Opdracht 1 bladzijde 8

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Opdracht 1 bladzijde 8"

Transcriptie

1

2 Opdrachten Opdracht bladzijde 8 Uit een stuk karton met lengte 45 cm en breedte 8 cm knip je in de vier hoeken vierkantjes af met zijde cm. Zo verkrijg je een open doos. 8 cm 45 cm Hoe groot is het volume van de doos als je vierkantjes met zijde 5 cm wegsnijdt? V = (45? 5)(8? 5)? 5 fi V = 50 cm =,5 dm Bepaal het volume V (in cm ) van de doos in functie van. V = (45 )(8 )? Welke waarden van zijn zinvol? De zijde moet positief zijn en kleiner dan de helft van de breedte 8 cm. Dus 0 < < 4. Anders genoteerd: Œ ]0,4[. Opdracht bladzijde 0 Zonder water kan een mens niet overleven. Wereldwijd worden er dan ook al vele jaren inspanningen geleverd om het tekort aan drinkwater aan te pakken. Een oplossing daarvoor zou het gebruik van Zuidpoolijs kunnen zijn. Een ijsberg bevat immers miljoenen tonnen zoet water, potentieel drinkwater dus. De Franse ingenieur Georges Mougin ijvert al sinds 975 om het verslepen van ijsbergen mogelijk te maken, maar stuitte op tal van problemen (financiële, technische ). Het is pas sinds 00 dat men, dankzij o.a. simulatietechnieken, een beter zicht heeft op het verslepen van een ijsberg. Hoeveel ijs er tijdens een dergelijke tocht smelt, is onder andere afhankelijk van de tijd die het kost om de ijsberg naar de eindbestemming te slepen. Stel dat men als model een bolvormige ijsberg neemt met straal 50 m en dat er per dag een laag ijs van m dikte smelt. 8

3 Veeltermfuncties Bepaal het voorschrift van het volume V van de ijsberg (in m ) als functie van de vaartijd t (in dagen). Je mag aannemen dat het transport van de ijsberg begint op t = 0. V = 4 bol pr V = 4 (50 t) p Wat is het volume van de ijsberg na 0 dagen varen? V = 4 (50 0) = ,76 p Het volume is ongeveer m. Na hoeveel dagen zou de ijsberg volledig gesmolten zijn? V = 0 50 t = 0 t = 75 Na 75 dagen varen is het ijs gesmolten. Opdracht (vervolg) bladzijde 4 Maak gebruik van de grafiek van V om na te gaan na hoeveel tijd het volume van de ijsberg gehalveerd is. Grafisch: Bereken dit tijdstip ook algebraïsch. Algebraïsch: 4 4 p( 50 - t) = p t = t = = 5,4746 Na ongeveer 6 dagen is het volume gehalveerd. 8.a

4 Opdrachten Opdracht bladzijde Beschouw de functie met voorschrift f() = Welke nulpunten kun je aflezen uit de tabel van f? Uit de tabel van f lezen we nulpunten af:, en. Ontbind het voorschrift van f in factoren. Dit kan bijvoorbeeld door de termen twee aan twee samen te nemen = ( ) 9( ) = ( ) ( 9) = ( ) ( ) ( + ) Hoe kun je uit die ontbinding de nulpunten van f algebraïsch bepalen? ( ) ( ) ( + ) = 0 = 0 of = 0 of + = 0 = of = of = Opdracht 4 bladzijde Beschouw de functie met voorschrift f() = In een tabel kun je enkel het geheel nulpunt - aflezen. Bepaal m.b.v. de grafiek de overige nulpunten op 0,00 nauwkeurig. Op de grafiek lezen we de nulpunten,6 en,6 af

5 Veeltermfuncties Als - een nulpunt is van f, dan is + een deler van f() en geldt f() = ( + )? q(). Bepaal het quotiënt q() en bereken de nulpunten van f eact. M.b.v. de Hornerschema vinden we: Het quotiënt is q() = 4. Dit betekent dat f() = ( + ) ( 4) en dus: ( + ) ( 4) = 0 + = 0 of 4 = 0 D = = 0 = of = ± 5 = ± 5 nulpunten :, 5, + 5 Opdracht 5 bladzijde Plot de grafiek van de functie met voorschrift f() = Op basis van het standaardvenster vermoeden we twee nulpunten

6 Opdrachten Bereken de nulpunten van f door de bikwadratische vergelijking = 0 op te lossen = = 0 D = = 50, = 5 ± 50 4 = 9 of = 56 = 6 = ± of = ± 6 nulpunten = : ±, of, = 6, ± 6 6 nulpunten :,, 6, 6 Opdracht 6 bladzijde 4 Bepaal eact de nulpunten van de veeltermfuncties. f() = - = 0 ( ) = 0 = 0 of = 0 = 0 of = of = nulpunten: 0,,

7 Veeltermfuncties f() = = 0 Via een tabel vinden we als nulpunten 5, en. Er kunnen niet meer nulpunten zijn. Nulpunten: 5,, f() = = 0 ( ) + ( ) = 0 ( ) ( + ) = 0 = 0 of + = 0 = geen oplossing Nulpunt: 4 f() = = 0 In de tabel lezen we het nulpunt af. Regel van Horner: Er geldt: f() = ( + ) (4 4 + ) zodat: f() = 0 ( + ) (4 4 + ) = 0 ( + ) ( ) = 0 + = 0 of = 0 = of = Opmerkingen: ) is een dubbel nulpunt. ) Kies je voor de tabel stapgrootte, dan vind je ook als nulpunt via de tabel.

8 Opdrachten 5 f() = = 0 bikwadratische vergelijking: t 5t + 6 = 0 stel = t S = 5 P = 6 en t = of t = = of = = ± of = ± Nulpunten: nulpunten :,,, 6 f() = = 0 ( ) ( + ) = 0 = 0 of + = 0 geen oplossing = ± Nulpunten: nulpunten :, 7 f() = = 0 In de tabel lezen we het nulpunt af ( + ) ( ) = 0 + = 0 of = 0 D = = of = ± = ± Nulpunten: nulpunten :,, + 4

9 Veeltermfuncties 8 f() = = 0 In de tabel lezen we de nulpunten en af ( + ) ( ) ( ) = 0 + = 0 of = 0 of = 0 = of = of = ± 5 Nulpunten: nulpunten :,, 5, + 5 D = 5 9 f() = In de tabel lezen we het nulpunt 5 af ( + 5) (9 6 + ) = = 0 of ( ) = 0 = 5 of = nulpunten Nulpunten: : 5, 5

10 Opdrachten 0 f() = = 0 4 (4 9) (4 9) = 0 (4 9) ( 4 ) = 0 ( ) ( + ) ( ) ( + ) ( + ) = 0 = 0 of + = 0 of = 0 of + = 0 of + = 0 geen oplossing = of = of = of = Nulpunten: nulpunten :,,, Opdracht 7 bladzijde 5 Een veeltermfunctie van de derde graad heeft een (enkelvoudig) nulpunt en een dubbel nulpunt -. De grafiek van deze functie gaat door het punt P(-, ). Het voorschrift is bijgevolg van de vorm f() = a? ( - ) m? ( + ) n, met a π 0. Bepaal m en n. f() = a( ) m ( + ) n is een enkelvoudig nulpunt: m =, is een dubbel nulpunt: n =, 4 Omdat de veeltermfunctie van de derde graad is, is m = en n =. Bereken a. Het punt P (, ) ligt op de grafiek van f: a ( ) ( + ) = 6a = a = 6

11 Veeltermfuncties Opdracht 8 bladzijde 5 Bepaal het voorschrift van de vierdegraadsfunctie f met - en als dubbele nulpunten en waarvan de grafiek door het punt P(, ) gaat. f() = a ( + ) ( ) De grafiek gaat door het punt P (,): a ( + ) ( ) = 9a = a = Voorschrift : f() = ( + ) ( ) Opdracht 9 bladzijde 5 Geef een voorbeeld van een vierdegraadsfunctie met geen nulpunten f() = 4 +, g() = 4 + één nulpunt f() = ( ) 4, g() = ( ) ( + ) twee nulpunten f() = 4, g() = ( ) ( + ) 4 drie nulpunten f() = ( ) ( + ) ( ), g() = ( ) ( 4) 5 vier nulpunten f() = ( ) ( + ) ( ), g() = ( ) ( 4) 7

12 Opdrachten Opdracht 0 bladzijde 6 Het voorschrift f() = kan ontbonden worden als f() = ( + )( - ). In de tabel vind je de functiewaarden bij een aantal originelen. Leid uit deze gegevens af voor welke intervallen van de grafiek van f boven, respectievelijk onder de -as ligt. Doe dit zonder een grafiek te maken. De grafiek van f ligt boven de as voor < < 0 en voor >,5 want daar zijn de functiewaarden positief. De grafiek van f ligt onder de as voor < en voor 0 < <,5 want daar zijn de functiewaarden negatief. Omdat de functie van de derde graad is kunnen er maimum nulpunten zijn. Een andere mogelijkheid voor de grafiek is er niet. f() , ,5 4,5-5 -0, ,5 -,5 -,5 0 8,5,5 45 Voor = - en = zijn de functiewaarden negatief: f(-) = -7 en f() = -. Bepaal voor = - het teken van elk van de factoren in de ontbinding van f. Doe dit ook voor =. = : < 0 + < 0 ( ) < 0 = : > 0 + > 0 < 0 negatieve factoren ( + ) ( ( ) ) < 0 positieve en negatieve factor ( + ) ( ) < 0 Voor = - en = zijn de functiewaarden positief. Wat kun je voorspellen over het aantal positieve factoren voor deze twee -waarden? Controleer je bewering. = : even aantal negatieve factoren < 0 negatieve factoren + > 0 ( + ) ( ( ) ) > 0 ( ) < 0 = : > 0 + > 0 > 0 positieve factoren ( + ) ( ) > 0 8

13 Veeltermfuncties Opdracht bladzijde 8 Los de volgende ongelijkheden op met behulp van een tekentabel > 0 * nulpunten: = 0 Tabel: 0 ( ) ( + + ) = 0 = 0 of + + = 0 = D = < 0 * tekentabel: f() 0 + * > 0 als > * nulpunten: 4 + = 0 ( + ) = 0 = 0 () of + = 0 D = 5 = ± 5, 6 * tekentabel: f() * als of = 0 of 9

14 Opdrachten Opdracht bladzijde 8 Los grafisch op: f() > g(). = g() = f() 0 0 = g() = f() f() > g() als < < 0 of > Opdracht bladzijde 8 Voor welke waarden van ligt de grafiek van f: onder de grafiek van g: - - +? De voorwaarde vertaalt zich in: + 4 < < < 0 * nulpunten:,, (tabel) < 0 ( + ) ( + ) ( ) < 0 * tekentabel: f() g() * De grafiek van f ligt onder de grafiek van g als < of < < 0

15 Veeltermfuncties Opdracht 4 bladzijde 8 Los op f() g() ( 4) 0 * nulpunten: 0,, * tekentabel: f() g() * als of = 0 of

16 Opdrachten - - < - < f() g() + < 0 + < 0 * nulpunten:,, (tabel) + = ( ) ( ) = 0 ( + ) ( ) ( ) = 0 * tekentabel: f() g() * als of < < < <

17 Veeltermfuncties Opdracht 5 bladzijde 9 De functies f in deze opdracht hebben als voorschrift f()= of f()= of f()= of f()=. Op de grafiek van zo n functie f wordt een transformatie (spiegeling, uitrekking, verschuiving) uitgevoerd. Zo ontstaat de grafiek van een functie g. Bepaal telkens het voorschrift van f en g. f() g() - / / ,44 7,07,7 8, ,6,8 8 4 = g() = f() f ( ) = g ( ) = 5 f() g() - -0, 0, - -0,5 0, / / - 0,5-0,5 0, -0, = f() 0 = g() f ( ) = g ( ) =

18 Opdrachten f() g() - -0, 0, , / / - 0,5-0, -0, = f() = g() f ( ) = g ( ) = Opdracht 5(vervolg) bladzijde 0 4 f() g() -4 -,587 -,87 - -,6 -, ,6, ,5874,599 6,87,5874 8,87 = f() = g() f ( ) = g ( ) = 5 f() g() = g() = f() 0 f() = g() = ( + ) 4

19 Veeltermfuncties Opdracht 6 bladzijde Op de grafiek van de functie met voorschrift f() = 4 past men, in de gegeven volgorde, de volgende transformaties toe: een verticale uitrekking met factor een spiegeling om de -as een verschuiving volgens de vector v (-,) Je krijgt de grafiek van een functie g. Bepaal het voorschrift van deze functie. = 4 verticale uitrekking met factor = 4 spiegeling om de as = 4 verschuiving volgens v Æ (, ) 4 = ( + ) + 4 g() = ( + ) + Je verandert nu de volgorde van de transformaties als volgt: eerst een verschuiving volgens de vector v (-,) daarna een spiegeling om de -as tenslotte een verticale uitrekking met factor Je krijgt de grafiek van een functie h. Bepaal het voorschrift van deze functie. = 4 verschuiving volgens v Æ (, ) = ( + ) 4 + spiegeling om de as = ( + ) 4 verticale uitrekking met factor 4 = ( + ) 4 h ( ) = ( + ) 5

20 Opdrachten Opdracht 7 bladzijde Teken de grafiek van de functie met voorschrift f() =. Welke transformaties zijn er nodig om deze grafiek om te vormen tot de nevenstaande grafiek? : - + spiegeling om de as Æ = verschuiving volgens v Æ (0,) Æ = + Geef het voorschrift dat hoort bij die grafiek. = + 6

21 Veeltermfuncties Opdracht 8 bladzijde Gegeven zijn een aantal functiegrafieken. Bepaal de eventuele smmetrieassen en smmetriemiddelpunten van de grafieken. 4 = f() smmetriemiddelpunt: (0,0) 6 4 = f() geen smmetrie = f() 0 smmetriemiddelpunt (, ) 7

22 Opdrachten 4 6 = f() 4 p 0 p oneindig veel smmetrieassen [0, p] verdelen in delen p p 4p = 0, =, =, = p, =,... p p =, =, = f() smmetrieas: = 0 8

23 Veeltermfuncties 6 = f() 4 p p 0 p p 4 p 7p p oneindig veel smmetrieassen: =,,, Opdracht 9 bladzijde 6 Onderzoek algebraïsch of de functies met gegeven voorschrift even, oneven of geen van beide zijn. Controleer daarna d.m.v. een grafiek. f() = f( ) = ( ) = = f() f is even f() = f( ) = ( ) 5 ( ) + = π f() π f() f is even, noch oneven f() = f( ) = ( ) + 5( ) = 5 = ( + 5) = f() f is oneven 9

24 Opdrachten Opdracht 0 bladzijde 0 Hieronder zie je een aantal grafieken met voorschrift f() = a n. Maak een classificatie van de vorm van de grafiek van deze functies op basis van de waarde van a en n. f() = a n n even n oneven a > 0 f 5 () f () f 9 () f () f 7 () f () a < 0 f () f 4 () f 6 () f 0 () f 8 () f () Opdracht bladzijde In welke kwadranten liggen de grafieken van de volgende functies, voor zeer grote absolute waarden van? f() = a > 0 n even eerste en tweede kwadrant f() = a < 0 n oneven tweede en vierde kwadrant f() = -0,8 6 -, a < 0 n even derde en vierde kwadrant 4 f() = 0, a > 0 n oneven eerste en derde kwadrant 0

25 Veeltermfuncties Opdracht bladzijde Bij een rechthoekige metalen plaat van 0 cm bij 0 cm worden in de hoeken kleine vierkanten weggesneden. Daarna wordt van de plaat een bakje gebogen. De hoogte van de rand is (in cm). 0 cm 0 cm De inhoud I van dit bakje kunnen we uitdrukken in functie van : I() = (0 - )(0 - ) Welke inhoud heeft het bakje als =? En als =? = : I() = (0 6) (0 6) = 008 fi 008 cm = : I() = (0 ) (0 ), geen oplossing want < 0 de inhoud kan niet negatief zijn. Welke zijn de zinvolle waarden voor? De zijde van het vierkantje moet positief zijn en moet kleiner zijn dan de helft van de kortste zijde van de rechthoek (0 cm), dus 0 < < 0 Stel een tabel op van I, waarbij zinvolle gehele waarden aanneemt. Voor welke waarde van, bij benadering, is de inhoud maimaal? I() ª 4 cm

26 Opdrachten 4 Kies vensterinstellingen op basis van de tweede en de derde vraag en plot de grafiek van I. Ga op deze grafiek na voor welke -waarde de inhoud maimaal is. Geef het resultaat in mm. ª,97 cm ª 9 mm Opdracht bladzijde 6 Bepaal grafisch de relatieve etrema van de veeltermfunctie met voorschrift f() = 4-0,7-0,6 +. Via een tabel bepalen we de geschikte vensterinstelling - - De functie bereikt een minimum voor = 0,45 met waarde 0,97 en voor = 0,870 met waarde 0,658. De functie bereikt een maimum voor = 0 met waarde.

27 Veeltermfuncties Opdracht 4 bladzijde 6 Uit een rechthoek van 40 cm lang en 0 cm breed snijden we zes gelijke vierkanten weg zoals aangegeven op de figuur. Met het overblijvende deel maken we een taartdoosje. Hoe groot moet de zijde van de vierkantjes zijn opdat de doos een maimale inhoud zou hebben? De inhoud van de doos = I() = 40 ( 0 ) De zijde van het vierkantje moet ongeveer,77 cm zijn opdat de inhoud van de doos maimaal is (± 67,84 cm ) Opdracht 5 bladzijde 9 Welke van de onderstaande grafieken zijn functiegrafieken? Bepaal in dit geval het domein en het bereik van de functie. geen functie 0

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. 7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Hoofdstuk 8 - Periodieke functies

Hoofdstuk 8 - Periodieke functies Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk 8 - Periodieke functies ladzijde 8 V-a c Na seconden = slagen per minuut ca., millivolt V-a Ja, met periode Nee Mogelijk, met periode = en amplitude

Nadere informatie

3 Formules en de grafische rekenmachine

3 Formules en de grafische rekenmachine 3 Formules en de grafische rekenmachine Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules en de GR Inleiding Verkennen Werk het Practicum Basistechnieken met

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Het rechterlid van het voorschrift van een veeltermfunctie is een veelterm in één veranderlijke.

Het rechterlid van het voorschrift van een veeltermfunctie is een veelterm in één veranderlijke. 5 ASO H zwak leerboek 5-8- 6:9 Pagina. INLEIDING Vorig jaar maakten we al kennis met een basispakket functies : h g a) de constante functies : f () = a b) de eerstegraadsfuncties : g () = a + b c) de tweedegraadsfuncties

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid.

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2

Functieonderzoek. f(x) = x2 4 x 4 + 2. Igor Voulis. 9 december 2009. 1 De functie en haar definitiegebied 2. 2 Het tekenverloop van de functie 2 Functieonderzoek f(x) = x2 4 x 4 + 2 Igor Voulis 9 december 2009 Inhoudsopgave 1 De functie en haar definitiegebied 2 2 Het tekenverloop van de functie 2 3 De asymptoten 3 4 De eerste afgeleide 3 5 De

Nadere informatie

INLEIDING FUNCTIES 1. COÖRDINATEN

INLEIDING FUNCTIES 1. COÖRDINATEN INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 20 tijdvak 2 woensdag 22 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk

Nadere informatie

Eindexamen wiskunde B havo II

Eindexamen wiskunde B havo II Tonregel van Kepler In het verleden gebruikte men vaak een ton voor het opslaan en vervoeren van goederen. Tonnen worden ook nu nog gebruikt voor bijvoorbeeld de opslag van wijn. Zie de foto. foto Voor

Nadere informatie

Delta Nova. Delta Nova Analyse deel 1 3 lesuren. Delta Nova bestaat voor de eerste en tweede graad uit:

Delta Nova. Delta Nova Analyse deel 1 3 lesuren. Delta Nova bestaat voor de eerste en tweede graad uit: Delta Nova bestaat voor de eerste en tweede graad uit: Delta Nova Eerste graad Delta Nova a leerboek en werkboek Delta Nova b leerboek en werkboek Delta Nova a leerboek en werkboek Delta Nova b leerboek

Nadere informatie

Zomercursus Wiskunde. Module 11 Minimum-Maximumproblemen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 11 Minimum-Maximumproblemen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 11 Minimum-Maimumproblemen (versie 22 augustus 2011) Inhoudsopgave 1 Theoretische achtergrond 1 2 Oefeningen 7 2.1 Basis (A- en B-programma)........................

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A.

Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Wiskunde voor het hoger onderwijs deel A Errata 00 Noordhoff Uitgevers Correcties en verbeteringen Wiskunde voor het Hoger Onderwijs, deel A. Hoofdstuk. 4 Op blz. in het Theorieboek staat halverwege de

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-I

Eindexamen wiskunde B1-2 havo 2008-I Steeds meer vlees In wordt voor de periode 1960-1996 zowel de graanproductie als de vleesproductie per hoofd van de wereldbevolking weergegeven. Hiervoor worden twee verticale assen gebruikt. De ronde

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk - Machtsfuncties Voorkennis: Functies en symmetrie ladzijde 9 V-a Kies als vensterinstelling voor je GR ijvooreeld X en Y en voer in Y = X X + Je krijgt: + = 0, dan D = ( ) = en = = = + = of

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B,2 (nieuwe stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 8 juni 3.30 6.30 uur 20 03 Voor dit eamen zijn maimaal 84 punten te behalen; het eamen bestaat uit 7 vragen.

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 22 juni uur

Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 22 juni uur wiskunde B,2 Eamen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 22 juni 3.30 6.30 uur 20 05 Voor dit eamen zijn maimaal 88 punten te behalen; het eamen bestaat uit 9 vragen. Voor elk vraagnummer

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1997-1998: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

Werk met de applet. Bedenk steeds welke parameter a, b, c en/of d je moet aanpassen. Experimenteer tot je de regelmaat kunt formuleren!

Werk met de applet. Bedenk steeds welke parameter a, b, c en/of d je moet aanpassen. Experimenteer tot je de regelmaat kunt formuleren! 5 Transformaties Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Functies en grafieken Transformaties Inleiding Verkennen Werk met de applet. Bedenk steeds welke parameter a, b, c en/of

Nadere informatie

Hoofdstuk 7 - Periodieke functies

Hoofdstuk 7 - Periodieke functies Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ

Nadere informatie

Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur

Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur wiskunde B,2 Eamen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 22 juni 3.30 6.30 uur 20 05 Voor dit eamen zijn maimaal 88 punten te behalen; het eamen bestaat uit 9 vragen. Voor elk vraagnummer

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ

Nadere informatie

Het installatiepakket haal je af van de website http://www.gedesasoft.be/.

Het installatiepakket haal je af van de website http://www.gedesasoft.be/. Softmaths 1 Softmaths Het installatiepakket haal je af van de website http://www.gedesasoft.be/. De code kan je bekomen op de school. Goniometrie en driehoeken Oplossen van driehoeken - Start van het programma:

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 dinsdag 2 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 dinsdag 2 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 009 tijdvak dinsdag juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde 1, (nieuwe stijl) Eamen HV Hoger lgemeen Voortgezet nderwijs Tijdvak Woensdag 18 juni 1.0 16.0 uur 0 0 Voor dit eamen zijn maimaal 8 punten te behalen; het eamen bestaat uit 18 vragen. Voor elk

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Hoofdstuk 4 - Periodieke functies

Hoofdstuk 4 - Periodieke functies Hoofdstuk - Periodieke functies ladzijde 98 V-a Na seconden. Het hart klopt c, millivolt = slagen per minuut. V-a Ja, met periode ; nee; misschien met periode. Evenwichtsstand y = ; -; y =. Amplitude is

Nadere informatie

Examen VWO. wiskunde B1

Examen VWO. wiskunde B1 wiskunde B Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Woensdag juni 3.30 6.30 uur 0 06 Voor dit eamen zijn maimaal 84 punten te behalen; het eamen bestaat uit 9 vragen. Voor elk vraagnummer

Nadere informatie

VIDEO 4 4. MODULUSVERGELIJKINGEN

VIDEO 4 4. MODULUSVERGELIJKINGEN VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2008 WISKUNDE 5 PERIODEN DATUM : 5 juni 2008 ( s morgens) DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN Formuleboekje voor de Europese scholen Niet-programmeerbare,

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 2012 tijdvak 2 woensdag 20 juni 1330-1630 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage Dit eamen bestaat uit 16 vragen Voor dit eamen zijn maimaal 79 punten te behalen Voor elk

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,

Nadere informatie

Luc Gheysens - Extremumvraagstukken p.1

Luc Gheysens - Extremumvraagstukken p.1 EXTREMUMVRAAGSTUKKEN 1 Bepaal twee getallen x en y waarvan de som 144 is en waarvoor het product maximaal is. En voor welke waarden is het product x 3. y 2 maximaal? 2 Aan de vier hoeken van een vierkantig

Nadere informatie

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5.

11 ) Oefeningen. a) y = 2x 1 f) y = x 2 + 3x 4. b) y = 1 3 x2 x + 1 8. g) y = 1 x 2. c) y = x 3 x 2 +1 h) y = 6. d) y = x 2 4 i) y = x 2 5. 11 ) Oefeningen 1) Vergelijkingen van functies Welke vergelijkingen stellen een rechte voor? Welke vergelijkingen stellen een parabool voor? Welke vergelijkingen stellen noch een rechte noch een parabool

Nadere informatie

Eindexamen wiskunde B1 vwo 2008-II

Eindexamen wiskunde B1 vwo 2008-II Een eponentiële functie De functie f is gegeven door f( ) = e. is het snijpunt van de grafiek van f met de y-as. B is het snijpunt van de raaklijn aan de grafiek van f in met de -as. Zie figuur 1. figuur

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 8-II Een zwaartepunt Van een cirkelschijf met middelpunt (, ) en straal is het kwart getekend dat in het eerste kwadrant ligt. De cirkelboog is de grafiek van de functie f die

Nadere informatie

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud 1 Een optische illusie? Welk gebied heeft de grootste oppervlakte: het gele of het donkergroene? Doe eerst een schatting en maak daarna de nodige

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur

Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur Eamen VWO 008 tijdvak woensdag 18 juni 13.30-16.30 uur wiskunde B1 Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 84 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed

Nadere informatie

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008 Wiskunde 007- //008 Vraag Veronderstel dat de concentraties in het bloed van stof A en van stof B omgekeerd evenredig zijn en positief. Als de concentratie van stof A met p % toeneemt, dan zal de concentratie

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

Hoofdstuk 2 - Algebra of rekenmachine

Hoofdstuk 2 - Algebra of rekenmachine Hoofdstuk - Algebra of rekenmachine Voorkennis: kwadratische vergelijkingen bladzijde V-a pp ( + ) b kk ( 0) c xx ( + ) d k( 8k 7) e qq ( + 9) f 0, tt+ ( ) g 7r( 9r) h p( 7p+ ) V-a fx () = x( x + ) b Nt

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Eindexamen wiskunde B1 vwo 2006-II

Eindexamen wiskunde B1 vwo 2006-II Drinkbak In figuur staat een tekening van een drinkbak voor dieren. De bak bestaat uit drie delen: een rechthoekige, metalen plaat die gebogen is tot een smmetrische goot, een voorkant en een achterkant

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 0 tijdvak woensdag 0 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage.. Dit eamen bestaat uit 0 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-II

Eindexamen wiskunde B1-2 vwo 2007-II ier tappen ij het tappen van bier treden verschillen op in de hoeveelheid bier per glas. Uit onderzoek blijkt dat de hoeveelheid bier die per glas getapt wordt bij benadering normaal verdeeld is met een

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. Vlaamse Wiskunde Olympiade 000-00: Eerste ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 007 tijdvak woensdag 0 juni 13.30-16.30 uur wiskunde 1, ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 78 punten te behalen. Voor elk

Nadere informatie

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES

HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 HOOFDSTUK 4: GONIOMETRISCHE FUNCTIES 1 Periodieke functies 2 1.1 Op verkenning 2 1.2 Periodieke functie 2 1.3 Periode-interval, evenwichtslijn en amplitude 4 1.4 De perioderechthoek 4 1.5 Oefeningen

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 13 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 13 mei uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

vergelijkingen 6.1 Systematisch onderzoek Inhoud P Q x Q Grafieken van functies en vergelijkingen Grafieken van functies 6-2 en vergelijkingen

vergelijkingen 6.1 Systematisch onderzoek Inhoud P Q x Q Grafieken van functies en vergelijkingen Grafieken van functies 6-2 en vergelijkingen Grafieken van functies en vergelijkingen Grafieken van functies 6-0 en vergelijkingen Grafieken van functies en vergelijkingen Inhoud 1. Sstematisch onderzoek van grafieken Conveiteit en uigpunten Asmptoten

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

Parameterkrommen met Cabri Geometry

Parameterkrommen met Cabri Geometry Parameterkrommen met Cabri Geometry 1. Inleiding Indien twee functies f en g gegeven zijn die afhangen van eenzelfde variabele (noem deze t), dan kunnen de functiewaarden daarvan gebruikt worden als x-

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Kwadratische verbanden - Parabolen klas ms

Kwadratische verbanden - Parabolen klas ms Kwadratische verbanden - Parabolen klas 01011ms Een paar basisbegrippen om te leren: - De grafiek van een kwadratisch verband heet een parabool. - Een parabool is dalparabool met een laagste punt (minimum).

Nadere informatie

Extra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde. Transformaties en Stelling van Thales.

Extra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde. Transformaties en Stelling van Thales. Etra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde Transformaties en Stelling van Thales.. Waar of niet waar? a. Het beeld van een rechte door de projectie op

Nadere informatie

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie.

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie. 2 Domein en bereik Verkennen grafieken Domein en bereik Inleiding Verkennen Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van

Nadere informatie

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn

MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn Codelijst: : de dynamisch gegenereerde waarde van INVUL: invuloefening ( Short answer ) KLEUR: gebruik kleur! MATCH: matching oefening waarbij evenveel antwoordmogelijkheden als opgaven zijn MC: multiple

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ... PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...

Nadere informatie

Het metriek stelsel. Grootheden en eenheden.

Het metriek stelsel. Grootheden en eenheden. Het metriek stelsel. Metriek komt van meten. Bij het metriek stelsel gaat het om maten, zoals lengte, breedte, hoogte, maar ook om gewicht of inhoud. Er zijn verschillende maten die je moet kennen en die

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

Hoofdstuk 8 - De afgeleide

Hoofdstuk 8 - De afgeleide Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt,, kg lengte in m gewicht in kg,,, 7, 9,, gewicht in kg lengte in m c m weegt kg dus m weegt, kg,, d, meter, e startgetal, hellingsgetal, V-a

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback IJkingstoets burgerlijk ingenieur 6 september 203 - reeks - p. IJkingstoets burgerlijk ingenieur september 203: algemene feedback In totaal namen 245 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie