Algebra leren met deti-89

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Algebra leren met deti-89"

Transcriptie

1 Algebra leren met deti-89 Werkgroep T 3 -symposium Leuven augustus 2001 Doel Reflecteren op het leren van algebra in een computeralgebra-omgeving, en in het bijzonder op het omgaan met variabelen en parameters. LET OP: Deze werkgroep is een aangepaste herhaling van de gelijknamige werkgroep van het T3 symposium in Oostende in augustus Programma 1. Inleiding (15 ) 2. Werken in groepjes aan opgaven uit lesmateriaal (50 ) 3. Nabespreken paragraaf 1 aan de hand van leerlingenuitwerkingen en theorie over instrumentatie (25 ) Bij 2. Werken in groepjes aan opgaven uit lesmateriaal De opgaven uit paragraaf 1 en 2 komen uit het pakket Veranderlijke Algebra dat ontwikkeld is in het kader van het project Algebra leren in een computeralgebra omgeving dat aan het Freudenthal Instituut wordt uitgevoerd. De opgaven uit paragraaf 3 zijn afkomstig uit nascholingsmateriaal van het Freudenthal Instituut. De laatste opgave van 4 is overgenomen uit een experimenteel eindexamen in Denemarken. Werk deze fragmenten één voor één door in twee fasen: Eerst met de ogen van een leerling. Welke vaardigheid en deskundigheid heeft u bij het oplossen van de opgaven nodig? Let met name op het gebruik van letters hierbij. Ten tweede vanuit het perspectief van de docent. Bespreek met elkaar welk beeld de leerlingen moeten hebben van variabelen en parameters om de opgaven tot een goed einde te brengen. Voor de eerste paragraaf heeft u het programma schiet nodig. Paul Drijvers Freudenthal Instituut APS Bij 3. Nabespreking In de nabespreking wordt met name ingegaan op de opgaven uit de tweede paragraaf. Na afloop kunt u de belangrijkste bevindingen van het klasse-experiment waarop deze werkgroep is gebaseerd nalezen in de artikelen na de opgaven: Drijvers, P. en Van Herwaarden, O. (2000). Instrumentatie van ICT-gereedschap: algebra met computeralgebra. Nieuwe Wiskrant, tijdschrift voor Nederlands wiskundeonderwijs 20(1), Drijvers, P. (2001). Instrumentatie van algebraïsche substitutie met een computeralgebra machine. Paper gepresenteerd op de Onderwijs Research Dagen 2001, , Amsterdam. Paul Drijvers, FI / APS 1

2 1 Schieten en schuiven op de TI-89 Je gaat het spelletje Schiet spelen op de TI-89. Eerst speel je het spel. Daarna kijk je erop terug om het verband te leggen met de wiskunde. voorbereidingen 1 a. Zorg ervoor dat het spel op je TI-89 aanwezig is. b. Je gaat het spel samen met buurman/vrouw op één machine spelen. Typ in het HOME-scherm in: schiet(). Let op het sluithaakje! Je kunt het commando schiet() ook uit VAR-LINK halen. c. Meld de twee spelers aan met F1 optie 1 en voer de namen in. spelen zonder coördinaten d. Kies F2 optie 1: spelen zonder coördinaten. Je ziet een scherm van [0, 15] bij [0, 10] met aan de rechterzijde een doel. De loop van het geschut zie je links. Het is een stukje van de grafiek van de functie Y1 met Y1 = A*X + 5. Linksonder in beeld staat de huidige waarde van A. Linksboven zie je de naam van de speler die aan de beurt is. Met en kun je de loop richten op het doel. Daardoor verandert de waarde van A. Met ENTER schiet je. Raak je het doel, dan krijg je 10 punten. Een schampschot geeft 5 punten. De twee spelers lossen om de beurt een schot, elk 5 keer. Dan verschijnt de eindscore in beeld. 2 Speel het spel enkele keren met een medeleerling. spelen met coördinaten 3 a. Kies vervolgens F2 optie 2: Met coordinaten. Je krijgt dan ook de coördinaten van het doel in beeld. b. Speel het spel nu niet tegen elkaar maar met elkaar. Probeer samen een maximale score uit 5 schoten te halen. c. Hoe kun je geschikte A-waarde uit de coördinaten van het doel berekenen? het spel afsluiten 4 a. Sluit het spel netjes af met F3 optie 1: Stoppen. b. Tussentijds afbreken van het spel gaat met ON, gevolgd door ESC. Als je zo het spel afbreekt, moet je nog twee zaken goed instellen: - Kies in het HOME-scherm voor F6 optie 1: Clear a-z. - Kies MODE en stel bij F2 Exact/Approx in op 1:AUTO. nadenken over het spel 5 Welke wiskundige conclusies kun je trekken uit het spel? Schrijf die in je schrift. 6 Wat gebeurt er met de grafiek van y = a.x + 5 als a groter wordt? 2 Paul Drijvers, FI / APS

3 2 Substitutie 1 Het volume van een cilinder is gelijk aan de oppervlakte van het grondvlak keer de hoogte, afgekort tot v = g * h. De oppervlakte van het grondvlak is π maal het kwadraat van de straal r, dus g = π * r^2 Voer deze formules in en substitueer de formule van de oppervlakte in die van de inhoud. π krijg je met 2nd ^. straal hoogte 2 De inhoud van de kegel hiernaast is de oppervlakte van het grondvlak keer de hoogte gedeeld door 3, dus 1 3 inhoud = -- grondvlak hoogte De oppervlakte van het grondvlak is π maal het kwadraat van de straal, dus grondvlak = π straal 2 a. Bereken de inhoud van de kegel als de straal gelijk is aan 5 en de hoogte 9 is. b. Stel je kent de hoogte en de straal niet. Je weet wel dat de hoogte gelijk is aan het dubbele van de straal. Welke formule voor de inhoud kun je dan opstellen? straal hoogte 3 Twee rechthoekszijden van een rechthoekige driehoek zijn samen 31 lang. De schuine zijde heeft een lengte van 25. a. Hoe lang zijn de rechthoekszijden? b. Los het probleem ook op als de twee rechthoekszijden samen 35 zijn in plaats van 31. c. Los het probleem in het algemeen op, dat wil zeggen zonder dat de getallen 31 en 25 gegeven zijn Twee rechthoekszijden van een rechthoekige driehoek zijn samen 31 lang. De schuine zijde heeft een lengte van k. De vraag is, hoe lang de rechthoekszijden zijn. Voor welke waarden van k heeft dit probleem geen oplossing? 31 k Paul Drijvers, FI / APS 3

4 5 a. De ribben van twee kubussen zijn samen 20 lang. De totale inhoud van beide kubussen is Hoe groot is de ribbe van de grootste kubus? b. De som van twee getallen is s en de som van hun derdemachten is d. Druk die getallen uit in s en d. Schrijf de formules in zo eenvoudig mogelijke vorm. c. Hoe kun je in het antwoord van b zien, dat de twee oplossingen symmetrisch liggen rond --s? De ribben van twee kubussen zijn samen 20 lang. De totale inhoud van beide kubussen is d. Welke waarden kan de totale inhoud d aannemen? historische noot: De Babyloniers Hierboven zie je een Babylonische kleitablet waarin spijkerschrift is geschreven, toen de klei nog nat was. Dit tablet is waarschijnlijk tussen 1900 en 1600 voor Christus gemaakt. Sommige van dergelijke tabletten bevatten wiskundige problemen, bijvoorbeeld in de stijl van: Van een rechthoekig stuk land kennen we de oppervlakte (540 m 2 )ende lengte van de diagonaal (39 m). Bereken de afmetingen van het stuk land. 7 Probeer deze opgave op te lossen. 8 Een ander Babylonisch probleem, op eigentijdse manier geformuleerd: Voor welke waarden van x en y geldt: x + y = 28 x y + x.y = 183? Bron: pakket Veranderlijke Algebra, Freudenthal Instituut, Utrecht 4 Paul Drijvers, FI / APS

5 3 Raken aan een bundel 1 Gegeven is de verzameling functies y n ( x) = x ( n + 1 x n ) met n = 1, 2, 3, 4,... a. Teken de grafieken van de functies y 1,..., y 9 op het scherm ( met x- interval [0, 2], y-interval [0, 10]). Wat valt op als je naar de toppen kijkt? Bewijs je vermoeden. b. Als we n niet alleen de natuurlijke getallen, maar alle reële postieve getallen laten doorlopen, dan omhullen de grafieken een nieuwe kromme die min of meer al op het scherm te zien is. Een standaard methode om een vergelijking van die kromme te vinden is: differentieer y n ( x) naar n elimineer n uit de vergelijkingen y n ( x) = x ( n + 1 x n ) en yn ( x) = 0 n Voer de eliminatie uit met de TI 89. c. Zet de verkregen expressie in x in het functiebestand en controleer (althans optisch) of de kromme aan de negen eerder getekende krommen raakt. 2 In de vorige opgave was de vraag om de formule te vinden van een kromme die aan een gegeven bundel raakt. Pas de daar gepresenteerde methode toe om in te laten zien dat de lijnen in onderstaande figuur een parabool omhullen. Welke vergelijking heeft deze parabool? (10, 10) Bron: nascholingsmateriaal van de cursus wiskunde en ICT van het Freudenthal Instituut Paul Drijvers, FI / APS 5

6 4 Toegift 1 Een waaier van lijnen Hierboven staat de grafiek van de functie y met y = 4x 2 8x + 1. Ook is een waaier van lijnen door de oorsprong getekend. Zoals je ziet, varieert het aantal snijpunten dat deze lijnen hebben met de parabool. Vragen zijn nu: Tussen welke waarden kan het aantal snijpunten variëren? Waarvan hangt het aantal snijpunten tussen lijn en kromme af? Bepaal een regel die aangeeft hoe je uit de vergelijking van de lijn het aantal snijpunten met de kromme kunt afleiden. 2 Gegeven zijn functies f en g met f ( x) = x 3 12x + 16 en gx ( ) = x 3 + 3x 2 + 9x + 5. In de figuur hieronder staat de grafiek van g. De grafiek van f is echter zodanig omhoog geschoven, dat deze de grafiek van g raakt. De vraag is in welk punt de grafieken elkaar raken omhooggeschoven grafiek van f grafiek van g Bron: experimenteel eindexamen waarbij leerlingen het computeralgebra pakket Mathematica gebruiken, Denemarken, Paul Drijvers, FI / APS

Eliminatie van parameters en substitutie met computeralgebra

Eliminatie van parameters en substitutie met computeralgebra Eliminatie van parameters en substitutie met computeralgebra Guido Herweyers, KHBO Campus Oostende Dirk Janssens, K.U.Leuven 1. Inleiding Uitgaande van parametervergelijkingen van rechten en vlakken illustreren

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG)

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG) Lesbrief GeoGebra Inhoud: 1. Even kennismaken met GeoGebra 2. Meetkunde: 2.1 Punten, lijnen, figuren maken 2.2 Loodlijn, deellijn, middelloodlijn maken 2.3 Probleem M1: De rechte van Euler 2.4 Probleem

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld.

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld. Windenergie Er wordt steeds meer gebruikgemaakt van windenergie. Hoewel de bijdrage van windenergie nu nog klein is, kan windenergie in de toekomst een grote bijdrage aan onze elektriciteitsvoorziening

Nadere informatie

Algebra leren in een computeralgebra omgeving Freudenthal Instituut. Introductie TI-89

Algebra leren in een computeralgebra omgeving Freudenthal Instituut. Introductie TI-89 Algebra leren in een computeralgebra omgeving Freudenthal Instituut Introductie TI-89 Introductie TI-89 Project: Algebra leren in een computeralgebra omgeving Klas: VWO 3 Staat: Eerste versie, januari

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Figuren door Formules

Figuren door Formules Figuren door Formules 206 NWD 22 Freudenthal Instituut Universiteit Utrecht - Dit pakketje - voor leerlingen van vwo/havo of hoger - is ontworpen in opdracht van de NWD. Het kan worden gebruikt als voorbereiding

Nadere informatie

De kandidaten: jullie taak is het maken van de opdrachten, opzoeken van theorie en het zoeken naar de mol.

De kandidaten: jullie taak is het maken van de opdrachten, opzoeken van theorie en het zoeken naar de mol. Dossieropdracht 4 Wie is de mol? Opdracht Je gaat het spel Wie is de mol? spelen. Dit doe je in een groep van circa acht personen, die wordt gemaakt door de docent. In je groep moet je acht vragen beantwoorden

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2014 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid.

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 donderdag 19 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 1 donderdag 19 mei uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 011 tijdvak 1 donderdag 19 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Het gewicht van een paard

Het gewicht van een paard Het gewicht van een paard Voor mensen die paarden verzorgen figuur 1, is het belangrijk om te weten hoe zwaar hun paard is. Het gewicht van een paard kan worden geschat met behulp van twee afmetingen:

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. 7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur Wiskunde B Profi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Donderdag 25 mei 3.30 6.30 uur 20 00 Dit eamen bestaat uit 7 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5

Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari uur Aantal opgaven: 5 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 16 januari 2015 Tijd: 13.30 16.30 uur Aantal opgaven: 5 Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.

Nadere informatie

De twee schepen komen niet precies op hetzelfde moment in S aan.

De twee schepen komen niet precies op hetzelfde moment in S aan. Gevaar op zee Schepen die elkaar te dicht naderen worden gewaarschuwd door de kustwacht. Wanneer schepen niet op zo n waarschuwing hebben gereageerd, stelt de Inspectie Verkeer en Waterstaat een onderzoek

Nadere informatie

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras

pythagoras handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek pythagoras inhoudsopgave 1 de grote lijn applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek 1 de grote lijn hoofdlijn de zijlijn De oppervlakte van rechthoekige driehoeken. Van een

Nadere informatie

Werken met parameters

Werken met parameters Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je hoe de waarde van een parameter in een functievoorschrift de vorm of ligging van de functie kan beïnvloeden. Je gaat dit onderzoeken voor tweedegraadsfuncties.

Nadere informatie

Homogene groepen, de balk

Homogene groepen, de balk Volgende week mag je zelf een les van ongeveer 20 minuten geven aan je medeleerlingen over de balk, cilinder of kegel. Een goede les bevat veel leerlingactiviteit. Zorg er dus voor dat je je leerlingen

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 6 les 4

Wiskunde D Online uitwerking 4 VWO blok 6 les 4 Wiskunde Online uitwerking 4 VWO blok 6 les 4 Paragraaf 4 Het inproduct om hoeken te berekenen Opgave a e hoek is kleiner dan 4, want het dak zelf staat onder een hoek van 45, en de kilgoot loopt schuin

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur Examen HVO 2013 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Eindexamen vwo wiskunde B pilot 2014-I

Eindexamen vwo wiskunde B pilot 2014-I Eindeamen vwo wiskunde B pilot 04-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

3 Formules en de grafische rekenmachine

3 Formules en de grafische rekenmachine 3 Formules en de grafische rekenmachine Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules en de GR Inleiding Verkennen Werk het Practicum Basistechnieken met

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Hoezo denkactiviteiten?

Hoezo denkactiviteiten? Hoezo denkactiviteiten? Paul Drijvers, Freudenthal Instituut Peter van Wijk, ctwo/aps 2011-11-05 350 450 100 N F P H Afstand tot F Afstand tot P 350 450 100 N F P H 350 450 100 N F P H Is dit een wiskundige

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1,2 Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

2.1 Lineaire formules [1]

2.1 Lineaire formules [1] 2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-I

Eindexamen wiskunde B1-2 havo 2008-I Steeds meer vlees In wordt voor de periode 1960-1996 zowel de graanproductie als de vleesproductie per hoofd van de wereldbevolking weergegeven. Hiervoor worden twee verticale assen gebruikt. De ronde

Nadere informatie

Examen HAVO. Wiskunde B1,2

Examen HAVO. Wiskunde B1,2 Wiskunde B1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Dinsdag 23 mei 13.30 16.30 uur 00 Dit examen bestaat uit 18 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek

Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek Onderstaande verbeteringen zijn gebaseerd op de eerste druk van deze titel. In bijdrukken worden fouten hersteld. Het is dus goed mogelijk, dat hier verbeteringen staan, die bij een nieuwe druk al zijn

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Eindexamen wiskunde B havo 2011 - I

Eindexamen wiskunde B havo 2011 - I Overlevingstijd Als iemand in koud water terecht komt, daalt zijn lichaamstemperatuur. Als de lichaamstemperatuur is gedaald tot 30 ºC ontstaat een levensbedreigende situatie. De tijd die verstrijkt tussen

Nadere informatie

Kaas. foto 1 figuur 1. geheel aantal cm 2.

Kaas. foto 1 figuur 1. geheel aantal cm 2. Kaas Op foto 1 zie je drie stukken kaas. Het zijn delen van een hele, ronde kaas. Het grootste stuk is precies de helft van een hele kaas. Deze halve kaas heeft een vlakke zijkant. De vorm van de vlakke

Nadere informatie

a) Bereken het middelpunt van van cirkel C, door omzetting van de gegeven formule.

a) Bereken het middelpunt van van cirkel C, door omzetting van de gegeven formule. RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO NG/NT KLAS 12 T212-HNGNT-H7911 Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Antwoorden moeten altijd zijn voorzien van een berekening,

Nadere informatie

Parameterkrommen met Cabri Geometry

Parameterkrommen met Cabri Geometry Parameterkrommen met Cabri Geometry 1. Inleiding Indien twee functies f en g gegeven zijn die afhangen van eenzelfde variabele (noem deze t), dan kunnen de functiewaarden daarvan gebruikt worden als x-

Nadere informatie

Efficientie in de ruimte - leerlingmateriaal

Efficientie in de ruimte - leerlingmateriaal Junior College Utrecht Efficientie in de ruimte - leerlingmateriaal Versie 2 September 2012 Een project (ruimte-)meetkunde voor vwo-leerlingen Geschreven voor het Koningin Wilhelmina College Culemborg

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VW 04 tijdvak dinsdag 0 mei 3.30-6.30 uur wiskunde B (pilot) chter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen bestaat uit 8 vragen. Voor dit eamen

Nadere informatie

Syllabus Leren Modelleren

Syllabus Leren Modelleren Syllabus Leren Modelleren Januari / februari 2014 Hervormd Lyceum Zuid Klas B1B SCHRIJF HIER JE NAAM: LES 1 Syllabus Modelleren; Les 1: Zoekproblemen Klas B1B Inleiding In de lessen voor de kerstvakantie

Nadere informatie

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r 0 7-0 8 AFDELING EN LEERJAAR: B T/H 07 08 Aantal proefwerken: 8 (+ 3 in toetsweken) Aantal werkstukken: 0 of I Proefwerk

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

Hoofdstuk 1 - Inleiding ruimtefiguren

Hoofdstuk 1 - Inleiding ruimtefiguren Wiskunde Leerjaar 1 - periode 3 Ruimtemeetkunde Hoofdstuk 1 - Inleiding ruimtefiguren A. Zeven verschillende ruimtefiguren Hieronder zie je zeven verschillende ruimtefiguren. De ruimtefiguren ontstaan

Nadere informatie

Eenvoud bij tekenen en rekenen

Eenvoud bij tekenen en rekenen Eenvoud bij tekenen en rekenen Jan van de Craats In het decembernummer 2005 van Euclides doen Paul Drijvers, Swier Garst, Peter Kop en Jenneke Krüger verslag van een experimenteel project in vwo-5 wiskunde-b

Nadere informatie

Kwadratische verbanden - Parabolen klas ms

Kwadratische verbanden - Parabolen klas ms Kwadratische verbanden - Parabolen klas 01011ms Een paar basisbegrippen om te leren: - De grafiek van een kwadratisch verband heet een parabool. - Een parabool is dalparabool met een laagste punt (minimum).

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

1 Middelpunten. Verkennen. Uitleg

1 Middelpunten. Verkennen. Uitleg 1 Middelpunten Verkennen Middelpunten Inleiding Verkennen Probeer vanuit drie gegeven punten (niet op één lijn) die op een cirkel moeten liggen het middelpunt van die cirkel te construeren. Je kunt hem

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Examen HAVO. wiskunde B1,2

Examen HAVO. wiskunde B1,2 wiskunde 1, Examen HVO Hoger lgemeen Voortgezet Onderwijs ijdvak 1 Vrijdag 19 mei 1.0 16.0 uur 0 06 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit vragen. Voor elk vraagnummer

Nadere informatie

Extra oefeningen: vergelijkingen en ongelijkheden

Extra oefeningen: vergelijkingen en ongelijkheden Extra oefeningen: vergelijkingen en ongelijkheden 1 3 Controleer of de gegeven reële getallen oplossingen zijn van de bijhorende vergelijking. Vergelijking Gegeven reële getallen a) x 7 = 3 5 en b). x

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 990-99: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt: een deelnemer start met 0 punten Per

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Eindexamen wiskunde B havo I (oude stijl)

Eindexamen wiskunde B havo I (oude stijl) Twee functies en hun som In figuur 1 zijn de grafieken getekend van de functies f ( x) = 2x + 12 en g ( x) = x 1 figuur 1 y Q f g O x De grafiek van f snijdt de x-as in en de y-as in Q 4p 1 Bereken de

Nadere informatie

7.1 De afgeleide van gebroken functies [1]

7.1 De afgeleide van gebroken functies [1] 7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:

Nadere informatie

Antwoordmodel - In de ruimte

Antwoordmodel - In de ruimte Antwoordmodel - In de ruimte Vraag 1 Welke ruimtefiguren (of delen van) herken je op de volgende foto s? a Foto 1. Balk, prisma, cilinder en kubus. b Foto 2. Cilinder, balk, kubus en prisma c Foto 3. Balk,

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Eindexamen wiskunde B1-2 havo 2006-II

Eindexamen wiskunde B1-2 havo 2006-II Toename lichaamsgewicht zwangere vrouw Een vrouwenarts heeft van een zwangere vrouw gedurende de zwangerschap allerlei gegevens verzameld. In tabel 1 staan enkele resultaten. Daaruit is onder andere af

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur Eamen VW 016 tijdvak 1 woensdag 18 mei 13.30-16.30 uur wiskunde (pilot) it eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud 1 Een optische illusie? Welk gebied heeft de grootste oppervlakte: het gele of het donkergroene? Doe eerst een schatting en maak daarna de nodige

Nadere informatie

Examen HAVO en VHBO. Wiskunde B

Examen HAVO en VHBO. Wiskunde B Wiskunde B Examen HAVO en VHBO Hoger Algemeen Voortgezet Onderwijs Vooropleiding Hoger Beroeps Onderwijs HAVO Tijdvak 1 VHBO Tijdvak 2 Dinsdag 23 mei 13.30 16.30 uur 00 Dit examen bestaat uit 19 vragen.

Nadere informatie

OPPERVLAKTEBEREKENING MET DE TI83

OPPERVLAKTEBEREKENING MET DE TI83 WERKBLAD OPPERVLAKTEBEREKENING MET DE TI83 Gevraagd de oppervlakte van het vlakdeel begrensd door de X as 3 grafiek f : x x 4x + x + x = en x = Oplossing Vermits we hier te doen hebben met een willekeurige

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur

Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur Examen HAVO 014 tijdvak 1 woensdag 14 mei 1.0-1.0 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2010 tijdvak 1 dinsdag 18 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor

Nadere informatie

Paragraaf 1.1 : Lineaire verbanden

Paragraaf 1.1 : Lineaire verbanden Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

wiskunde B vwo 2017-I

wiskunde B vwo 2017-I wiskunde vwo 017-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek,

Nadere informatie

Eindexamen wiskunde B havo I (oude stijl)

Eindexamen wiskunde B havo I (oude stijl) Een functie Voor 0 < = x < = 2π is gegeven de functie figuur 1 f(x) = 2sin(x + 1 6 π). In figuur 1 is de grafiek van f getekend. y 1 f 4 p 1 Los op: f(x) < 1. De lijn l raakt de grafiek van f in het punt

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 2013 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 28 januari 23 Voorlopige versie 29 januari 23 Opgave a Schrijf f ) g) met g) 9 2. g) 9 2 ) /2, dus g ) 2 9 2 ) /2 2 Dit geeft

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.

De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2. BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie