Dimensies, eenheden en de Maxwell vergelijkingen

Vergelijkbare documenten
Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme

TENTAMEN ELEKTROMAGNETISME (8N010)

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 2012 van 14u00-17u00

TENTAMEN ELEKTROMAGNETISME (8N010)

Hoofdstuk 22 De Wet van Gauss

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 30 juni 2011 van 14u00-17u00

Speciale relativiteitstheorie

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme

Speciale relativiteitstheorie

Chapter 28 Bronnen van Magnetische Velden. Copyright 2009 Pearson Education, Inc.

1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit

Deeltoets II E&M & juni 2016 Velden en elektromagnetisme

Tentamen Elektromagnetisme (NS-103B)

Uitwerkingen toets emv

Tentamen Fysica: Elektriciteit en Magnetisme (MNW)

Schriftelijk examen Fysica: Elektromagnetisme 2e Ba Chemie, Biologie, Geografie, Bio-ir en Ir-arch

Eindronde Natuurkunde Olympiade 2014 theorietoets deel 1

Theory DutchBE (Belgium) De grote hadronen botsingsmachine (LHC) (10 punten)

Tentamen Fysica: Elektriciteit en Magnetisme (MNW en SBI)

8 College 08/12: Magnetische velden, Wet van Ampere

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 14 april 2011 van 9u00-12u00

XXX INTERNATIONALE NATUURKUNDE OLYMPIADE PADUA, ITALIË THEORIE-TOETS

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme

Elektromagnetische veldtheorie (121007) Proeftentamen

Inleiding Elektriciteit en Magnetisme

Studiewijzer. de colleges in vogelvlucht

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

koper hout water Als de bovenkant van het blokje hout zich net aan het wateroppervlak bevindt, is de massa van het blokje koper gelijk aan:

Opgaven bij de cursus Speciale relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

3.3.2 Moment op een rechthoekige winding in een magnetisch. veld... 10

Oplossing examenoefening 2 :

Langere vraag over de theorie

7 College 01/12: Electrische velden, Wet van Gauss

Massa. Energie. E = m c 2. (licht-) Snelheid. en hoe u het zelf had kunnen bedenken. Dr. Harm van der Lek. Natuurkunde hobbyist

1 ELECTROSTATICA: Recht toe, recht aan

E = m c 2. Massa. Energie. (licht-) Snelheid. Wetenschappers en denkers. E=mc 2 HOVO. Hoe u het zelf had kunnen bedenken 1.

Faculteit Biomedische Technologie. 5 november 2015, 9:00-12:00 uur

Magnetisme - magnetostatica

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 20 juni :00-12:00. Leg je collegekaart aan de rechterkant van de tafel.

HOOFDSTUK 1: Fysische grondslagen van de elektrotechniek

Langere vraag over de theorie

We willen dat de magnetische inductie in het punt K gelijk aan rul zou worden. Daartoe moet men door de draad AB een stroom sturen die gelijk is aan

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrostatica. 25 juli dr. Brenda Casteleyn

Biofysische Scheikunde: NMR-Spectroscopie

1. Langere vraag over de theorie

Faculteit Biomedische Technologie. 9 april 2018, 18:00-21:00 uur

Tabellen en Eenheden

Hoofdstuk 27 Magnetisme. Copyright 2009 Pearson Education, Inc.

LES1: ELEKTRISCHE LADING DE WET VAN COULOMB. H21: Elektrische lading en elektrische velden

DE XXXIII INTERNATIONALE NATUURKUNDE OLYMPIADE

Mathematical Modelling

Juli geel Fysica Vraag 1

Faculteit Wiskunde en Informatica VECTORANALYSE

Vraagstukken Elektriciteit en Magnetisme

1 Overzicht theorievragen

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 22 juni :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar.

Magnetische toepassingen in de motorvoertuigentechniek (2)

Hoofdstuk 13 Magnetische velden. Gemaakt als toevoeging op methode Natuurkunde Overal

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrostatica. 4 november Brenda Casteleyn, PhD

Eindronde Natuurkunde Olympiade 2018 theorietoets deel 1

Faculteit Biomedische Technologie. 28 januari 2016, 18:00-21:00 uur

Elektro-magnetisme Q B Q A

NATUURKUNDE KLAS 5. PROEFWERK H8 JUNI 2010 Gebruik eigen rekenmachine en BINAS toegestaan. Totaal 29 p

2de bach HIR. Optica. Smvt - Peremans. uickprinter Koningstraat Antwerpen EUR

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

Oefeningenexamen Fysica 2 1ste zit

OOFDSTUK 8 9/1/2009. Deze toets bestaat uit 3 opgaven (31 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes!

1. Langere vraag over de theorie

Hoofdstuk 6: Elektromagnetisme

TENTAMEN ELEKTROMAGNETISME (3D020)

Een elektrische schakeling is tot op zekere hoogte te vergelijken met een verwarmingsinstallatie.

Juli blauw Fysica Vraag 1

Vak: Elektromagnetisme ELK Docent: ir. P.den Ouden nov 2005

Faculteit Wiskunde en Informatica VECTORANALYSE

MAGNETISME & ELEKTRICITEIT


Hoofdstuk 5: Elektro-akoestische omzetters

Werken met eenheden. Introductie 275. Leerkern 275

Tentamen Fysica in de Fysiologie (8N070) deel AB herkansing, blad 1/5

IJkingstoets Industrieel Ingenieur. Wiskundevragen

Wiskundige Technieken

1 De Hamilton vergelijkingen

Statische elektriciteit; elektrische lading en het behoud ervan

Augustus blauw Fysica Vraag 1

Augustus geel Fysica Vraag 1

Tentamen E&M 25 Juni 2012

Opgaven bij het college Kwantummechanica 3 Week 14

TENTAMEN ELEKTROMAGNETISME (8N010)

2dejaar 2degraad (1uur) Hoofdstuk 1 : Inleiding : grootheden en eenheden

Fundamentele elektriciteit

Inhoudsopgave. 0.1 Netwerkmodel voor passieve geleiding langs een zenuwcel.. 2

Uitwerkingen van de opgaven bij de cursus Speciale relativiteitstheorie Najaar 2017 Docent: Dr. H. (Harm) van der Lek

r - Tentamen Elektromagnetisme II, 18 januari 1995, 9 12 uur.

Elektromagnetische golven

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

DE XXXII INTERNATIONALE NATUURKUNDE OLYMPIADE

Prof.dr. A. Achterberg, IMAPP

Transcriptie:

Dimensies, eenheden en de Maxwell vergelijkingen Alexander Sevrin 1 Inleiding De keuze van dimensies en eenheden in het elektromagnetisme is ver van eenduidig. Hoewel het SI systeem één en ander ondubbelzinnig vastgelegd heeft, blijven andere systemen wijd verspreid. Men heeft naast het SI systeem ook het Gaussische, het Heaviside-Lorentz, het elektrostatische (esu) en het elektromagnetische (emu) systeem. Daarenboven bestaan er nog diverse dialecten of varianten van deze systemen. De Gaussische en de Heaviside-Lorentz systemen zijn nauw met elkaar verbonden. Evenzeer zijn de SI, de esu en de emu systemen gerelateerd. In de praktijk wordt de student fysica (zeker die aan de VUB) tegenwoordig met slechts twee stelsels geconfronteerd: Heaviside-Lorentz: wordt gebruikt in essentieel alle handboeken en wetenschappelijke publicaties in de elementaire deeltjesfysica, algemene relativiteit en wiskundige natuurkunde. Zelfs het standaardwerk bij uitstek over het elektromagnetisme, [1], gebruikt Gaussische eenheden (op enkele herschalingen met factoren 4π na is deze identiek aan het Heaviside-Lorentz systeem). Ruwweg kan men dus stellen dat het Heaviside-Lorentz stelsel de voorkeur geniet wanneer men microscopische fysische verschijnselen bestudeert. SI: wordt tegenwoordig in zowat alle andere toepassingen (b.v. vaste stoffysica, optica,...) aangewend. Dit is dus het stelsel dat bij voorkeur gebruikt wordt bij de studie van macroscopische fysische verschijnselen. In deze nota s zullen beiden gepresenteerd worden. Ik beperk mij hier tot de Maxwell vergelijkingen in het vacuum. Voor de Maxwell vergelijkingen in willekeurige media verwijs ik opnieuw naar de bijbel : [1]. Daar vindt men ook alle details met betrekking tot andere stelsels. Ik ga ervan uit dat de lezer al goed vertrouwd is met de Maxwell vergelijkingen. 1

2 Algemene beschouwingen 2.1 Maxwell in het vacuum zonder bronnen Beschouwen we de Maxwell vergelijkingen in het vacuum in afwezigheid van bronnen, B = 0, (1) E = B a 1 t, (2) E = 0, (3) B = a 2 t, (4) met a 1, a 2 R twee vooralsnog onbepaalde coëfficiënten. We nemen de rotor van vgl. (2), ( E ) = a 1 B t. (5) Met behulp van de standaard identiteit, ( A ) ( = A ) A, (6) en vgl. (3) wordt dit, E = a 1 B t. (7) Vervolgens leiden we vgl. (4) af naar de tijd, B t = a 2 E 2 t. (8) 2 Combineren we dit met vgl. (7), dan krijgen we uiteindelijk, E 2 E a 1 a 2 = 0. (9) t2 Eisen we nu dat de golven zich met de lichtsnelheid (in het vacuum), c, verplaatsen, dan krijgen we, of nog, a 1 a 2 = c 2, (10) a 2 = 1 c 2 a 1. (11) Een analoge vergelijking voor B kan afgeleid worden die echter geen verdere voorwaarden oplevert. 2

2.2 Maxwell in het vacuum met bronnen Vervolgens beschouwen de Maxwell vergelijkingen in het vacuum maar in aanwezigheid van externe bronnen gekarakteriseerd door een ladingsdichtheid ρ en een stroomsterktedichtheid j die aan de continuïteitsvergelijking voldoen, ρ t + j = 0. (12) Gebruik makend van de resultaten uit het voorafgaand hoofdstukje, hebben we nu voor de Maxwell vergelijkingen, B = 0, (13) E = B a 1 t, (14) E = b 1 ρ, (15) B = b 2 j + 1 c 2 a 1 t, (16) met a 1, b 1 en b 2 R drie vooralsnog onbepaalde coëfficiënten. Combineren we de divergentie van vgl. (16) waarbij we van ( B) = 0 gebruik maken met de afgeleide naar de tijd van vgl. (15), dan krijgen we, Vergelijken we (17) met (12) dan bekomen we, ρ t + c2 a 1 b 2 b 1 j = 0. (17) b 1 = c 2 a 1 b 2, (18) waarmee de Maxwell vergelijkingen nu gegeven worden door, B = 0, (19) E = B a 1 t, (20) E = c 2 a 1 b 2 ρ, (21) B = b 2 j + 1 c 2 a 1 t, (22) met a 1 en b 2 R twee nog steeds onbepaalde coëfficiënten. Hoewel we gezien we hier in het vacuum werken niet direct baat hebben bij de introductie van de macroscopische velden D (de elektrische verplaatsing) en H (het magnetisch veld), geven we toch hun relatie met E (het elektrisch veld) 3

en B (de magnetische inductie) 1, D = ɛ 0 E H = 1 µ 0 B. (23) met ɛ 0 de elektrische permittiviteit en µ 0 de magnetische permeabiliteit van het vacuum. 3 Keuzes... 3.1 Inleidende beschouwingen Met algemene eisen zoals het feit dat vrije elektromagnetische golven zich met de lichtsnelheid voortplanten en het feit dat ladings- en stroomsterktedichtheid aan de continuïteitsvergelijking moeten voldoen kunnen we de Maxwell vergelijkingen op twee constantes na bepalen. Om deze eveneens vast te leggen zullen we keuzes moeten maken! Deze keuzes zullen dan de dimensies van E, B en elektrische lading vastleggen. In het bijzonder legt de keuze van a 1 de relatieve dimensie van E ten opzichte van B vast. De definitie/keuze van b 2 is dan weer nauw verbonden met de definitie van lading (of stroom). Uit vgl. (21) volgt dat het elektrisch veld E c opgewekt door een statische puntlading q gelokaliseerd in de oorsprong, gegeven wordt door, E c ( r) = c2 a 1 b 2 4π q r r 3. (24) De kracht, F c, die een puntlading q met plaatsvector r ten gevolge hiervan ondervindt is gegeven door de wet van Coulomb die in alle systemen dezelfde vorm aanneemt, F c ( r) = q Ec ( r). (25) Hieruit lezen we af dat de dimensie van het elektrisch veld zal afhangen van de dimensie van de lading. Eveneens is zowel de dimensie als de grootte van a 1 b 2 afhankelijk van de gekozen dimensie en eenheid voor de elektrische lading. Beschouw nu twee oneindig lange evenwijdige rechte draden die zich op een afstand r van elkaar bevinden. Door de ene draad loopt een elektrische stroom I 1, door de andere een stroom I 2. Volgens Ampère is de kracht per lengteëenheid tussen de twee draden gegeven door, df a dl 1 Alle uitdrukkingen zijn enkel geldig in het vacuum! I 1I 2 r. (26) 4

Experimenteel vindt men dat de evenredigheidsconstante (nog steeds in het vacuum) gerelateerd is met deze in de wet van Coulomb, df a = a 1b 2 I 1 I 2 dl 2π r. (27) De (grootte van de) magnetische inductie is gedefinieerd als zijnde evenredig aan de kracht per stroomsterkte eenheid die de tweede draad voelt tengevolge van de eerste draad, B = β a 1b 2 I 1 2π r, (28) met β een, eventueel dimensievolle, evenredigheidsconstante. Vergelijken we dit met vgl. (22), dan krijgen we, β = 1 a 1. (29) 3.2 Het SI stelsel In het SI stelsel kiest men a 1 = 1. Hier hebben E en B dus verschillende dimensies! Verder heeft men in het SI stelsel naast een lengte eenheid (meter), een tijdseenheid (seconde) en een massa eenheid (kilogram), de ampère (A) als afgeleide eenheid van stroomsterkte ingevoerd. Eén ampère is de stroom die door elk van twee oneindig lange en oneindig dunne, evenwijdige draden die 1 meter van elkaar verwijderd zijn, moet vloeien om een transversale kracht van 2 10 7 newton/meter tussen de draden te veroorzaken. Uit vgl. (27) krijgen we dan direct dat b 2 = a 1 b 2 = 4π 10 7 N A 2. (30) De eenheid van lading is de coulomb (C) gedefinieerd als 1 C = 1 A s. Men kiest hier eveneens 2, ɛ 0 = 1 4π 107 c 2 A 2 N 1, µ 0 = = 4π 10 7 A 2 N, (31) zodat de Maxwell vergelijkingen door, gegeven worden. 2 We krijgen dus ɛ 0 µ 0 = c 2. B = 0, (32) E = B t, (33) D = ρ, (34) H = j + D t, (35) 5

3.3 Het Heaviside-Lorentz stelsel Hier kiest men en bijgevolg heeft men, a 1 = b 2 = c 1, (36) β = c. (37) Een onmiddelijk gevolg is dat B en E dezelfde dimensie hebben! Uiteindelijk maakt men in het vacuum de natuurlijke keuze D = E en H = B. Of anders gezegd, De Maxwell vergelijkingen worden dus, ɛ 0 = µ 0 = 1. (38) B = 0, (39) E = 1 B c t, (40) E = ρ, (41) B = 1 c j + 1 c t. (42) In het Gaussische stelsel worden de factoren 4π in de Coulomb en Ampère wet weg geschaald door E en B te herschalen, E G = 4π E HL, DG = 4π D HL, BG = 4π B HL, HG = 4π H HL, (43) met verder geen andere wijzigingen. 4 Slotnoten Een puntdeeltje met lading q dat met een snelheid v in een uitwendig elektromagnetisch veld gekarakteriseerd door een elektrisch veld E en een magnetische inductie B beweegt, ondervindt een kracht, de Lorentz kracht F L. In het Heaviside-Lorentz stelsel wordt ze gegeven door, F L = q( E + 1 c v B), (44) en in het SI systeem door, F L = q( E + v B). (45) 6

Ik verwijs andermaal naar [1] voor meer details! Zie ook [2]. Samenvattend: voor mijn cursussen zijn de relevante vergelijkingen (39-42) en (44). Verder zal de waarde van de dimensieloze fijnstructuurconstante α cruciaal zijn. In zowel het Heaviside-Lorentz als in het Gaussische stelsel wordt dit, α Voor de volledigheid, in het SI stelsel hebben we, References α e2 4π c 1 137, 036. (46) e2 4πɛ 0 c 1 137, 036. (47) [1] Appendix on Units and Dimensions in J. D. Jackson, Classical Electrodynamics, 3rd edition (1998), Wiley, pagina 775 en volgende. [2] Een samenvatting kan terug gevonden worden via het URL http://pdg.web.cern.ch/pdg/2004/reviews/elecrelarpp.pdf, je kunt eveneens essentiële constantes op http://pdg.web.cern.ch/pdg/2004/reviews/consrpp.pdf terugvinden. 7