2.1 Exponentiële functie en natuurlijke logaritme

Maat: px
Weergave met pagina beginnen:

Download "2.1 Exponentiële functie en natuurlijke logaritme"

Transcriptie

1 Wiskunde voor kunstmatige intelligentie, 00 Les Speciale functies. Eponentiële functie en natuurlijke logaritme We ebben nog niet aangegeven oe we a voor een niet-rationaal zullen berekenen. Het voor de and liggende is dit door een limiet-process met rationale waarden voor te benaderen. Het laat zic nu aantonen dat de functie f : R R, a voor a > 0 in 0 differentieerbaar is en omdat a + a a a volgt dat f() een differentieerbare functie is. Als we nu verder eisen dat f (0) is, kunnen we ieruit de waarde van e a bepalen. Dit geeft et Euler-getal e.788. Maar als lim e geldt, dan is f e () lim + e 0 e e lim 0 e e f(). We ebben dus gezien dat f() e een functie is die voldoet aan f() f (). Deze functie eet de eponentiële functie en wordt vaak ook met f() ep() genoteerd. Samenvattend ebben we dus: ep () ep() en ep(0). De eponentiële functie speelt in veel toepassingen een rol, bijvoorbeeld in de bescrijving van radioactief verval of bij de ontwikkeling van populaties. Maar ook bij et remmen van een auto of bij et verloop van de temperatuur tussen twee kamers met verscillende temperaturen is ep() van toepassing. We weten (uit ervaring) dat we met evenveel remkract niet zo snel van 00 naar 80 km per uur kunnen afremmen, dan van 50 naar 0. De verandering van de sneleid bij et remmen is dus afankelijk van de sneleid zelfs. Ook bij de temperatuur zien we een soortgelijk effect: als we een kamer van 0 naast een kamer van 50 ebben zullen de temperaturen sneller veranderen dan bij kamers van 0 en 0. Bij veel processen vinden we dus een afankelijkeid van de vorm f () C f(), waarbij C een constante is. De oplossingen van dit soort vergelijking angen nauw samen met de eponentiële functie. Algemeen noemen we vergelijkingen tussen een functie f() en un afgeleiden f (), f () enz. een differentiaalvergelijking. Een belangrijke eigenscap van de eponentiële functie is, dat ze door f () f() en f(0) eenduidig bepaald is. Dit zien we als volgt in: Neem aan dat f() een functie is met f () f() en f(0), dan bepalen we de afgeleide van de functie g() : f() ep(). Hiervoor geldt g () f () ep() f() ep() g() 0, omdat f () f(). Maar ieruit volgt dat g() een constante functie is, dus is f() c ep() en uit f(0) ep(0) volgt f() ep(). Uit e > volgt dat ep() > 0 voor alle en ep() > voor alle 0, daarom is ep(y) ep() (ep(y ) ) ep() > 0 voor y >. Dit toont aan dat ep() een op R strikt stijgende functie is. Het bereik is (0, ), dus kunnen we op et open interval (0, ) de inverse functie van ep() definiëren. Deze noemen we de natuurlijke logaritme en noteren deze als log() of ln(). 59

2 Wiskunde voor kunstmatige intelligentie, 00 Uit onze formule voor de afgeleide van de inverse functie kunnen we de afgeleide van log() makkelijk berekenen, er geldt log () ep (log()) (ep log)()). 4 ep() y + y log() y Figuur II.7: Eponentiële functie en natuurlijke logaritme Om de functie f() a af te leiden is et andig om de relatie a e log(a) en dus a e log(a) ep(log(a)) te gebruiken. Tenslotte nog twee belangrijke relaties voor et optellen en vermenigvuldigen bij ep en log: ep( + y) ep() ep(y) en log(y) log() + log(y).. Trigonometrisce functies De trigonometrisce (of goniometrisce) functies zijn gebaseerd op de meetkunde van rectoekige drieoeken. Als in een rectoekig drieoek de scuine zijde lengte eeft, en a een van de niet-recte oeken is, dan noemen we de lengte van de zijde tegenover a de sinus sin(a) en de lengte van de andere rectoekszijde de cosinus cos(a) van a. In et plaatje van Figuur II.8 is 0B de scuine zijde in et drieoek 0BC en we ebben sin(a) BC en cos(a) 0C. Een van de belangrijkste relaties voor sinus en cosinus volgt meteen uit de stelling van Pytagoras, namelijk sin () + cos (). Om de afgeleide van sin() te bepalen moeten we iets over de quotiënt sin(a+) sin(a) zeggen. Maar oe kunnen we de sinus van een som van twee oeken bepalen? Hiervoor geeft et volgende plaatje een aanleiding. We weten (uit Lineaire Algebra) dat we de vector w (cos(a+), sin(a+)) kunnen scrijven als de som van zijn ortogonale projecties op de ortonormale basisvectoren v (cos(a), sin(a)) en v ( sin(a), cos(a)). Maar de lengte 60

3 Wiskunde voor kunstmatige intelligentie, y A B 0. 0 a C Figuur II.8: sin(a) BC, cos(a) 0C (cos(a+), sin(a+)) (cos(a), sin(a)) (-sin(a), cos(a)) a Figuur II.9: De sinus van de som van twee oeken van de projectie van w in de ricting van v is cos() en de lengte van de projectie in de ricting van v is sin(). Dus geldt: (cos(a + ), sin(a + )) cos()v +sin()v (cos(a) cos() sin(a) sin(), sin(a) cos()+cos(a) sin()). Dit geeft de twee optelteorema s: cos(a + ) cos(a) cos() sin(a) sin(), sin(a + ) sin(a) cos() + cos(a) sin(). We kunnen de quotiënt sin(a+) sin(a) dus erscrijven als sin(a) cos(). We weten dat lim 0 sin() 0 en lim 0 cos(), maar om cos(a) sin() de limiet van sin(a+) sin(a) moeten we nog iets meer weten. + Eerst een algemene opmerking: Vaak worden oeken niet in graden maar in radialen aangegeven. Het idee ierbij is, een oek door de lengte van de bij orende cirkelboog in een cirkel van straal te bescrijven. Een oek van 60 eeft een volle cirkel als boog en die eeft lengte π. Omgekeerd oort een boog van π bij een oek van 80. Dus komen we van graden naar radialen door de π oek in graden met 80 te vermenigvuldigen en van radialen naar graden door te vermenigvuldigen. We zullen oeken meestal in radialen aangeven. met 80 π 6

4 Wiskunde voor kunstmatige intelligentie, 00 We kunnen nu ook algemeen de lengte van een cirkelboog aangeven, dat is namelijk r a, als r de straal van de cirkel is en a de bij de boog orende oek in radialen. In Figuur II.8 eeft dus de boog van B naar lengte a en de boog van A naar C lengte a cos(a). Omdat de boog AC korter is dan de lijn BC geldt a cos(a) < sin(a). en omdat de lijn BC korter is dan de boog B geldt sin(a) < a. Hieruit volgt (voor oeken a met 0 a π ) dat cos(a) < sin(a) a <. Dit toont in et bijzonder aan dat lim 0 sin() cos () (cos()+) sin () (cos()+) 0 sin() sin() cos()+ is. Verder is cos() en omdat sin() cos()+ voor 0 naar 0 gaat is lim 0 cos() 0 0. Als we alles bij elkaar nemen volgt dus sin(a + ) sin(a) lim lim sin(a) cos() + cos(a) sin() 0 0 Kort en goed: de afgeleide van de sinus is de cosinus, ofwel sin () cos(). cos(a). We kunnen de afgeleide van de cosinus nu op dezelfde manier bepalen, maar met een klein trucje gaat et sneller. We weten dat sin () + cos () is, dus geldt 0 (sin () + cos ()) cos() cos () + sin() sin () cos()(cos () + sin()). Hieruit volgt meteen: cos () sin(). cos() sin() 4 4 Figuur II.0: Sinus- en cosinus-functie Net zo als we de eponentiële functie ep() door de differentiaalvergelijking f () f() ebben gekarakteriseerd, kunnen we ook sinus en cosinus door een differentiaalvergelijking karakteriseren. Het is duidelijk dat voor de tweede afgeleiden geldt dat sin () sin() en cos () cos(). Differentiaalvergelijkingen van de vorm f () C f() spelen bijvoorbeeld bij de bescrijving van trillingen een belangrijke rol. De bewering is nu, dat een functie f() met f () + f() 0 een lineaire combinatie van sin() en cos() is. Neem eerst aan we ebben een functie f() met f () + f() 0, f(0) 0 en f (0) 0. Dan is 0 f ()(f () + f()) (f () +f() ), dus is f () +f() een constante functie en omdat f (0) f(0) 0 is f () + f() 0 voor alle. Maar omdat een som van kwadraten alleen maar 0 is als alle kwadraten 0 zijn volgt ieruit dat f() 0 voor alle, dus is f() de constante 0-functie. 6

5 Wiskunde voor kunstmatige intelligentie, 00 Neem nu aan dat f () + f() 0, f (0) a en f(0) b. Dan geldt voor g() : f() a sin() b cos() dat g () + g() 0, g (0) f (0) a 0 en g(0) f(0) b 0. Dus is g() 0 en dus f() a sin() + b cos(). Uit de functies sin() en cos() worden een aantal andere functies afgeleidt, de belangrijkste iervan is de tangens de gedefinieerd is door tan() : sin() cos(). Het domein van de tangens zijn de punten R met cos() 0, dus π +nπ met n Z. Voor tan() geldt de relatie + tan () cos ()+sin () cos () cos (). Toevallig is dit ook de afgeleide, want tan () ( sin(). Er geldt dus: cos () tan () + tan () cos() ) cos (). cos() cos() sin()( sin() cos () 4 y Figuur II.: Tangens-functie De inverse functies van de trigonometrisce functies eten arcus-functies en worden als arcsin() : sin (), arccos() : cos () en arctan() : tan () genoteerd. De afgeleiden van deze functies worden makkelijk met de formule f () f (f ()) gevonden. Het bereik van sin() is et interval [, ] dus eeft arcsin() dit interval als domein. We ebben arcsin () cos(arcsin()). sin (arcsin()) Het domein voor arccos() is ook [, ] en op dezelfde manier als voor arcsin() tonen we aan dat arccos () sin(arccos()) cos (arccos()). We ebben dus: 6

6 Wiskunde voor kunstmatige intelligentie, 00 arcsin (), arccos () Figuur II.: Arcussinus- en arcuscosinus-functie Het bereik van tan() is R, maar de functie is alleen maar monotoon op een interval ( π, π ) (of een verscuiving iervan om nπ. De arcustangens-functie is dus op R gedefinieerd en eeft waarden tussen π en π. Voor de afgeleide geldt: arctan () dus ( cos ) cos (arctan()) +tan (arctan()) +, (arctan()) arctan () Figuur II.: Arcustangens-functie De arcustangens-functie wordt vaak gebruikt om eperimentele waarden naar een genormeerd interval af te beelden. Bijvoorbeeld zijn de waarden, die een zoekmacine voor de kwaliteit van een zoekresultaat aangeeft meestal waarden tussen 0 en (of tussen 0% en 00%). Maar de gebruikte metoden 64

7 Wiskunde voor kunstmatige intelligentie, 00 leveren vaak waarden die niet eens naar beneden of boven begrensd zijn. Dan is et andig om zo n waarde af te beelden met de functie f : R R, π (arctan() + π ).. Hyperbolisce functies Een verdere klasse van belangrijke functies zijn de yperbolisce functies. Deze zijn afgeleidt van de eponentiële functie, maar ebben eigenscappen die op eigenscappen van sin() en cos() lijken. We definiëren de sinusyperbolicus en cosinusyperbolicus door sin() : (ep() ep( )), cos() : (ep() + ep( )). We gaan eenvoudig na dat sin () cos() en cos () sin(). Verder vinden we dat cos () sin (). cos() 0 sin() Figuur II.4: Sinusyperbolicus en cosinusyperbolicus 65

8 Wiskunde voor kunstmatige intelligentie, 00 De naam van de yperbolisce functies eeft betrekking tot de yperbolisce meetkunde. Terwijl we in de Euclidisce meetkunde afstanden met de norm + y meten, wordt dit in de yperbolisce meetkunde met y gedaan. In de Euclidisce meetkunde parametriseren we punten met afstand r van et nulpunt door r(cos(t), sin(t)). In de yperbolisce meetkunde wordt dit r(cos(t), sin(t)). De meest belangrijke toepassing van yperbolisce meetkunde is de ruimtetijd uit de speciale relativiteitsteorie. Analoog met de tangens-functie wordt ook een tangensyperbolicus gedefinieerd: tan() : sin() cos(). We ebben tan () cos () sin () cos () tan () cos () sin () cos () cos (), dus tan () tan () cos () cos (). en voor de afgeleide geldt Figuur II.5: Tangensyperbolicus Merk op dat ook de functie tan() net als arctan() voor et normaliseren van eperimentele waarden gebruikt kan worden. Ook de yperbolisce functies ebben inverse functies, deze eten de areafuncties en worden met arsin() : sin (), arcos() : cos () en artan() : tan () genoteerd. We kunnen deze inverse functies epliciet bepalen, want uit y sin() (ep() ep( )) volgt door vermenigvuldiging met ep() dat ep() y ep() 0. Dit geeft de oplossingen ep() y ± y +, maar omdat ep() > 0 is alleen maar et plusteken mogelijk. Het domein van arsin() is R omdat dit et bereik van sin() is. Dus geldt voor R: arsin() log( + + ). Voor de afgeleide geldt arsin () +. Dus is arsin () cos(arsin()) +sin (arsin()) +. 66

9 Wiskunde voor kunstmatige intelligentie, 00 Het trucje van sin() toegepast op cos() geeft ep() y ep()+ 0, dus ep() y ± y. In dit geval moeten we erop letten, dat cos() niet monotoon is, we kunnen dus of een inverse functie voor > 0 of voor < 0 aangeven. Voor de inverse functie van cos() met > 0 geldt et plusteken, dus is arcos() log( + ). De afgeleide van arcos() vinden we net als voor arsin(): arcos (). Dus geldt cos (arcos()) sin(arcos()) arcos () Figuur II.6: Areasinusyperbolics en areacosinusyperbolics Tenslotte kijken we naar artan(). Voor y sin() cos() ep() ep( ) ep()+ep( ) eb- ep() ep()+ep( ) en y ep( ) ep()+ep( ), dus geldt + y ben we + y ep()( y) en dus ep() +y y. Hieruit volgt + artan() log( log( + ) Figuur II.7: Areatangensyperbolicus 67

10 Wiskunde voor kunstmatige intelligentie, 00 De afgeleide van artan() vinden we door artan () tan (artan()) cos (artan()) tan(artan()), dus is artan (). Belangrijke begrippen in deze les eponentiële functie, logaritme trigonometrisce functies yperbolisce functies Opgaven. Laten f, g : R R de functies zijn met f() : log( + ) en g() : ep(). Bereken de samengestelde functies f g en g f en de afgeleiden f (), g (), (f g) () en (g f) ().. Toon aan dat voor alle (0, ) geldt dat log().. Laat zien dat sin + tan > voor alle (0, π/). (Hint: Differentieeren.) 4. Definieer f : R R door f() : + sin + arctan(). Toon aan dat f een inverse functie met domein R bezit. Daarvoor moet je bewijzen dat f injectief is en et geeel van R als bereik eeft. 5. Bepaal de afgeleiden van: (i) f (), (ii) f () sin(), (iii) f () log(cos() + sin()), (iv) f 4 () sin ( cos( ) ), (v) f5 () ep( ), (vi) f 6 () ep(arctan()), (vii) f 7 () 5 cos(), (viii) f 8 () log ( ), (i) f9 + () arcsin ( ) Bereken voor f() : + de functies g() : f(f ()) en () : f (f()). 68

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme Wiskunde voor kunstmatige intelligentie, 006 Les Speciale functies We ebben in de vorige les een aantal elementaire functies bekeken en iervoor gezien oe we deze functies kunnen afleiden. In wezen waren

Nadere informatie

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1},

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1}, Hoofdstuk II Calculus Les Differentiatie van functies Waarscijnlijk eeft iedereen wel een idee ervan wat een functie is, maar voor de duidelijkeid zal et andig zijn om de meest belangrijke begrippen na

Nadere informatie

wiskunde B pilot havo 2015-II

wiskunde B pilot havo 2015-II Veilig vliegen maximumscore 4 Het tekenen van de lijn door (0, 4; 0) en (bijvoorbeeld) (, 6; 0) Uit et aflezen van de coördinaten van et snijpunt van deze lijn met de rand van et grijs gemaakte gebied

Nadere informatie

Cijfer = totaal punten/10 met minimum 1

Cijfer = totaal punten/10 met minimum 1 VOORBLAD SCHRIFTELIJKE TOETSEN OPLEIDING TOETSCODE GROEP Me MeWIS1-T1 MeP1 TOETSDATUM 7 november 011 TIJD 13.00 14.30 uur AANTAL PAGINA S (incl. dit voorblad) 6 DEZE TOETS BESTAAT UIT (aantal) GEBRUIK

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Over de functies arcsin, arccos en arctan

Over de functies arcsin, arccos en arctan Over de functies arcsin, arccos en arctan Booglengte figuur figuur De grafiek van een functie f tussen twee punten P (met a) en Q (met b) kan worden opgedeeld in stukjes die kunnen worden opgevat als lijnstukken,

Nadere informatie

(x x 1 ) + y 1. x x k+1 x k x k+1

(x x 1 ) + y 1. x x k+1 x k x k+1 Les Talor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011

Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 Eindopdracht Wiskunde en Cultuur 2-4: Geostationaire satellieten Door: Yoeri Groffen en Mohamed El Majoudi Datum: 20 juni 2011 1 Voorwoord Satellieten zijn er in vele soorten en maten. Zo heb je bijvoorbeeld

Nadere informatie

Inverse functies en limieten

Inverse functies en limieten Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

Inhoud college 6 Basiswiskunde

Inhoud college 6 Basiswiskunde Inhoud college 6 Basiswiskunde 4.0 Taylorpolynomen (slot) Zie college 5: Vanaf 4.0 Voorbeeld 4 3. Inverse functies 3.2 Exponentiële en logaritmische functies 3.3 De natuurlijke logaritme en de exponentiële

Nadere informatie

Reëelwaardige functies van één of meer reële veranderlijken

Reëelwaardige functies van één of meer reële veranderlijken Reëelwaardige functies van één of meer reële veranderlijken Functie en scalaire functie Relatie van A naar B A B = {(, ) A & B} Een relatie van A naar B is functie als verschillende beelden zelfde origineel

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

6. Goniometrische functies.

6. Goniometrische functies. Uitwerkingen R-vragen hodstuk 6 6. Goniometrische functies. R1 Wat heeft een cirkelomwenteling te maken met een sinus cosinus? ls een punt met constante snelheid een cirkelbeweging uitvoert en je zet hoogte

Nadere informatie

Studiehandleiding Basiswiskunde cursus

Studiehandleiding Basiswiskunde cursus Studiehandleiding Basiswiskunde cursus 2008 2009 Materiaal Bij dit college heb je nodig: Het boek Basisboek wiskunde van Jan van de Craats en Rob Bosch Isbn: 90 430 1156 8 De syllabus Aanvulling basiscursus

Nadere informatie

(x x 1 ) + y 1. x x 1 x k x x x k 1

(x x 1 ) + y 1. x x 1 x k x x x k 1 Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

Goniometrische functies

Goniometrische functies Goniometrische functies gonè (Grieks) = hoek metron (Grieks) = maat Goniometrie, afkomstig van de Griekse woorden voor hoek en maat, betekent letterlijk hoekmeetkunde. Daarmee wordt aangegeven dat het

Nadere informatie

Analyse 1 Handout limieten en continuïteit

Analyse 1 Handout limieten en continuïteit Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Eindexamen vwo wiskunde B pilot 2014-II

Eindexamen vwo wiskunde B pilot 2014-II Eindeamen vwo wiskunde B pilot 04-II Formules Goniometrie sin( t u) sintcosu costsinu sin( t u) sintcosu costsinu cos( t u) costcosu sintsinu cos( t u) costcosu sintsinu sin( t) sintcost cos( t) cos t

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.

13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0. Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu

Nadere informatie

6. Toon aan dat voor alle 2]0; ß [ geldt dat sin <<tan Onderstel dat de functie f afleidbaar in ]a; +1[ is en dat Toon aan dat!+1 f ) = A.!+1 f

6. Toon aan dat voor alle 2]0; ß [ geldt dat sin <<tan Onderstel dat de functie f afleidbaar in ]a; +1[ is en dat Toon aan dat!+1 f ) = A.!+1 f Afleiden en primitiveren Oefeningen Wiskundige Analyse I 1. Toon aan dat de functie f gedefinieerd op [ß; 3ß 2 ] door 1 p 1 + sin2 ) een inverse ffi bezit. Wat kan men besluiten omtrent de monotoniteit,

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early T ranscendental F unctions, Robert T. Smith,

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)!

Je mag Zorich deel I en II gebruiken, maar geen ander hulpmiddelen (zoals andere boeken, aantekeningen, rekenmachine etc.)! Tentamen Analyse II. Najaar 6 (.1.7) Toelicting: Je mag Zoric deel I en II gebruiken, maar geen ander ulpmiddelen (zoals andere boeken, aantekeningen, rekenmacine etc.)! Als je bekende stellingen gebruikt

Nadere informatie

Zomercursus Wiskunde. Grafieken van functies en krommen (versie 14 augustus 2008)

Zomercursus Wiskunde. Grafieken van functies en krommen (versie 14 augustus 2008) Katholieke Universiteit Leuven September 8 Grafieken van functies en krommen (versie 4 augustus 8) Grafieken van functies en krommen Inleiding In deze module bestuderen we grafieken van functies van reële

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

Goniometrie. Les 23 Nadruk verboden 45 Tafels 1,1. Inleiding

Goniometrie. Les 23 Nadruk verboden 45 Tafels 1,1. Inleiding Goniometrie. Les 23 Nadruk verboden 45 Tafels 1,1. Inleiding Met behulp van de hogere wiskunde is het mogelijk de goniometrische verhoudingen van een willekeurige scherpe hoek met iedere gewenste nauwkeurigheid

Nadere informatie

Paragraaf K.1 : Substitutiemethode

Paragraaf K.1 : Substitutiemethode Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk

Nadere informatie

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i

16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i 16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =

Nadere informatie

Gelijke oppervlakte. V is het vlakdeel dat wordt begrensd door de grafiek van f en de x-as. In figuur 2 is V grijs gemaakt. 2,2 zijn.

Gelijke oppervlakte. V is het vlakdeel dat wordt begrensd door de grafiek van f en de x-as. In figuur 2 is V grijs gemaakt. 2,2 zijn. Gelijke oppervlakte Voor 0 is de functie f gegeven door f ( ). e punten (0, 0) en (9, 0) liggen op de grafiek van f. Het punt T is et oogste punt van deze grafiek. Zie figuur. figuur T f e coördinaten

Nadere informatie

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A.

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Wiskunde voor het hoger onderwijs deel A Errata 00 Noordhoff Uitgevers Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Hoofdstuk. 4 Op blz. in het Theorieboek staat halverwege de

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Lessen wiskunde uitgewerkt.

Lessen wiskunde uitgewerkt. Lessen Wiskunde uitgewerkt Lessen in fase 1. De Oriëntatie. Les 1. De eenheidscirkel. In deze les gaan we kijken hoe we de sinus en de cosinus van een hoek kunnen uitrekenen door gebruik te maken van de

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College

Nadere informatie

Zomercursus Wiskunde. Module 9 Grafieken van functies en krommen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 9 Grafieken van functies en krommen (versie 22 augustus 2011) Katholieke Universiteit Leuven September Module 9 Grafieken van functies en krommen (versie augustus ) Inhoudsopgave Functies van reële getallen en grafieken Som, verschil, product en quotiënt van reële

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1},

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1}, Hoofdstuk II Clculus Les Differentitie vn functies Wrscijnlijk eeft iedereen wel een idee ervn wt een functie is, mr voor de duidelijkeid zl et ndig zijn om de meest belngrijke begrippen n te gn en fsprken

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

Verloop van goniometrische en cyclometrische functies

Verloop van goniometrische en cyclometrische functies Verloop van goniometrische en cyclometrische functies Meetkundige definitie Definities sin tan cos cos cot sin sec cos csc sin Hoofdformules sin + cos tan + sec cos cot + csc sin cot tan sin 0 cos tan

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/

Nadere informatie

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van

Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

Differentiatie van functies

Differentiatie van functies Deel II Clculus Wiskunde voor kunstmtige intelligentie, 004 Les 6 Differentitie vn functies Wrscijnlijk eeft iedereen wel een idee ervn wt een functie is, mr voor de duidelijkeid erlen we voor de meest

Nadere informatie

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008 Wiskunde 007- //008 Vraag Veronderstel dat de concentraties in het bloed van stof A en van stof B omgekeerd evenredig zijn en positief. Als de concentratie van stof A met p % toeneemt, dan zal de concentratie

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

Exacte waarden bij sinus en cosinus

Exacte waarden bij sinus en cosinus acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Wiskundige notaties. Afspraken. Associatie K.U.Leuven

Wiskundige notaties. Afspraken. Associatie K.U.Leuven Wiskundige notaties Afspraken Associatie K.U.Leuven Tim Neijens Katrien D haeseleer Annemie Vermeyen Maart 2011 Waarom? Wiskundetaal gebruikt veel woordenschat, dat weet elke student. Het is niet altijd

Nadere informatie

Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014

Calculus TI1 106M. I.A.M. Goddijn, Faculteit EWI 1 september 2014 Calculus TI1 106M, 1 september 2014 Inleiding Studiemateriaal Onderwerpen Calculus 1 september 2014 1 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage :

Nadere informatie

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Inhoudsopgave 1 Definitie Betekenis van de afgeleide 1 2 Standaardafgeleiden

Nadere informatie

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies.

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. 03 college 5: meer technieken In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. Opmerking over de notatie. Net als in het

Nadere informatie

21 Oppervlakte. oppervlakte parallellogram = = 750. Noem de lengte van de lange zijde x, dan oppervlakte parallellogram = 20x

21 Oppervlakte. oppervlakte parallellogram = = 750. Noem de lengte van de lange zijde x, dan oppervlakte parallellogram = 20x 2 Oppervlakte 3 32 2 oppervlakte parallellogram = 25 30 = 750 Noem de lengte van de lange zijde, dan oppervlakte parallellogram = 20 Dus 20 = 750, dus = 37. 45 Oppervlakte kwartcirkel = 3 π 2 2 = π Oppervlakte

Nadere informatie

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden).

stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden). Samenvatting door Sterre 1437 woorden 5 mei 2018 7.8 3 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Vocabulair Algebraïsch stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

STEEDS BETERE BENADERING VOOR HET GETAL π

STEEDS BETERE BENADERING VOOR HET GETAL π STEEDS BETERE BENADERING VOOR HET GETAL KOEN DE NAEGHEL Samenvatting. We bespreken een oplossing voor de (veralgemeende) opgave Noot 4 uit Wiskunde & Onderwijs nr.139. Onze inspiratie halen we uit het

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

Samenvatting wiskunde B

Samenvatting wiskunde B Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Standaardafgeleiden. Wisnet-HBO. update maart 2011

Standaardafgeleiden. Wisnet-HBO. update maart 2011 Standaardafgeleiden Wisnet-HBO update maart 2011 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les Wat is Differentiëren gaan in Wisnet Verder zijn er Maplets om de

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening juli 05 dr. Brenda Castelen Met dank aan: Atheneum van Veurne (http:www.natuurdigitaal.begeneeskundefsicawiskundewiskunde.htm),

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie Utrecht Les : Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist verzicht colleges. College. Goniometrie 2. Vectoren 2. College 2. Matrixen

Nadere informatie

Copyright 2017 Gertjan Laan Versie 3.1. uitgeverij czarina

Copyright 2017 Gertjan Laan Versie 3.1. uitgeverij czarina G E R T J A N L A A N A N A LY S E B O E K U I T G E V E R I J C Z A R I N A Copright 07 Gertjan Laan Versie. uitgeverij czarina www.uitgeverijczarina.nl www.gertjanlaan.nl tufte-late.github.io/tufte-late

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback IJkingstoets 5 september 04 - reeks - p. /0 Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 5 september 04: algemene feedback In totaal namen 5 studenten deel aan deze ijkingstoets industrieel

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early Transcendental Functions Robert T. Smith,

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (15126) op dinsdag 4 januari 211, 8.45 11.45 uur. De uitwerkingen van de opgaven

Nadere informatie

Hoofdstuk 21 Oppervlakte 21.0 INTRO

Hoofdstuk 21 Oppervlakte 21.0 INTRO Hoofdstuk Oppervlakte.0 INTRO ls voorbeeld de oppervlakte van : e geblokte rectoek eeft oppervlakte 5 = 0. aar gaan twee alve rectoeken vanaf, één met oppervlakte 5 = 5 en de ander met oppervlakte 5 =

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

3 Opgaven bij Hoofdstuk 3

3 Opgaven bij Hoofdstuk 3 3 Opgaven bij Hoofdstuk 3 Opgave 3. Voor k beschouwen we de functie f k : x sin(x/k). Toon aan dat f k 0 uniform op [ R, R] voor iedere R > 0. Opgave 3.2 Zij V een verzameling. Een functie f : V C heet

Nadere informatie

Complexe functies. 2.1 Benadering door veeltermen

Complexe functies. 2.1 Benadering door veeltermen Wiskunde voor kunstmatige intelligentie, Les Complexe functies Nadat we de complexe getallen hebben leren kennen, is het een voor de hand liggende vraag of hiervoor net als voor de reële getallen ook functies

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Calculus I, 19/10/2015

Calculus I, 19/10/2015 Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,

Nadere informatie

Standaardfuncties. x c

Standaardfuncties. x c Standaards Constante Parameter We geven in dit document een overzicht van een aantal veelvoorkomende s. We geven steeds het voorschrift en de grafiek. (Ter herinnering: het domein vermelden we niet, het

Nadere informatie

Dit vak bestaat uit een werk- en instructiecollege, verplicht en vrijwillig huiswerk, één tussentoets op blackboard en één tentamen aan het eind.

Dit vak bestaat uit een werk- en instructiecollege, verplicht en vrijwillig huiswerk, één tussentoets op blackboard en één tentamen aan het eind. Wiskunde 1A - groep 3 (Gabor Wiese) 16/09/2003 Wat informatie: Dit vak bestaat uit een werk- en instructiecollege, verplict en vrijwillig uiswerk, één tussentoets op blackboard en één tentamen aan et eind.

Nadere informatie

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

1E HUISWERKOPDRACHT CONTINUE WISKUNDE E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

QuizAnalyseHoofdstuk3 - wv -Brackx

QuizAnalyseHoofdstuk3 - wv -Brackx QuizAnalyseHoofdstuk3 - wv -Brackx Als: dan is: Als f discontinu is in x 0 en dan zijn de linker- en rechterlimieten van f(x) in x 0 aan elkaar gelijk maar verschillend van L. Als voor alle x in ]a,b [

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel A Clculus Anbevolen ctergrondlitertuur met veel opgven (en oplossingen): Frnk Ayres: (Scum s Outline of Teory nd Problems of) Clculus. McGrw-Hill Compnies, 999, 578 p., ISBN: 749736. Micel Spivk:

Nadere informatie

Per nieuwe hoofdvraag een nieuwe bladzijde gebruiken. De vragen hoeven niet in de juiste volgorde te worden opgelost.

Per nieuwe hoofdvraag een nieuwe bladzijde gebruiken. De vragen hoeven niet in de juiste volgorde te worden opgelost. SBC AMDG Ma 13/12/04 klas : 5WEWI8 5GRWI8 Van Hijfte D. toegelaten : grafisch rekentoestel Examen Wiskunde deel I (90p) Per nieuwe hoofdvraag een nieuwe bladzijde gebruiken. De vragen hoeven niet in de

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie