Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Maat: px
Weergave met pagina beginnen:

Download "Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008"

Transcriptie

1 Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid. Deze grootheid kan van wiskundige, fysische, economische of andere aard zijn. Bijvoorbeeld een maimale of minimale inhoud, oppervlakte of afstand, minimale kosten of maimale winst. Deze module is bedoeld om te oefenen in het oplossen van dit soort minimum-maimumproblemen, ook wel optimalisatieproblemen genoemd. Maar eerst herhalen we de theoretische achtergrond. 1 Theoretische achtergrond We definiëren de begrippen absoluut en relatief maimum, absoluut en relatief minimum voor een functie f gedefinieerd op een interval A R. Definitie 1.1 f bereikt een absoluut maimum in een punt c van A indien voor elke in A geldt dat f(c) f(). Definitie 1.2 f bereikt een absoluut minimum in een punt c van A indien voor elke in A geldt dat f(c) f(). Definitie 1.3 f bereikt een relatief of lokaal maimum in een punt c van A indien er een open interval I rond c bestaat zodat voor elke in I A geldt dat f(c) f(). Definitie 1.4 f bereikt een relatief of lokaal minimum in een punt c van A indien er een open interval I rond c bestaat zodat voor elke in I A geldt dat f(c) f().

2 2 Minimum-Maimumproblemen Volgens deze definities is een absoluut maimum dus ook een relatief maimum en een absoluut minimum is ook een relatief mimimum. f a b c In bovenstaande figuur zien we de grafiek van een functie f gedefinieerd op het interval [a,c]. f bereikt een absoluut maimum in a, een absoluut minimum in b en een relatief maimum in c. Een maimum of een minimum noemen we ook een etremum. In oefeningen en toepassingen zijn we meestal niet op zoek naar de relatieve etrema, maar naar de absolute. Om de absolute etrema te vinden bereken je de functiewaarden in de relatieve etrema, zodat je deze kan vergelijken. Bij het zoeken naar de etrema van een functie f speelt de afgeleide f een belangrijke rol. Eigenschap 1.5 Stel f is continu op [a,b] en afleidbaar op ]a,b[. Dan geldt: Als f () > 0 voor elke ]a,b[, dan is f strikt stijgend in [a,b], d.w.z. als,y [a,b] en < y, dan is f() < f(y). Als f () < 0 voor elke ]a,b[, dan is f strikt dalend in [a,b], d.w.z. als,y [a,b] en < y, dan is f() > f(y). Als in een punt c geldt dat f (c) = 0 dan is de raaklijn aan de grafiek van f in het punt (c,f(c)) horizontaal. Het punt c wordt dan een kritiek punt van f genoemd. De eerste afgeleide f geeft ons dus heel wat informatie over het verloop van f.

3 1. Theoretische achtergrond 3 Voorbeeld 1.6 Gegeven f() = Welke informatie halen we uit f? f () = 2 5 f () = 0 = 5 2 We maken een tabel met op de eerste lijn de -waarden met aanduiding van de kritieke punten. Op de tweede lijn komt het tekenverloop van f en op de derde lijn hetgeen we hieruit kunnen besluiten over het verloop van f. 5 2 f () f() ց rel min ր Eigenschap 1.7 Zij f gedefinieerd op [a,b], c ]a,b[ en f afleidbaar in c, dan geldt: Als f een relatief etremum bereikt in c dan is f (c) = 0 Wat kunnen we besluiten uit deze eigenschap? De uitspraak is van de vorm Als A dan B, en dit betekent niet hetzelfde als Als B dan A. Nochtans gaan we om de relatieve etrema van f op te sporen eerst de kritieke punten van f zoeken. Als A dan B betekent wel hetzelfde als Als niet(b) dan niet(a). We kunnen de eigenschap als volgt herformuleren: Zij f gedefinieerd op [a,b], c ]a,b[ en f afleidbaar in c, dan geldt: Als f (c) 0 dan bereikt f geen relatief etremum in c. Onder de punten van het interval ]a,b[ waar de functie f een afgeleide heeft zijn de kritieke punten de enige kandidaat-etrema. Maar niet alle kritieke punten zijn relatieve minima of maima, het kunnen ook buigpunten zijn. f (c) = 0 maimum f (c) = 0 minimum f (c) = 0 buigpunt

4 4 Minimum-Maimumproblemen We moeten dus meer informatie hebben over deze kritieke punten. Deze informatie kunnen we halen uit het tekenverloop van f. Er zijn een aantal mogelijkheden: c c f () f() ր rel ma ց f () f() ց rel min ր c c f () f () f() ր geen etremum ր f() ց geen etremum ց Een andere methode is met behulp van het teken van de tweede afgeleide van f. In deze module gaan we hier niet op in. Etrema kunnen ook voorkomen in punten die geen kritieke punten zijn. Volgens de eigenschap zou dit namelijk kunnen in randpunten van het interval of in punten waar de functie niet afleidbaar is. Op de figuur zien we dat de functie f, gedefinieerd op het interval [a, d], een absoluut minimum bereikt in a, een relatief minimum in c, een relatief maimum in 0 en b, en een absoluut maimum in d. f 0 a b c d De etrema in 0, a en d zullen we niet vinden door enkel te kijken naar de kritieke punten. Immers, a is geen kritiek punt want de functie is niet afleidbaar in a. Dit soort etrema laten we verder buiten beschouwing in deze module. De etrema in de randpunten van het interval waarop de functie f gedefinieerd is zijn ook geen kritieke punten. In oefeningen waar je het absolute minimum

5 1. Theoretische achtergrond 5 of maimum zoekt van een functie gedefinieerd op een gesloten interval moeten deze randpunten zeker bekeken worden. We illustreren de werkwijze voor het vinden van etrema aan de hand van twee voorbeelden: Voorbeeld 1.8 Toon aan dat onder alle rechthoeken met oppervlakte S 0 het vierkant de kleinste omtrek heeft. Oplossing Kies de verandelijken: we noteren de lengte van de zijden van een rechthoek met oppervlakte S met en y. Omdat en y lengtes voorstellen en S 0 weten we ook dat > 0 en y > 0. Zoek de functie die minimaal moet zijn: We zoeken het minimum van de omtrek = 2 + 2y. Uit het gegeven halen we dat S =.y dus y = S. Dit geeft het verband tussen de 2 variabelen. We schrijven deze omtrek als een functie van 1 variabele O(), door het verband tussen beide variabelen te gebruiken: O() = S = 2( + S ) met > 0 Zoek het minimum van O: * O () = 2(1 S 2) * O () = 0 = ± S * Vermits > 0 onderzoeken we verder alleen S. Met behulp van het tekenverloop gaan we na welk soort kritiek punt dit is. S O () O() ց rel min ր Uit het tekenverloop kunnen we besluiten dat de omtrek O een relatief minimum bereikt in = S. Aangezien dit het enige minimum is voor > 0 is dit ook het gezochte absolute minimum. Besluit: Als = S dan is y = S en is de rechthoek een vierkant.

6 6 Minimum-Maimumproblemen Voorbeeld 1.9 Een draad van 4 meter wordt in 2 stukken geknipt die gebruikt worden om een vierkant en een cirkel te vormen. Hoeveel gebruik je best voor elke figuur als je de ingesloten oppervlakte maimaal wil maken? Oplossing Kies de veranderlijke: Stel = omtrek cirkel, dan is 4- = omtrek vierkant. Uit de opgave weten we ook dat [0, 4]. Zoek de functie die maimaal moet zijn: oppervlakte vierkant = zijde 2 en omtrek vierkant = 4.zijde, (4 )2 (4 )2 dus oppervlakte vierkant = = oppervlakte cirkel = π. straal 2 en omtrek cirkel = 2 π.straal, dus oppervlakte cirkel = 2 4π We zoeken dus het maimum van f() = Zoek het maimum van f: (4 ) π met [0, 4] * f 2(4 ) () = π = ( π ) * f () = 0 = 4π π + 4 * Hieruit mogen we niet meteen besluiten dat = 4π het gezochte maimum is. Met behulp van het tekenverloop gaan we na welk soort kritiek π + 4 punt dit is. 4π π+4 f () f() ց rel min ր Dus bereikt f een relatief minimum in = het punt dat we zoeken. 4π, en dit is bijgevolg niet π + 4 * Volgens het tekenverloop hierboven zullen we de maima van f vinden in de randpunten van het domein [0, 4]. We berekenen de functiewaarden in deze randpunten om te weten waar het absolute maimum zich bevindt.

7 2. Oefeningen 7 0 4π π+4 4 f () f() 1 ց rel min ր 4 π Antwoord: We vinden het maimum van f in 4. De omtrek van de cirkel moet dus 4 meter zijn, deze van het vierkant 0. De volledige draad moet voor de cirkel gebruikt worden om de ingesloten oppervlakte maimaal te maken. 2 Oefeningen 1. Veronderstel dat je een touw hebt van lengte L > 0. Hoe moet je het touw leggen om er een rechthoek mee te vormen die een zo groot mogelijke oppervlakte heeft? 2. De som van twee positieve getallen is 100. Zoek deze getallen als (a) hun product maimaal moet zijn (b) de som van hun kwadraten minimaal moet zijn (c) de som van hun kwadraten maimaal moet zijn (d) het product van het kwadraat van een getal met de derde macht van het andere getal maimaal moet zijn 3. Op een kampeerterrein in de Ardennen krijgt elke vakantieganger bij aankomst 4 vlaggetjes en 30 m touw om zijn kampeerplaats af te bakenen in de vorm van een rechthoek. In het laagseizoen wordt toegestaan dat ook de omheining gebruikt wordt zodat je een groter gebied kan afbakenen. (a) Wat is de maimale oppervlakte die je kan afspannen in laagseizoen? omheining kampeerterrein (b) Als er langs de omheining geen plaats meer is, maar je spreekt met je buurman af om het stuk touw in het midden gemeenschappelijk te gebruiken, wat is dan de maimale oppervlakte voor jou en je buurman tesamen?

8 8 Minimum-Maimumproblemen 4. Bakker Jansens heeft thuis een groot aantal kartonnen liggen van 44 cm op 80 cm en besluit hieruit zijn taartendozen zelf te maken. Door 6 vierkantjes met zijde weg te knippen komen de zijflappen vrij (a) Stel een formule op voor het volume van de taartendozen. (b) Bij welke waarde van is dit volume maimaal? (c) Wat is dan dat maimaal volume? 5. Een atletiekpiste heeft volgende vorm : 1m b l de omloop (stippellijn) die zich op 1 m. van het binnenplein bevindt, moet 400 m lang zijn. Wat zijn de afmetingen van het rechthoekig deel van het binnenplein, als de oppervlakte van de rechthoek maimaal moet zijn?

9 2. Oefeningen 9 6. Conservenblikken, verfblikken e.d. hebben gemeen dat ze allemaal dezelfde vorm hebben, maar de afmetingen kunnen behoorlijk variëren. We onderzoeken welke afmetingen economisch het meest verantwoord zijn. We doen dit voor blikken van 1 liter. We willen een minimum aan blik gebruiken voor de productie van blikken van 1 liter. (a) Noem de straal (in dm) van de bodem van zo n blik r en de hoogte (in dm) h. Welke betrekking bestaat er tussen r en h (schrijf h in functie van r)? (b) Stel dat deksel en bodem van zo n blik uit vierkanten worden geponst en beschouw het restant als afval. Bij welke afmetingen is de benodigde hoeveelheid blik minimaal? (Gebruik hierbij de betrekking die je in (a) hebt gevonden!) (c) Het zou beter zijn deksel en bodem uit zeshoeken te ponsen. Welke afmetingen geven nu een minimale hoeveelheid blik? (d) Het ideale geval is natuurlijk dat het blikafval zo verwerkt wordt dat het opnieuw kan gebruikt worden. Voor welke waarde van r is de benodigde hoeveelheid blik nu minimaal? (e) Stel verder in het ideale geval dat het blik dat gebruikt wordt om bodem en deksel te maken 0.75 euro per vierkante meter kost, en dat voor de zijwand 0.50 euro per vierkante meter. Voor welke waarde van r is de constructiekost minimaal? 7. Een poster moet een oppervlakte hebben van 0.18 m 2. Er wordt niet geprint op een afstand kleiner dan 3 cm van de boven- en onderzijde, en op 2 cm van de linker- en rechterzijde. Welke afmetingen moet de poster hebben opdat de printbare oppervlakte maimaal zou zijn. 8. Vind de vergelijking van de rechte door het punt (3,4) die in het eerste kwadrant een driehoek afsnijdt met minimale oppervlakte. 9. Wat is de minimale afstand van het punt (4,2) tot de parabool y 2 = 8? 10. In welk punt in het eerste kwadrant van de parabool y = 4 2 bepaalt de raaklijn samen met de coördinaatassen een driehoek met minimale oppervlakte.

10 10 Minimum-Maimumproblemen 11. Schip A bevindt zich 65 km ten weste van schip B. Om 9 uur s morgens begint schip A naar het zuiden te varen aan 15 km/u, en begint schip B naar het westen te varen aan 10 km/u. Op welk tijdstip zijn beide schepen het dichts bij elkaar, en welke afstand is er dan tussen hen? 3 Oplossingen 1. als een vierkant 2. (a) 50 en 50 (b) 50 en 50 (c) 0 en 100 (d) 40 en (a) m 2 (b) 150 m 2 4. (a) V () = (b) = 8 (c) 6272 cm 2 5. b = 200 π π en l = 200 π 2 6. (a) h(r) = 1 πr 2 (b) r = 0.5 dm en h = 1.27 dm (c) r = dm en h = 1.15 dm (d) r = 0.54 dm en h = 1.08 dm (e) r = 0.47 dm en h = 1.42 dm 7. boven- en onderzijde = 20 3, linker- en rechterzijde = y 24 = ( 2 3, 8 3 ) 11. Om 11 uur zijn de schepen het dichts bij elkaar, op een afstand van 54 km.

Zomercursus Wiskunde. Module 11 Minimum-Maximumproblemen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 11 Minimum-Maximumproblemen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 11 Minimum-Maimumproblemen (versie 22 augustus 2011) Inhoudsopgave 1 Theoretische achtergrond 1 2 Oefeningen 7 2.1 Basis (A- en B-programma)........................

Nadere informatie

Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben. Hier is ( ) ( ) = 8+ a. De rico van r is m x

Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben. Hier is ( ) ( ) = 8+ a. De rico van r is m x Gegeven is de functie f a a) Voor welke a R heeft f geen etrema? + +, met parameter a R Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben Hier is Er zijn dus geen etrema als en slechts

Nadere informatie

Eigenschappen van continue en afleidbare functies

Eigenschappen van continue en afleidbare functies Eigenshappen van ontinue en afleidbare funties Mihel Rolle april 65 - Ambert 8 november 79 - Parijs Augustin Louis Cauhy augustus 789 - Parijs mei 857 - Seau Joseph-Louis Lagrange 5 januari 76 Turijn 0

Nadere informatie

Verloop van goniometrische en cyclometrische functies

Verloop van goniometrische en cyclometrische functies Verloop van goniometrische en cyclometrische functies Meetkundige definitie Definities sin tan cos cos cot sin sec cos csc sin Hoofdformules sin + cos tan + sec cos cot + csc sin cot tan sin 0 cos tan

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Examen VWO. Wiskunde B Profi

Examen VWO. Wiskunde B Profi Wiskunde B Profi Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak Woensdag 1 juni 13.30 16.30 uur 0 00 Dit eamen bestaat uit 16 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Calculus I, 23/11/2015

Calculus I, 23/11/2015 Calculus I, /11/015 1. Beschouw de functie met a, b R 0. f = a + b + lne a Benoem het domein van de functie f. b Bepaal a en b zodat de rechte y = 1 een schuine asymptoot is voor f. c Voor a = en b = 1,

Nadere informatie

6. Toon aan dat voor alle 2]0; ß [ geldt dat sin <<tan Onderstel dat de functie f afleidbaar in ]a; +1[ is en dat Toon aan dat!+1 f ) = A.!+1 f

6. Toon aan dat voor alle 2]0; ß [ geldt dat sin <<tan Onderstel dat de functie f afleidbaar in ]a; +1[ is en dat Toon aan dat!+1 f ) = A.!+1 f Afleiden en primitiveren Oefeningen Wiskundige Analyse I 1. Toon aan dat de functie f gedefinieerd op [ß; 3ß 2 ] door 1 p 1 + sin2 ) een inverse ffi bezit. Wat kan men besluiten omtrent de monotoniteit,

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur

Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur Eamen VWO 008 tijdvak woensdag 18 juni 13.30-16.30 uur wiskunde B1 Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 84 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed

Nadere informatie

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1) De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 008-II Een zwaartepunt Van een cirkelschijf met middelpunt (0, 0) en straal is het kwart getekend dat in het eerste kwadrant ligt. De cirkelboog is de grafiek van de functie f

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 8-II Een zwaartepunt Van een cirkelschijf met middelpunt (, ) en straal is het kwart getekend dat in het eerste kwadrant ligt. De cirkelboog is de grafiek van de functie f die

Nadere informatie

Hoofdstuk 6 - de afgeleide functie

Hoofdstuk 6 - de afgeleide functie Hoofdstuk 6 - de afgeleide functie 0. voorkennis Het differentiequotiënt Het differentiequotiënt van y op de gemiddelde verandering van y op [ ] is: A B de richtingscoëfficiënt (ook wel helling) van de

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Verbanden en functies

Verbanden en functies Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.

Nadere informatie

Luc Gheysens - Extremumvraagstukken p.1

Luc Gheysens - Extremumvraagstukken p.1 EXTREMUMVRAAGSTUKKEN 1 Bepaal twee getallen x en y waarvan de som 144 is en waarvoor het product maximaal is. En voor welke waarden is het product x 3. y 2 maximaal? 2 Aan de vier hoeken van een vierkantig

Nadere informatie

Eindexamen wiskunde B1 vwo 2008-II

Eindexamen wiskunde B1 vwo 2008-II Een eponentiële functie De functie f is gegeven door f( ) = e. is het snijpunt van de grafiek van f met de y-as. B is het snijpunt van de raaklijn aan de grafiek van f in met de -as. Zie figuur 1. figuur

Nadere informatie

Hoofdstuk 1 : Regels voor het differentieren

Hoofdstuk 1 : Regels voor het differentieren Hoofdstuk : Regels voor het differentieren Kern : Afgeleide en raaklijn a) stijgend op en dalend op en b) f f f f helling ++++ - ++++ - -waarde - f 8 De helling in het punt f ; is 8 In het punt ; heeft

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica juli 2017: algemene feedback

IJkingstoets Wiskunde-Informatica-Fysica juli 2017: algemene feedback IJkingstoets wiskunde-informatica-fysica 5 juli 2017 - reeks 1 - p. 1/9 IJkingstoets Wiskunde-Informatica-Fysica juli 2017: algemene feedback Positionering ten opzichte van andere deelnemers In totaal

Nadere informatie

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud 1 Een optische illusie? Welk gebied heeft de grootste oppervlakte: het gele of het donkergroene? Doe eerst een schatting en maak daarna de nodige

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 2 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Dinsdag 22 juni uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Dinsdag 22 juni uur Wiskunde rofi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag juni 13.30 16.30 uur 19 99 Dit eamen bestaat uit 15 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

Paragraaf 13.1 : Berekeningen met de afgeleide

Paragraaf 13.1 : Berekeningen met de afgeleide Hoofdstuk 13 Toepassingen vd differentiaalrekening (V5 Wis A) Pagina 1 van 7 Paragraaf 13.1 : Berekeningen met de afgeleide Differentiëren van e-machten en logaritmen f() = e f () = e f() = ln() f () =

Nadere informatie

wiskunde B havo 2016-I

wiskunde B havo 2016-I wiskunde B havo 06-I Blokkendoos maimumscore De inhoud van de vier cilinders samen is π,5 0 = 50π ( 5) (cm ) De inhoud van de binnenruimte van de doos is ( 0 5 5 =) 50 (cm ) De inhoud van de overige blokken

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van de

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks 4 - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-I

Eindexamen wiskunde B1-2 havo 2008-I Steeds meer vlees In wordt voor de periode 1960-1996 zowel de graanproductie als de vleesproductie per hoofd van de wereldbevolking weergegeven. Hiervoor worden twee verticale assen gebruikt. De ronde

Nadere informatie

wiskunde B pilot havo 2015-I

wiskunde B pilot havo 2015-I Hangar Door constructies in de vorm van een bergparabool te gebruiken, kunnen grote gebouwen zonder inwendige steunpilaren gebouwd worden. Deze manier van bouwen werd begin vorige eeuw veel gebruikt voor

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

Opdracht 1 bladzijde 8

Opdracht 1 bladzijde 8 Opdrachten Opdracht bladzijde 8 Uit een stuk karton met lengte 45 cm en breedte 8 cm knip je in de vier hoeken vierkantjes af met zijde cm. Zo verkrijg je een open doos. 8 cm 45 cm Hoe groot is het volume

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding V Kegelsneden en Kwadratische Vormen in R IV.0 Inleiding V. Homogene kwadratische vormen Een vorm als H (, ) = 5 4 + 8 heet een homogene kwadratische vorm naar de twee variabelen en. Een vorm als K (,

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

WISKUNDE-ESTAFETTE 2011 Uitwerkingen WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek

Nadere informatie

13 Vlaamse Wiskunde Olympiade : Tweede ronde.

13 Vlaamse Wiskunde Olympiade : Tweede ronde. 13 Vlaamse Wiskunde Olympiade 1999-000: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening 307 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http:users.telenet.betoelating) . Inleiding Dit oefeningenoverzicht

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 19 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 19 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 2019 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 dinsdag 2 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 dinsdag 2 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 009 tijdvak dinsdag juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer

Nadere informatie

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2 IJkingstoets 30 juni 04 - reeks - p. /5 Oefening Een functie f : A B : 7 f () van verzameling A naar verzameling B is injectief als voor alle, A geldt: als 6=, dan is f () 6= f (). Welke van de volgende

Nadere informatie

Toelichting op de werkwijzer

Toelichting op de werkwijzer Toelichting op de werkwijzer NEDERLANDSE W I S K U N D E OLYMPIADE Birgit van Dalen, Quintijn Puite De opgaven voor de training komen uit het boekje De Nederlandse Wiskunde Olympiade 100 opgaven met hints,

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking.

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking. G&R havo B deel Differentiaalrekening C von Schwartzenberg /0 Toets voorkennis EXTRA: Differentiëren op bladzijde 56 aan het einde van deze uitwerking a f ( ) 5 7 f '( ) 8 5 b g( ) ( 5) 5 g '( ) 6 0 c

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olmpiade 1997-1998: Eerste ronde De eerste ronde bestaat uit meerkeuzevragen Het quoteringsssteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Ijkingstoets industrieel ingenieur UGent/VUB, september 2015

Ijkingstoets industrieel ingenieur UGent/VUB, september 2015 IJkingstoets 4 september 05 - reeks - p. /0 Ijkingstoets industrieel ingenieur UGent/VUB, september 05 Oefening De evolutie van een bepaalde radioactieve stof in de tijd volgt het wiskundig model N (t)

Nadere informatie

Instructie voor Docenten. Hoofdstuk 13 OMTREK EN OPPERVLAKTE

Instructie voor Docenten. Hoofdstuk 13 OMTREK EN OPPERVLAKTE Instructie voor Docenten Hoofdstuk 13 OMTREK EN OPPERVLAKTE Instructie voor docenten H13: OMTREK EN OPPERVLAKTE DOELEN VAN DIT HOOFDSTUK: Leerlingen weten wat de begrippen omtrek en oppervlakte betekenen.

Nadere informatie

Paragraaf 11.0 : Voorkennis

Paragraaf 11.0 : Voorkennis Hoofdstuk 11 Verbanden en functies (H5 Wis B) Pagina 1 van 15 Paragraaf 11.0 : Voorkennis Les 1 : Stelsels, formules en afgeleide Los op. 3x + 5y = 7 a. { 2x + y = 0 2x + 5y = 38 b. { x = y + 5 a. 3x +

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni uur

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni uur Eamen HAV 019 tijdvak woensdag 19 juni 13.30-16.30 uur wiskunde B Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Hoofdstuk 7 - veranderingen. getal & ruimte HAVO wiskunde A deel 2

Hoofdstuk 7 - veranderingen. getal & ruimte HAVO wiskunde A deel 2 Hoofdstuk 7 - veranderingen getal & ruimte HAVO wiskunde A deel 2 0. voorkennis Plotten, schetsen en tekenen Een grafiek plotten Een grafiek schetsen Een grafiek tekenen Na het invoeren van de formule

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 018 tijdvak 1ti maandag 14 mei 13.30-16.30 uur oud programma wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

Blok 6B - Vaardigheden

Blok 6B - Vaardigheden B-a Etra oefening - Basis Eigenschap C is ook een definitie van een rechthoek. A: Als de diagonalen wel even lang zijn maar elkaar niet middendoor delen, is de vierhoek geen rechthoek. Denk ijvooreeld

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

Hierbij geven we de antwoorden en bewijzen we meteen ook hoe de constanten kunnen bepaald worden.

Hierbij geven we de antwoorden en bewijzen we meteen ook hoe de constanten kunnen bepaald worden. WISKUNDE IS (EEN BEETJE) OORLOG Onder dit motto nodigde de VVWL alle wiskundeleraren uit Vlaanderen en Nederland uit om deel te nemen aan een wiskundewedstrijd. De tien vragen van de eerste editie, waarbij

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-II

Eindexamen wiskunde B1-2 vwo 2007-II ier tappen ij het tappen van bier treden verschillen op in de hoeveelheid bier per glas. Uit onderzoek blijkt dat de hoeveelheid bier die per glas getapt wordt bij benadering normaal verdeeld is met een

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 15 september dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 15 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

FAYA LOBI WEDSTRIJD 2014

FAYA LOBI WEDSTRIJD 2014 1. betekent: het aantal elementen van de verzameling Van twee verzamelingen en is gegeven: en. en Voor en geldt: en en en en 2. en. De verzameling heeft elementen. 3. Zie onderstaande beweringen ( is een

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VW 04 tijdvak dinsdag 0 mei 3.30-6.30 uur wiskunde B (pilot) chter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen bestaat uit 8 vragen. Voor dit eamen

Nadere informatie

Algebra leren met deti-89

Algebra leren met deti-89 Algebra leren met deti-89 Werkgroep T 3 -symposium Leuven 24-25 augustus 2001 Doel Reflecteren op het leren van algebra in een computeralgebra-omgeving, en in het bijzonder op het omgaan met variabelen

Nadere informatie

Eindexamen wiskunde B1 vwo 2005-I

Eindexamen wiskunde B1 vwo 2005-I Eindeamen wiskunde B vwo 5-I Inademen Bij controlemetingen aan de ademhaling wordt men gevraagd om diep uit te ademen en vervolgens gedurende vijf seconden zo diep mogelijk in te ademen. Tijdens het inademen

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1,2 Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 007 tijdvak woensdag 0 juni 13.30-16.30 uur wiskunde 1, ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer

Nadere informatie

13 Vlaamse Wiskunde Olympiade: tweede ronde

13 Vlaamse Wiskunde Olympiade: tweede ronde 3 Vlaamse Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt

Nadere informatie

Eindexamen havo wiskunde B pilot 2013-I

Eindexamen havo wiskunde B pilot 2013-I Beoordelingsmodel Tornadoschalen maximumscore 80 km/u komt overeen met 77,8 m/s v = 77,8 invullen in de formule geeft F, Dus de intensiteit op de Fujita-schaal is maximumscore 4 De waarde van F is dan

Nadere informatie

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gekleurde sokken Op de planeet Swift B6 wonen de Houyhnhnms. Ze lijken sprekend op paarden;

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP003B 4 november 04,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en

Nadere informatie

Eindexamen wiskunde B havo II

Eindexamen wiskunde B havo II Eindexamen wiskunde B havo 009 - II Beoordelingsmodel Kaas maximumscore De oppervlakte van de rechthoek is 0 0 = 00 (cm ) De oppervlakte van de twee halve cirkels is samen π 5 ( 79)(cm ) De oppervlakte

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 07 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 4 vragen. Voor dit eamen zijn maimaal 7 punten te behalen. Voor elk vraagnummer

Nadere informatie

1 Junior Wiskunde Olympiade: tweede ronde

1 Junior Wiskunde Olympiade: tweede ronde Junior Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt hem

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: juli 00 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

IJkingstoets Industrieel Ingenieur. Wiskundevragen

IJkingstoets Industrieel Ingenieur. Wiskundevragen IJkingstoets Industrieel Ingenieur Wiskundevragen juli 8 Deel. Basiskennis wiskunde Vraag Het gemiddelde van de getallen 7 4 6, en 4 is Vraag en g met voorschrift g() =. Waaraan is Beschouw de functie

Nadere informatie

WISKUNDE-ESTAFETTE KUN Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE KUN 2000 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Maak sommige vakjes zwart, zó dat voor elk vakje het getal dat erin staat precies aangeeft

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 990-99: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt: een deelnemer start met 0 punten Per

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9

Nadere informatie

De vergelijking van Antoine

De vergelijking van Antoine De vergelijking van Antoine Als een vloeistof een gesloten ruimte niet geheel opvult, dan verdampt een deel van de vloeistof. De damp oefent druk uit op de wanden van de gesloten ruimte: de dampdruk. De

Nadere informatie