IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

Maat: px
Weergave met pagina beginnen:

Download "IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback"

Transcriptie

1 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur die aangeboden werd aan aspirant-studenten burgerlijk ingenieur aan de VUB, KU Leuven en UGent. Hiervan waren er 442 geslaagd. Zoals je kan zien in de onderstaande resultatenverdeling hebben heel wat deelnemers goed gepresteerd. Daarnaast zijn er een aantal deelnemers met een lagere score, die zich best eens grondig bezinnen over hun studiekeuze en/of studieaanpak. Verdeling van de scores over de verschillende deelnemers van de ijkingstoets van 30 juni % van de deelnemers haalde 18/20 of meer. 10.3% van de deelnemers haalde 16/20 of meer. 24.7% van de deelnemers haalde 14/20 of meer. 43.2% van de deelnemers haalde 12/20 of meer. 61.7% van de deelnemers haalde 10/20 of meer. 20.7% van de deelnemers haalde 7/20 of minder. Hieronder staan de vragen, met telkens het juiste antwoord, het percentage dat deze vraag juist heeft beantwoord en het percentage dat deze vraag heeft blanco gelaten.

2 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 2 Oefening 1 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D) f 0 ( 2π/2) = 0 (E) f 0 ( 2π/2) = 1 2π Oplossing: A juist beantwoord: 85 % blanco: 2 % Oefening 2 Gegeven is de cirkel met vergelijking = 0. M = (a, b) noemen we het middelpunt van deze cirkel en R de straal. Bepaal 2a + b + R2. (A) 10 (B) 14 Oplossing: C juist beantwoord: 58 % blanco: 12 % (C) 20 (D) 24 (E) 30

3 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 3 Oefening 3 Beschouw de functie f : R R met onderstaande grafiek. f () Verder is g : R R een willekeurige functie. Welke van onderstaande uitspraken is juist voor elke dergelijke functie g? (A) Als g() = g(1 ) voor alle R, dan is f (g()) = g() voor alle R. (B) Als g() = g(1 ) voor alle R, dan is g(f ()) = g() voor alle R. (C) Als 1 g() 1 voor alle R, dan is f (g()) = g() voor alle R. (D) Als 1 g() 1 voor alle R, dan is g(f ()) = g() voor alle R. (E) Als g() = g(1 ) en 1 g() 1 voor alle R, dan is g(f ()) = g() voor alle R. Oplossing: C juist beantwoord: 28 % blanco: 37 %

4 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 4 Oefening 4 In programmeertalen gedragen variabelen zich als een doos waarin e e n waarde kan zitten. Een variabele heeft een naam, bijvoorbeeld. Met een toekenning steek je een waarde in : := 17 vervangt de waarde die in zit vo o r de toekenning door de waarde 17. De rechterkant van een toekenning kan ook een rekenkundige uitdrukking zijn, en dan wordt die uitgerekend om de waarde te kennen die aan de variabele links wordt gegeven. Bijvoorbeeld na de drie toekenningen := := 3 17 := + 1 bevat de waarde 18 en de waarde 14. Hieronder staan 6 toekenningen die na elkaar, in de gegeven volgorde worden uitgevoerd. := 7 := 8 z := 9 := + := + z := + Geef aan welke waarde na deze toekenningen in de variabele z zit. (A) z heeft waarde 38 (B) z heeft waarde 30 (C) z heeft waarde 37 (D) z heeft waarde 22 (E) z heeft waarde 15 Oplossing: C juist beantwoord: 91 % blanco: 1 %

5 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 5 Oefening 5 Welk zijaanzicht kan bij het onderstaande bovenaanzicht horen? (A) (B) (D) (E) Oplossing: C juist beantwoord: 90 % blanco: 1 % (C)

6 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 6 Oefening 6 In een magisch vierkant is de som van de getallen in elke rij en kolom en op de twee diagonalen telkens dezelfde. Welk getal moet dan komen op de plaats van het vraagteken in dit magisch vierkant? (A) 17 (B) 24 (C) 27 21? (D) 33 (E) 36 Oplossing: D juist beantwoord: 60 % blanco: 30 % Oefening 7 ( 3 + i)4 We beschouwen het complee getal z = met i2 = 1. Dan is de som s van het ree el deel van z en het ( 3 i)2 imaginair deel van z (A) s = 4 (B) s = (C) s = (D) s = (E) s = 4 Oplossing: A juist beantwoord: 57 % blanco: 24 %

7 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 7 Oefening 8 Men tekent een regelmatige zeshoek waarvan de hoekpunten op een cirkel met straal 8 liggen. Deze regelmatige zeshoek splitst men op in driehoeken door ieder hoekpunt te verbinden met het middelpunt van de cirkel. Elk van deze driehoeken wordt gespiegeld ten opzichte van de zijde die behoort tot die driehoek en tot de oorspronkelijke zeshoek. Alle bekomen driehoeken vormen samen een nieuwe vlakke figuur. Wat is de straal van de kleinste cirkel die deze volledige figuur bevat? (A) 12 2 (B) 12 3 (C) 8 2 (D) 8 3 (E) 16 Oplossing: D juist beantwoord: 83 % blanco: 6 % Oefening 9 Twee motorrijders rijden beiden in tegenwijzerzin op een cirkelvormig circuit. Ze starten gelijktijdig in het punt s (zie figuur). Op het tijdstip T ontmoeten ze elkaar op het punt e van het circuit. Ze hebben elkaar nog niet eerder op dit punt ontmoet (eventueel wel op andere punten van het circuit). De motorrijders rijden aan een constante snelheid, die we respectievelijk als v1 en v2 noteren. Als je weet dat v1 = 7v2 /3, hoeveel volledige ronden heeft de ene rijder dan meer afgelegd dan de andere op het tijdstip T? α = 3π/2 s e (A) 1 (B) 3 Oplossing: A juist beantwoord: 32 % blanco: 45 % (C) 8 (D) 10 (E) 12

8 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 8 Oefening 10 Welk van de 5 aanzichten is niet van onderstaand volume? (A) (B) (D) (E) Oplossing: B juist beantwoord: 59 % blanco: 3 % (C)

9 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 9 Oefening 11 Een functie f : A B : 7 f () van verzameling A naar verzameling B is injectief als voor alle, A geldt: als 6=, dan is f () 6= f (). Welke van de volgende functies is injectief? (A) f : N N N : (n, m) 7 m + n (B) f : N N N : (n, m) 7 m n (C) f : N N N : (n, m) 7 3m 5n (D) f : N N N : (n, m) 7 mn (E) f : N N N : (n, m) 7 2m+n Oplossing: C juist beantwoord: 30 % blanco: 55 % Oefening 12 Noteer met M de grootste waarde die 4 3 kan aannemen als en ree le getallen zijn die moeten voldoen aan = 100. Dan geldt: (A) 16 M < 25 (B) 25 M < 36 (C) 36 M < 49 (D) 49 M < 64 (E) 64 M 100 Oplossing: D juist beantwoord: 27 % blanco: 20 % Oefening 13 Rakend aan een wiel met straal a wordt een staaf vastgemaakt met lengte b. Als het wiel over een hoek van as draait, wat is de door de staaf bestreken oppervlakte? Zie de onderstaande figuur: b a Oplossing: A juist beantwoord: 23 % blanco: 40 % (A) π 2 4b (B) π 2 4 (a + b2 ) (C) π 2 4 (a + b2 ) + 21 ab (D) π 2 4 (a + b2 ) 21 ab (E) π 2 4b + 12 ab π 2 om zijn

10 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 10 Oefening 14 Gegeven zijn de grafieken van twee ree le functies f en g. De schaal is voor beide figuren dezelfde. grafiek van g grafiek van f Welke van de volgende figuren is de grafiek van f g? (B) (A) (D) Oplossing: C juist beantwoord: 73 % blanco: 2 % (C) (E)

11 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 11 Oefening 15 Tot welk van de vijf onderstaande gesloten volumes kan je deze vlakke figuur vouwen? Je kan enkel op de getekende lijnen vouwen. (A) (B) (D) (E) (C) Oplossing: C juist beantwoord: 64 % blanco: 20 % Oefening 16 Veronderstel dat m 6= 0 een vast natuurlijk getal is. Waaraan is limn (A) m m 1 (B) m Oplossing: E juist beantwoord: 73 % blanco: 7 % (C) 1 (D) -1 (E) m nm m n gelijk?

12 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 12 Oefening 17 De functie sgn (signum-functie of tekenfunctie genoemd) wordt gedefinieerd door ( als 6= 0 sgn() = 0 als = 0. Bereken (A) 8 R4 0 sgn(2 ) d. (B) 4 Oplossing: D juist beantwoord: 32 % blanco: 19 % (C) 0 (D) 4 (E) 8

13 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 13 Oefening 18 Een cilinder met beweegbare zuiger is gevuld met een gas dat zich gedraagt als een ideaal gas. Dit betekent dat het volgende verband geldt tussen de druk p, het volume V en de temperatuur T : pv = nrt, waarbij n de hoeveelheid gas voorstelt en R de gasconstante is. Onderstaande figuren tonen het volume V en de temperatuur T als functie van de tijd t. De tijdsschaal is voor alle grafieken identiek. De hoeveelheid gas n blijft constant. V T t t Welke grafiek is de bijhorende grafiek van de druk p als functie van de tijd? p (A) p t p (D) t Oplossing: C juist beantwoord: 33 % blanco: 2 % (B) t p (E) t p (C) t

14 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 14 Oefening 19 Gegeven zijn de volgende veeltermen f (X) = X 3 + 3X 2 1 g(x) = 5 + 7X X 3 h(x) = 5X 4 3X 3 + 2X 1. Welke van de volgende veeltermen die hiermee gemaakt worden, heeft de hoogste graad? (A) f (g(x)) + h(x) (B) g(x).(f (X) + h(x)) (C) h(f (X) + g(x)) (D) g(x).f (X) + h(x) (E) f (h(x)) + g(x) Oplossing: E juist beantwoord: 84 % blanco: 3 % Oefening 20 De figuur toont een grondvlak, met daarboven kubussen gestapeld. Hoeveel kubussen van 1 bij 1 bij 1 zijn nodig om deze stapeling te maken? Veronderstel dat alle rijen en kolommen maimaal opgevuld zijn, tenzij je het einde ervan kan zien. (A) 21 (B) 28 Oplossing: E juist beantwoord: 86 % blanco: 1 % (C) 30 (D) 32 (E) 34

15 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 15 De samengestelde oefeningen bestaan telkens uit 3 deelvragen. Samengestelde oefening 1 Een robotarm is zo ingesteld dat deze een rechthoekige plaat in tegenwijzerzin roteert en verschuift in het -vlak (cartesiaans assenstelsel). De plaat kan niet vervormen. De coo rdinaten (, ) van de hoekpunten van de plaat voor en na de manipulatie zijn gegeven in onderstaande tabel. Deze coo rdinaten zijn uitgedrukt in meter (m). punt coo rdinaat voor manipulatie coo rdinaat na manipulatie p1 (0 m, 0 m) ( 2 m, 0 m) p2 (2 m, 0 m) ( 2 m, 2 m) p3 (0 m, 1 m)? p4 (2 m, 1 m)? Vraag 21 Over welke hoek wordt de plaat geroteerd? (A) 0 (B) 30 (C) 45 (D) 60 (E) 90 Oplossing: E juist beantwoord: 80 % blanco: 8 % Vraag 22 Welke is de -coo rdinaat van het hoekpunt p4 na manipulatie? (A) 2 m (B) ( 2 1) m (C) 2 m (D) ( 2 + 1) m (E) ( 2 + 2) m Oplossing: B juist beantwoord: 76 % blanco: 9 % Vraag 23 De manipulatie wordt beschreven via de matrices A en B. 0 =A +B 0 Hierbij zijn (, ) de coo rdinaten voor de manipulatie en (0, 0 ) de coo rdinaten na de manipulatie. Bepaal de som van de elementen van de matri B. (A) 2 m (B) ( 2 + 1) m (C) ( 2 + 2) m (D) 2 2 m (E) (2 2 1) m Oplossing: A juist beantwoord: 46 % blanco: 47 %

16 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 16 Samengestelde oefening 2 Gegeven de 4 punten P (1, 0, 0), Q(0, 2, 0), R( 3, 2, 1), en S(1, 4, 1) en de rechte l { = + 1, + + z = 7} in de driedimensionale ruimte met een cartesiaans assenstelsel z. Vraag 24 Noem d de afstand van het punt S tot het vlak dat door P, Q en R loopt. Welke uitspraak is dan geldig? (A) d 1/4 (B) 1/4 < d 1/3 (C) 1/3 < d 1/2 (D) 1/2 < d 1 (E) 1 < d Oplossing: B juist beantwoord: 34 % blanco: 34 % Vraag 25 Bepaal de doorsnede D van de rechte l met het vlak dat door de drie punten P, Q en R loopt. (A) Er is geen snijpunt. (B) Er zijn oneindig veel snijpunten. (C) Er is juist e e n snijpunt met -coo rdinaat 5. (D) Er is juist e e n snijpunt met -coo rdinaat 5. (E) Er is juist e e n snijpunt met z-coo rdinaat 5. Oplossing: C juist beantwoord: 43 % blanco: 44 % Vraag 26 De vector P Q is de vector van het punt P naar het punt Q. De vector P R is de vector van het punt P naar het punt R. Noem α de hoek tussen de vectoren P Q en P R. Welke uitspraak is dan geldig? (A) cos α 0.2 (B) 0.2 < cos α 0.4 (C) 0.4 < cos α 0.6 (D) 0.6 < cos α 0.8 (E) 0.8 < cos α Oplossing: D juist beantwoord: 51 % blanco: 22 %

17 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 17 Samengestelde oefening 3 Gegeven is de functie f, met voorschrift f : D R R : 7 f () = Hierbij is D de verzameling van alle ree le getallen waarvoor de uitdrukking f () = goed gedefinieerd is. Men noemt de verzameling D het domein of definitiegebied van de functie. Vraag 27 Wat is de verzameling D? (A) [0, + [ (B) ], 5] (C) [ 5, 0] (D) ]0, + [ ], 5[ (E) [0, + [ ], 5] Oplossing: E juist beantwoord: 87 % blanco: 1 % Vraag 28 Welk van volgende uitspraken is waar voor deze functie? (A) De functie is overal stijgend. (B) De functie is overal dalend. (C) De functie heeft twee verschillende nulpunten. (D) De functie neemt geen strikt positieve waarden aan. (E) De functie neemt zowel strikt positieve als strikt negatieve waarden aan. Oplossing: D juist beantwoord: 60 % blanco: 5 % Vraag 29 Welk van volgende uitspraken is waar voor deze functie? (A) De grafiek van de functie heeft een horizontale asmptoot in + en een schuine asmptoot in. (B) De grafiek van de functie heeft een horizontale asmptoot in en een schuine asmptoot in +. (C) De grafiek van de functie heeft een horizontale asmptoot in zowel + als. (D) De grafiek van de functie heeft een schuine asmptoot in zowel + als. (E) De grafiek van de functie heeft geen asmptoten. Oplossing: A juist beantwoord: 27 % blanco: 26 %

18 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 18 Samengestelde oefening 4 P (5, 9) is een punt op de grafiek van een afleidbare functie f : R R. De raaklijn aan de grafiek van f in het punt P snijdt de -as in het punt Q(1, 0). Je mag aannemen dat f () 0 voor alle R. Definieer de volgende functies: g : R R : 7 g() = fp () 1 h : R R : 7 h() = f () l : R R : 7 l() = h() + g() Vraag 30 Bepaal l(5). Welke uitspraak is geldig? (A) l(5) < 5 (B) 5 l(5) < 7 (C) 7 l(5) < 9 (D) 9 l(5) < 11 (E) 11 l(5) Oplossing: E juist beantwoord: 80 % blanco: 11 % Vraag 31 Bepaal de afgeleide g 0 (5). Welke uitspraak is geldig? (A) g 0 (5) < 0 (B) 0 g 0 (5) < 1 (C) 1 g 0 (5) < 2 (D) 2 g 0 (5) < 3 (E) 3 g 0 (5) Oplossing: D juist beantwoord: 62 % blanco: 14 % Vraag 32 Bepaal de afgeleide h0 (5). (A) h0 (5) = 3 8 (B) h0 (5) = 3 2 (C) h0 (5) = 1 6 (D) h0 (5) = (E) h0 (5) = 2 27 Oplossing: A juist beantwoord: 51 % blanco: 23 %

19 IJkingstoets burgerlijk ingenieur 30 juni reeks 1 - p. 19 Samengestelde oefening 5 Beschouw de veelterm p() = a2 + b + 20, met a en b zodanig dat deze veelterm deelbaar is door ( 1)( + 2). Vraag 33 Welke van volgende uitspraken is geldig (A) p( 2) = p(0) = p(1) (B) p( 2) < p(0) < p(1) (C) p( 2) > p(0) > p(1) (D) p( 2) = p(1) > p(0) (E) p( 2) = p(1) < p(0) Oplossing: E juist beantwoord: 64 % blanco: 13 % Vraag 34 Bepaal de afgeleide p0 (0) (A) p0 (0) = 29 (B) p0 (0) = 12 (C) p0 (0) = 17 (D) p0 (0) = 29 (E) p0 (0) = 34 Oplossing: B juist beantwoord: 72 % blanco: 19 % Vraag 35 De veelterm q() is het resultaat van de deling van p() door ( 1)( + 2). Bepaal q( 1). (A) q( 1) = 5 (B) q( 1) = 7 (C) q( 1) = 12 (D) q( 1) = 17 (E) q( 1) = 24 Oplossing: A juist beantwoord: 70 % blanco: 23 %

Formuleverzameling. Logaritmische en exponentie le functie. Trigoniometrische functies. Sinus-en cosinusregel in een driehoek.

Formuleverzameling. Logaritmische en exponentie le functie. Trigoniometrische functies. Sinus-en cosinusregel in een driehoek. IJkingstoets burgerlijk ingenieur 30 juni 204 - reeks - p. /8 Formuleverzameling 2, 4; 3, 73 Logaritmische en eponentie le functie e = lim ( + /) 2, 72 loga =a log = y = ay (a R+ 0 \ {}) ln = loge ; ep()

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2 IJkingstoets 30 juni 04 - reeks - p. /5 Oefening Een functie f : A B : 7 f () van verzameling A naar verzameling B is injectief als voor alle, A geldt: als 6=, dan is f () 6= f (). Welke van de volgende

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2014: algemene feedback

IJkingstoets burgerlijk ingenieur september 2014: algemene feedback IJkingstoets burgerlijk ingenieur 5 september 204 - reeks 2 - p. IJkingstoets burgerlijk ingenieur september 204: algemene feedback In totaal namen 286 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2014: algemene feedback

IJkingstoets burgerlijk ingenieur september 2014: algemene feedback IJkingstoets burgerlijk ingenieur 5 september 204 - reeks - p. IJkingstoets burgerlijk ingenieur september 204: algemene feedback In totaal namen 286 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2014: algemene feedback

IJkingstoets burgerlijk ingenieur september 2014: algemene feedback IJkingstoets burgerlijk ingenieur 5 september 204 - reeks 4 - p. IJkingstoets burgerlijk ingenieur september 204: algemene feedback In totaal namen 286 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback IJkingstoets burgerlijk ingenieur 6 september 203 - reeks - p. IJkingstoets burgerlijk ingenieur september 203: algemene feedback In totaal namen 245 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

IJkingstoets burgerlijk ingenieur juli 2013: algemene feedback

IJkingstoets burgerlijk ingenieur juli 2013: algemene feedback IJkingstoets burgerlijk ingenieur 1 juli 013 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juli 013: algemene feedback In totaal namen 61 studenten deel aan de ijkingstoets burgerlijk ingenieur die

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de funcie f : R R : 7 cos(2 ). Bepaal de afgeleide van de funcie f in he pun 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D) f 0

Nadere informatie

IJkingstoets september 2015: statistisch rapport

IJkingstoets september 2015: statistisch rapport IJkingstoets burgerlijk ingenieur 4 september 05 - reeks - p. IJkingstoets september 05: statistisch rapport In totaal namen 33 studenten deel aan deze toets. Hiervan waren er 06 geslaagd. Verdeling van

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 1 juli 2015 Oplossingen

IJkingstoets Wiskunde-Informatica-Fysica 1 juli 2015 Oplossingen IJkingstoets Wiskunde-Informatica-Fysica 1 juli 15 Oplossingen IJkingstoets wiskunde-informatica-fysica 1 juli 15 - p. 1/1 Oefening 1 Welke studierichting wil je graag volgen? (vraag zonder score, wel

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback IJkingstoets 5 september 04 - reeks - p. /0 Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 5 september 04: algemene feedback In totaal namen 5 studenten deel aan deze ijkingstoets industrieel

Nadere informatie

IJkingstoets Bio-ingenieur 29 juni Resultaten

IJkingstoets Bio-ingenieur 29 juni Resultaten IJkingstoets Bio-ingenieur 9 juni 6 Resultaten IJkingstoets Bio-ingenieur 9 juni 6 - reeks - p. / Aan de KU Leuven en Universiteit Antwerpen namen in totaal 74 aspirant-studenten deel aan de ijkingstoets

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2016: algemene feedback

IJkingstoets burgerlijk ingenieur september 2016: algemene feedback IJkingstoets burgerlijk ingenieur 12 september 2016 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur september 2016: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olmpiade 1997-1998: Eerste ronde De eerste ronde bestaat uit meerkeuzevragen Het quoteringsssteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade: tweede ronde

1 Vlaamse Wiskunde Olympiade: tweede ronde Vlaamse Wiskunde Olympiade: tweede ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde Vlaamse Wiskunde Olmpiade 008-009: tweede ronde Wat is het voorschrift van deze tweedegraadsfunctie? (0, ) (, ) 0 (A) f() = ( + ) (B) f() = ( + ) + (C) f() = ( ) + (D) f() = ( ) (E) f() = ( ) + In volgend

Nadere informatie

In totaal namen 63 studenten deel aan deze toets. Hiervan waren 32 studenten geslaagd.

In totaal namen 63 studenten deel aan deze toets. Hiervan waren 32 studenten geslaagd. Ijkingstoets burgerlijk ingenieur-architect VUB-UGent, 30 juni 014 Algemene feedback In totaal namen 63 studenten deel aan deze toets. Hiervan waren 3 studenten geslaagd. Na afloop van de toets bleek dat

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde. Vlaamse Wiskunde Olympiade 995-996 : Tweede Ronde De tweede ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

13 Vlaamse Wiskunde Olympiade : Tweede ronde.

13 Vlaamse Wiskunde Olympiade : Tweede ronde. 13 Vlaamse Wiskunde Olympiade 1999-000: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 7 Poolcoördinaten (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 7 Poolcoördinaten (versie 22 augustus 2011) Inhoudsopgave 1 Poolcoördinaten 1 2 Poolvergelijkingen 3 21 Cartesiaanse coördinaten versus poolcoördinaten

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 5 juni 2008 ( s morgens) Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2008 WISKUNDE 5 PERIODEN DATUM : 5 juni 2008 ( s morgens) DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN Formuleboekje voor de Europese scholen Niet-programmeerbare,

Nadere informatie

wiskunde B havo 2015-II

wiskunde B havo 2015-II Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid

Nadere informatie

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 0 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde

1 Vlaamse Wiskunde Olympiade : Tweede Ronde Vlaamse Wiskunde Olympiade 988-989: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2010 WISKUNDE 5 PERIODEN DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 007 tijdvak woensdag 0 juni 13.30-16.30 uur wiskunde 1, ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer

Nadere informatie

13 Vlaamse Wiskunde Olympiade: tweede ronde

13 Vlaamse Wiskunde Olympiade: tweede ronde 3 Vlaamse Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 78 punten te behalen. Voor elk

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud 1 Een optische illusie? Welk gebied heeft de grootste oppervlakte: het gele of het donkergroene? Doe eerst een schatting en maak daarna de nodige

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2005-2006: eerste ronde 1 Vier van de volgende figuren zijn het beeld van minstens één andere figuur door een draaiing in het vlak Voor één figuur is dit niet het geval Welke?

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde

1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde 1 Vlaamse Wiskunde Olympiade 2011-2012: eerste ronde 1.Vantweenatuurlijkegetallenmennismevenennoneven.Welkvanvolgendegetallen is dan oneven? () m+4n () 3m+2n () mn (D) m n (E) n m 2. Welk van volgende

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 99 99 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid.

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. Vlaamse Wiskunde Olympiade 000-00: Eerste ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2009-2010: eerste ronde

1 Vlaamse Wiskunde Olympiade 2009-2010: eerste ronde Vlaamse Wiskunde Olympiade 009-00: eerste ronde Hoeveel is 5 % van 5 % van? (A) 6 (C) 5 (D) 5 (E) 65 Wat is de ribbe van een kubus als zijn volume 5 is? (A) 5 5 (C) 5 (D) 5 (E) 5 De oplossingen van de

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Pienter 1ASO Extra oefeningen hoofdstuk 7

Pienter 1ASO Extra oefeningen hoofdstuk 7 Extra oefeningen hoofdstuk 7: Vlakke figuren 1 Teken binnen een cirkel met straal 6 cm een tweede cirkel met straal 2 cm. Wat is de kleinste en wat is de grootst mogelijke afstand tussen beide middelpunten?

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1993-1994 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007

UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 007 VK : WISKUNE TUM: WOENSG 04 JULI 007 TIJ : 09.45.5 UUR (TOELTING VWO/HVO/NTIN) 09.45.45

Nadere informatie

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar

Nadere informatie

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding

VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN. 1. Inleiding VISUALISATIE VAN KROMMEN EN OPPERVLAKKEN IGNACE VAN DE WOESTNE. Inleiding In diverse wetenschappelijke disciplines maakt men gebruik van functies om fenomenen of processen te beschrijven. Hiervoor biedt

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2006-II

Eindexamen wiskunde B1-2 vwo 2006-II Drinkbak In figuur staat een tekening van een drinkbak voor dieren. De bak bestaat uit drie delen: een rechthoekige, metalen plaat die gebogen is tot een symmetrische goot, een voorkant en een achterkant

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B,2 (nieuwe stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 8 juni 3.30 6.30 uur 20 03 Voor dit eamen zijn maimaal 84 punten te behalen; het eamen bestaat uit 7 vragen.

Nadere informatie

Opdracht 1 bladzijde 8

Opdracht 1 bladzijde 8 Opdrachten Opdracht bladzijde 8 Uit een stuk karton met lengte 45 cm en breedte 8 cm knip je in de vier hoeken vierkantjes af met zijde cm. Zo verkrijg je een open doos. 8 cm 45 cm Hoe groot is het volume

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 200-2005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Welke ongelijkheid is juist? (A) 3 5 < 2 6 (C) 5 6 < 3 (B) 3 7 < 2 (D) 5 7 < 2 10 (E) 5 < 6 7 2 Hoeveel vierkante meter is 1600 vierkante centimeter?

Nadere informatie

Eindexamen wiskunde B havo I (oude stijl)

Eindexamen wiskunde B havo I (oude stijl) Twee functies en hun som In figuur 1 zijn de grafieken getekend van de functies f ( x) = 2x + 12 en g ( x) = x 1 figuur 1 y Q f g O x De grafiek van f snijdt de x-as in en de y-as in Q 4p 1 Bereken de

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

Zomercursus Wiskunde. Module 11 Minimum-Maximumproblemen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 11 Minimum-Maximumproblemen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 11 Minimum-Maimumproblemen (versie 22 augustus 2011) Inhoudsopgave 1 Theoretische achtergrond 1 2 Oefeningen 7 2.1 Basis (A- en B-programma)........................

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie.

1 Inleiding. Zomercursus Wiskunde. Poolcoördinaten (versie 27 juni 2008) Katholieke Universiteit Leuven Groep Wetenschap & Technologie. Katholieke Universiteit Leuven September 2008 Poolcoördinaten (versie 27 juni 2008) Inleiding Y y p o θ r X fig In fig worden er op twee verschillende manieren coördinaten gegeven aan het punt p Een eerste

Nadere informatie

Luc Gheysens - Extremumvraagstukken p.1

Luc Gheysens - Extremumvraagstukken p.1 EXTREMUMVRAAGSTUKKEN 1 Bepaal twee getallen x en y waarvan de som 144 is en waarvoor het product maximaal is. En voor welke waarden is het product x 3. y 2 maximaal? 2 Aan de vier hoeken van een vierkantig

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde 1, (nieuwe stijl) Eamen HV Hoger lgemeen Voortgezet nderwijs Tijdvak Woensdag 18 juni 1.0 16.0 uur 0 0 Voor dit eamen zijn maimaal 8 punten te behalen; het eamen bestaat uit 18 vragen. Voor elk

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk

Nadere informatie

Examen HAVO. Wiskunde B (oude stijl)

Examen HAVO. Wiskunde B (oude stijl) Wiskunde B (oude stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1330 1630 uur 20 02 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit 18 vragen

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VW 04 tijdvak dinsdag 0 mei 3.30-6.30 uur wiskunde B (pilot) chter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen bestaat uit 8 vragen. Voor dit eamen

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1994-1995 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde Junior Wiskunde Olympiade 003-004: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt

Nadere informatie

Efficientie in de ruimte - leerlingmateriaal

Efficientie in de ruimte - leerlingmateriaal Junior College Utrecht Efficientie in de ruimte - leerlingmateriaal Versie 2 September 2012 Een project (ruimte-)meetkunde voor vwo-leerlingen Geschreven voor het Koningin Wilhelmina College Culemborg

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde Vlaamse Wiskunde Olympiade 003-00: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur Eamen VW 016 tijdvak 1 woensdag 18 mei 13.30-16.30 uur wiskunde (pilot) it eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 19 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 19 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2012 tijdvak 2 dinsdag 19 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 75 punten te behalen.

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 2012 tijdvak 2 woensdag 20 juni 1330-1630 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage Dit eamen bestaat uit 16 vragen Voor dit eamen zijn maimaal 79 punten te behalen Voor elk

Nadere informatie

Niveau 1. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan. 1p. x + 6. 4x + 3. 4x 2 + 3. x 2 + 3x + 3. x 2 + 27

Niveau 1. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan. 1p. x + 6. 4x + 3. 4x 2 + 3. x 2 + 3x + 3. x 2 + 27 1p. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan x + 6 4x + 3 4x 2 + 3 x 2 + 3x + 3 Niveau 1 1p. 1p. 1p. x 2 + 27 Opgave 2. Als a log b = 64, dan is a2 log (b 3 ) gelijk aan 6 48 28/3 96 512 Opgave

Nadere informatie

1 Junior Wiskunde Olympiade: tweede ronde

1 Junior Wiskunde Olympiade: tweede ronde Junior Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt hem

Nadere informatie