beend dat (a + b 2 = a 2 + 2ab + b 2 en dat (a + b 3 = a 3 + 3a 2 b + 3ab 2 + b 3. In het algemeen
Types differentiaal vergelijkingen
1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking
Meetkundige berekeningen
Meetundige bereeningen 0. voorennis Sinus, cosinus en tangens De sinusregel In ele driehoe ABC geldt de sinusregel: sin cos B = c b B = c a tan B = a b Afspraa Bij het bereenen van een hoe geef je het
Tentamen Numerieke Wiskunde (WISB251)
1 Tentamen Numeriee Wisunde WISB51 Maa één opgave per vel en schrijf op ieder vel duidelij je naam en studentnummer. Laat duidelij zien hoe je aan de antwoorden omt. Onderstaande formules mag je zonder
1 Stelsels lineaire vergelijkingen
1 Stelsels lineaire vergelijingen 1.1 Methode van Gauss (p. 50) Omzetten naar bovendriehoesvorm 0 0 0 Achterwaarste substitutie Om meerdere stelsels (zelfde coëfficiëntenmatrix A, verschillende rechterleden
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper
Uitwerkingen Tentamen Wat is Wiskunde (WISB101) Donderdag 10 november 2016, 9:00-12:00
Uitweringen Tentamen Wat is Wisunde (WISB101) Donderdag 10 november 2016, 9:00-12:00 Docenten: Barbara van den Berg & Carel Faber & Arjen Baarsma & Ralph Klaasse & Vitor Blåsjö & Guido Terra-Bleeer Opgave
1 Eigenwaarden en eigenvectoren
Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan
Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen
Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles
NATUURLIJKE, GEHELE EN RATIONALE GETALLEN
II NATUURLIJKE, GEHELE EN RATIONALE GETALLEN Iedereen ent getallen: de natuurlije getallen, N = {0,1,2,3,...}, gebruien we om te tellen, om getallen van elaar af te unnen treen hebben we de gehele getallen,
102 < 11. Je kunt ook snel na 102 < 10, 5 ( = 110, 25).
DE FORMULE VAN MACLAURIN. Inleiding: de wortel uit 0. Als je nou eens geen reenmachine had, hoe bereen je dan de wortel uit 0? Met proberen om je een heel eind. 0 > 0 omdat 0 > 0 en 0 < omdat reenen dat
5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking
5. Vergelijkingen 5.1. Vergelijkingen met één variabele 5.1.1. Oplossen van een lineaire vergelijking Probleem : We willen x oplossen uit de lineaire vergelijking p x+q=r met p. Maxima biedt daartoe in
Hoofdstuk 1: Inleiding
Hoofdstuk 1: Inleiding 1.1. Richtingsvelden. Zie Stewart, 9.2. 1.2. Oplossingen van enkele differentiaalvergelijkingen. Zelf doorlezen. 1.3. Classificatie van differentiaalvergelijkingen. Differentiaalvergelijkingen
Met passer en liniaal
Met passer en liniaal De opgaven in deze opdracht gaan over het teenen met passer en liniaal. Een liniaal gebrui je om rechte lijnen te teenen, dat an dus een recht latje zijn. Je mag daarvoor oo je geodriehoe
Opgaven Bewijzen en Inductie 1 mei 2019, Datastructuren, Werkcollege.
Opgaven Bewijzen en Inductie mei 09, Datastructuren, Wercollege. Gebrui deze opgaven, naast die uit het boe, om de stof te oefenen op het wercollege. Cijfer: Op een toets rijg je meestal zes tot acht opgaven..
Introductie Coach-modelleren
Inhoud Introductie Coach-modelleren... Coach-modelleren versus Excel...4 Opgave: Kennismaing met Coach-Modelleren...4 Satellietbanen in COACH-Modelleren...5 Opgave: GPS-satelliet...5 Alleen voor de geïnteresseerden...7
De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: [ H =
Oplossing examen TAI 11 juni 2008 Veel plezier :) Vraag 1 De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: H = [ 1 0 1 2 3 ] 4 0 1 1 1 1 1 (a) Bepaal de bijhorende generatormatrix
ENKELE VOORBEELDEN UIT TE WERKEN MET ICT
Differentiaalvergelijkingen kunnen we ook oplossen met behulp van ICT. In dit geval zijn de oplossingen uitgewerkt met behulp van Derive. dy De differentiaalvergelijking = ky, met k een reëel getal Voorbeeld
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)
Aanvullingen bij Hoofdstuk 8
Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los
Combinatoriek groep 1 & 2: Recursie
Combinatoriek groep 1 & : Recursie Trainingsweek juni 008 Inleiding Bij een recursieve definitie van een rij wordt elke volgende term berekend uit de vorige. Een voorbeeld van zo n recursieve definitie
Combinatoriek groep 2
Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een
1 Maasstroomtheorie of lusstroomtheorie.
Maasstrootheorie of lusstrootheorie.. oel. lle spanningen en stroen zoeen in een schaeling, aar et inder vergelijingen dan de wetten van Kirchhoff. Minder vergelijingen beteent oo inder onbeenden. O dat
Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006
Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis
4.1 Rijen. Inhoud. Convergentie van een reeks. Reeksen. a k. a k = lim. a k = s. s n = a 1 + a 2 + + a n = k=1
Reesen en Machtreesen Reesen en Machtreesen 4-0 Reesen en Machtreesen Inhoud. Rijen 2. Reesen Definities en enmeren Reesen met niet-negatieve termen Reesen met positieve en negatieve termen 3. Machtreesen
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire
Universiteit Leiden, 2015 Wiskundewedstrijdtraining, week 14
Universiteit Leiden, 0 Wisundewedstrijdtraining, wee Wee : reesen Een rees is een speciaal soort rij, dus: den altijd eerst na over convergentie! bijzonder: monotone, begrensde rijen convergeren In het
Examen G0U13 - Bewijzen en Redeneren,
Examen G0U13 - Bewijzen en Redeneren, 2010-2011 bachelor in de Wisunde, bachelor in de Fysica, bachelor in de Economische Wetenschappen en bachelor in de Wijsbegeerte Vrijdag 4 februari 2011, 8u30 Naam:
Berekenen van dynamisch evenwicht
Bereenen van dynamisch evenwicht Voor het bereenen van dynamische evenwichten zijn er verscheidene methodes. De meest beende zijn het gebrui van traagheidsreacties. Deze traagheidsreacties unnen verder
Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2
Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van
1 WAAM - Differentiaalvergelijkingen
1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Inleiding Signalen (2Y490) op 15 augustus 2003
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking van het tentamen Inleiding Signalen (Y49) op 5 augustus 3 VGF: Bij de vraagstukken zullen ook Veel Gemaakte Fouten (VGF) worden
1 Gedeelde differenties
Inhoudsopgave Gedeelde dfferentes Verband met de nterpolerende veelterm 2 Een explcete formule 2 3 Verband met afgeleden 3 4 Verband met de nterpolerende veelterm van Newton 4 5 Productformule (formule
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)
Combinatoriek groep 1
Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in
a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.
. Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn
Met passer en liniaal
Met passer en liniaal Deze opdracht gaan over het teenen met passer en liniaal, oo wel construeren genoemd. Een liniaal gebrui je om rechte lijnen te teenen, dat an dus een recht latje zijn. Je mag daarvoor
Lineaire Algebra (2DD12) Laatste nieuws in 2012
Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of
Aanvullingen van de Wiskunde
3de Bachelor EIT - de Bachelor Fysica Academiejaar 014-015 1ste semester 7 januari 015 Aanvullingen van de Wiskunde 1. Gegeven is een lineaire partiële differentiaalvergelijking van orde 1: a 1 (x 1,,
Vandaag. Uur 1: Differentiaalvergelijkingen Uur 2: Modellen
Vandaag Uur 1: Differentiaalvergelijkingen Uur 2: Modellen Diferentiaalvergelijkingen Wiskundige beschrijving van dynamische processen Vergelijking voor y(t): grootheid die in de tijd varieert Voorbeelden:
Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:
Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van
Convexe functies op R (niet in het boek)
Convee uncties op R (niet in het boe Een unctie : R R heet conve, als voor alle, R en ele λ [0,] geldt dat (λ + (-λ λ( + (-λ(. Voor een unctie op R beteent dit dat als je twee willeeurige punten op de
Volatility estimation and visualization for stock/option traders Bachelorscriptie leerstoelen SST/SP
Volatility estimation and visualization for stoc/option traders Bachelorscriptie leerstoelen SST/SP Peter Bosschaart Jeroen Spoor Berend Steenhuisen 9 juni 2011 Inhoudsopgave 1 Introductie 3 2 Discretisatie
1. Gegeven x Y, waaraan is de fouriergetransformeerde gelijk? f g 1
1. Gegeven x Y, waaraan is de fouriergetransformeerde gelijk? (a) X ỹ (b) x Y 2π (c) 2π X ỹ (d) X y Vanwege Volgt er Of dus antwoord (1a). x X 2π x f g 1 2π F G x Y X ỹ 2. 4 personen lenen eenzelfde bedrag
Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen
Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f
1 Vlaamse Wiskunde Olympiade 1985-1986: Eerste Ronde.
Vlaamse Wiskunde Olmpiade 985-986: Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringsssteem werkt als volgt : een deelnemer start met 30 punten Per goed antwoord krijgt hij of zij
Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:
Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x
vandaag is Annie twee jaar jonger dan Ben en Cees samen
Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud
Uitwerking studie stimulerende toets Embedded Signal Processing (ESP)
Uitwerking studie stimulerende toets Embedded Signal Processing (ESP) Cursus code 259, Dinsdag 7 maart 29, 3:3h 7:h. U mag gebruiken: uw eigen aantekeningen, de uitgeprinte college sheets van Teletop en
1. Gegeven een Lineair Stationair Systeem in continue-tijd. Als aan het systeem het ingangssignaal
. Gegeven een Lineair Stationair Systeem in continue-tijd. Als aan het systeem het ingangssignaal { 0 t u(t) = 0 elders aangelegd wordt, dan is het corresponderende uitgangssignaal t 0 t y(t) = 2 t t 2
168 HOOFDSTUK 5. REEKSONTWIKKELINGEN
168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a
Hoofdstuk 7 : Delen van veeltermen
- 19 - Hoofdstuk 7 : Delen van veeltermen Delen van veeltermen door een veelterm: (boek pag 16) Bepaal het quotient en de rest van de volgende delingen (oefeningen pag 19 nr. - 5-6) 1.. 18 9 + 11 + 6........................
2.1 Twee gekoppelde oscillatoren zonder aandrijving
Hoofdstuk Twee gekoppelde oscillatoren.1 Twee gekoppelde oscillatoren zonder aandrijving We beschouwen als voorbeeld van een systeem van puntmassa s die gekoppeld zijn aan elkaar en aan twee vaste wanden
Het vinden van een particuliere oplossing
Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat
7. Hamiltoniaanse systemen
7. Hamiltoniaanse systemen In de moleculaire dynamica, maar ook in andere gebieden zoals de hemelmechanica of klassieke mechanica, worden oplossingen gezocht van het Hamiltoniaanse systeem van differentiaalvergelijkingen
POD1 - Hoofdstuk 1: Inleiding
POD1 - Hoofdstuk 1: Inleiding 2/59 POD1 - Hoofdstuk 1: Inleiding Stijn Lievens ([email protected]) Noemie Slaats ([email protected]) Lieven Smits ([email protected]) Martine Van Der Weeen
III Lineaire Transformaties in R
III Lineaire Transformaties in R III. Meetundige inleiding Bij een transformatie L in R wordt aan ele vetor a uit R een nieuwe vetor a uit n R toegevoegd. (Meer in het algemeen an men dit in R definiëren.)
HOOFDSTUK 3: Netwerkanalyse
HOOFDSTUK 3: Netwerkanalyse 1. Netwerkanalyse situering analyseren van het netwerk = achterhalen van werking, gegeven de opbouw 2 methoden manuele methode = reductie tot Thévenin- of Norton-circuit zeer
18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten)
8.I.00 Wiskundige Analyse I, theorie 60% van de punten) Beantwoord elk van de vragen I,II,III en IV op één van de dubbele geruite bladen. Schrijf op elk van die dubbele geruite bladen, bovenaan de eerste
Differentiaalvergelijkingen Technische Universiteit Delft
Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek WbMT2048 Roelof Koekoek (TU Delft) Differentiaalvergelijkingen WbMT2048 1 / 1 Het vinden van een particuliere oplossing Voor een
Hoofdstuk 13 : Stelsels van vergelijkingen van de eerste graad met twee onbekenden.
Hoofdstuk1: Stelsels van vergelijkingen met twee onbekenden - 9 - Hoofdstuk 1 : Stelsels van vergelijkingen van de eerste graad met twee onbekenden. Instap (boek pag ) Opgave: Zoek de afmetingen van alle
Lineaire afbeeldingen
Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor
Vectoranalyse voor TG
college 6 van een vectorveld collegejaar college build slides Vandaag : : : : 14-15 6 22 september 214 51 1 2 3 4 5 Gradiënt van een vectorveld 1 VA vandaag Section 16.2 Hoofdstu 4 Definitie Een vectorveld
Meetkunde en lineaire algebra
Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde
Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints
Hoofdstuk 6 Matrices toepassen
Hoofdstuk Matries toepassen Moderne wiskunde e editie vwo D deel Lesliematries ladijde a Van de dieren in de leeftijdsgroep van - jaar komen er, in de leeftijdsgroep - jaar Van de dieren in de leeftijdsgroep
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen
Opgaven bij hoofdstuk 12
32 Meerkeuze-opgaven Opgaven bij hoofdstuk 12 12.6 Van een lineaire tweepoort is poort 1 als ingang en poort 2 als uitgang op te vatten. Bij de Z-parametervoorstelling van deze tweepoort geldt dan: a:
Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche)
Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche) De onderwerpen sluiten aan bij het onderzoek in de afdeling Analyse (onderzoeksgroep klassieke analyse) en zijn zo gekozen
IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1
IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag
Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )
Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie
Telproblemen. K. P. Hart
Telproblemen K. P. Hart 1. Theorie en opgaven voor zelfstudie Inleiding Iedereen weet wat tellen is. Hoeveel studenten zijn er in de collegezaal? Even tellen: één, twee, drie,..., éénenvijftig,... Wat
Eindtermen Lineaire Algebra voor E vor VKO (2DE01)
Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale
Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.
4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen
Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)
Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N
Examenvragen Hogere Wiskunde I
1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies
Wiskundige Technieken
1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe
