Wetenschappelijk Rekenen
|
|
|
- Joannes van der Laan
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Wetenschappelijk Rekenen Examen - Bacheloropleiding informatica Oefeningen 3 september 204. Beschouw de matrix A = Deze matrix heeft 5 als dominante eigenwaarde. We proberen deze eigenwaarde te berekenen met een implementatie van machtiteratie in het bestand vraag machtiteratie.m op Indianio. (a) Wat loopt er precies mis bij het uitvoeren van dominante_eigenwaarde = vraag_machtiteratie(a, [;2;3]); De startvector [ 2 3] T is een goedgekozen vector en hoeft niet te worden gewijzigd. Pas het bestand vraag machtiteratie.m aan zodat dit probleem wordt vermeden. Let op dat je geen nieuwe fouten introduceert voor matrices verschillend van A. Bewaar je aangepaste bestand onder de naam vraag machtiteratie oplossing.m. (b) Bereken een opzettelijke slechte keuze voor de startvector waardoor vraag machtiteratie.m de niet-dominante eigenwaarde zal teruggeven. Verklaar kort hoe je aan deze keuze komt en waarom deze keuze zal werken. Schrijf hiervoor een script in Matlab. (c) Zijn de eigenwaarden van A gevoelig voor veranderingen in de elementen van A? Verklaar kort waarom. Oplossing: (a) De variabele x zal na verloop van tijd een eigenvector bevatten uit de eigenruimte van de eigenwaarde 5: iteratie 996: x = [ ] iteratie 997: x = [- - -] iteratie 998: x = [ ] iteratie 999: x = [- - -] De vector x zal niet convergeren maar alterneren tussen twee eigenvectoren horende bij 5 die op een factor van elkaar verschillen. Dit is het gevolg van een negatieve dominante eigenwaarde. Bij x = [ ] is A*x gelijk aan [ ]. We normaliseren door te delen door 5, dit is de waarde van norm(x,inf). We bekomen [- - -]. Bij x = [- - -] is A*x gelijk aan [5 5 5]. We normaliseren door te delen door 5, dit is de waarde van norm(x,inf). We bekomen [ ]. De stopvoorwaarde norm(x0 - x,inf) > TOLERANCE faalt in het geval van negatieve dominante eigenwaarden omwille van de tekenverandering na elke iteratiestap. De berekening norm(x0 - x,inf) zal convergeren naar de waarde 2 en zal nooit kleiner worden dan de tolerantie. Er zijn verschillende manieren om dit probleem op te lossen. Men kan bijvoorbeeld een nieuwe stopvoorwaarde implementeren die kan omgaan met deze tekenwissels. In deze oplossing zullen
2 we de stopwaarde behouden en de normering aanpassen zodat de componenten van de vector x hun teken behouden bij convergentie naar de eigenruimte. In het geval waar x = [ ] en A*x gelijk aan [ ], delen we beter door 5 in plaats van 5. Hierdoor bekomen we dan terug [ ]. In een normeringsstap zullen we, net zoals bij de berekening van norm(x,inf), de component met grootste magnitude gebruiken. Deze keer zullen we het teken van het component ook gebruiken in de normalisatiestap. Dit zorgt ervoor dat bij convergentie naar de eigenruimte het teken van de vector x niet langer meer zal wisselen na elke stap. Hierdoor leggen we het teken van de componenten van x vast. In vraag machtiteratie.m vervangen we de normalisatiestap x = x / norm(x,inf); door [~,index] = max(abs(x)); x = x / x(index); De volledige oplossing kan je vinden in het bestand vraag machtiteratie opl.m (b) De beste keuze voor een startvector is een eigenvector van de eigenwaarde Omdat de startvector een eigenvector is zal de stopvoorwaarde meteen voldaan zijn en het programma zal onterecht besluiten dat de dominante eigenwaarde gelijk is aan We bereken de startvector met de volgende code: >> [X,D] = eig (A) X = D = >> x0 = X (:,3); # eigenvector van >> vraag_ machtiteratie ( A, x0) ans = In dit geval zal vraag machtiteratie.m niet de kans krijgen om te convergeren naar de dominante eigenwaarde omwille van de stopvoorwaarde. Indien we de iteraties verder laten doorlopen, dan zal er toch uiteindelijk convergentie zijn naar de dominante eigenwaarde omwille van afrondingsfouten die een component doen onstaan in de eigenruimte van de dominante eigenwaarde. (c) We berekenen het conditiegetal van de matrix van eigenvectoren van A om de gevoeligheid na te gaan. >> [X,D] = eig (A); >> cond (X) ans =
3 Het conditiegetal ligt vrij dicht bij perfecte conditionering (waarde ), we besluiten hieruit dat de eigenwaarden van A niet gevoelig zijn voor veranderingen in de elementen van A. 2. Pas Newton-Raphson toe om waarden x te vinden waarvoor geldt dat f(x) = x 2, waarbij f een R R functie is. Schrijf hiervoor de volgende MATLAB functie: x = vraag2(f, df, x0) Hierbij is f de functie, df de afgeleide van de functie en x0 de startwaarde voor het Newton-Raphson algoritme. Het bestand vraag2 tests.m op Indianio bevat enkele tests voor vraag2 met de verwachte uitkomst. Oplossing: We zoeken waarden voor x waarvoor f(x) = x 2 of waarvoor f(x) x 2 = 0. We zoeken nulpunten van de functie g(x) = f(x) x 2. Hierop passen we Newton-Raphson toe: x n+ = x n g(x n) g (x n ) = x n f(x n) x 2 n f (x n ) 2 x n We implementeren dit iteratief schema in vraag2.m: function [x] = vraag2(f, df, x) TOL = e-4; xp = Inf; while (abs(xp - x) >= TOL) xp = x; x = x - (f(x) - x^2) / (df(x) - 2*x); end end >> vraag2_tests test: uitkomst = , verwacht = test2: uitkomst = , verwacht = test3: uitkomst = 0, verwacht = 0 test4: uitkomst = , verwacht = Bepaal met Maple de 5-punts Lobatto-kwadratuurformule Q die de integraal benadert. Bepaal ook de constanten p en α in de uitdrukking met ξ [, ]. Wat is de graad van Q? f(x) dx f(x) dx Q(f) = αf (p) (ξ) Oplossing: Bij Lobatto kwadratuur worden twee knopen gelijkgesteld aan de grenzen en. De resterende 3 knopen en de 5 gewichten zijn vrij. We maximaliseren de graad door 8 voorwaarden op te leggen. De volgende Maple-instructies klaren de klus (zie ook vraag3.mw): 3
4 x[] := -; x[5] := Q := f -> w[]*f(x[])+w[2]*f(x[2])+w[3]*f(x[3]) +w[4]*f(x[4])+w[5]*f(x[5]) seq(sum(w[i]*x[i]^k, i =.. 5) = int(x^k, x = -.. ), k = 0.. 7): solve({%}): allvalues(%[]): assign(%[]): Q(f); Q(f) = 0 ( ) 49 f ( ) + 90 f ( ) 49 f (0) f f () Maple levert meerdere oplossingen voor het stelsel. Alle oplossingen leiden echter naar dezelfde formule. We bepalen p en α: testdegree := k -> sum(w[i]*x[i]^k, i =.. 5) = int(x^k, x = -.. ); [testdegree(7), testdegree(8)]; [ 0 = 0, = ] 2 9 p := 8; solve({2/9-58/245 = alpha*factorial(p)}); { } α = De graad van Q is 7. f(x)dx Q(f) = f (8) (ξ) 4. In de oefeningenles hebben we Adams-formules berekend zoals deze 4-staps formule: Er bestaat ook een formule van de vorm y n+ y n = h 24 (55f n 59f n + 37f n 2 9f n 3 ) y n+ y n = h (A f n + B f n + C f n 2 + D f n 3 ) Vul de coëfficienten A, B, C en D in met Maple zodanig dat de orde van deze formule maximaal is. Oplossing: De 4-staps Adams-Bashforth methodes kan je bekomen door het interpoleren van y = f door 4 voorgaande punten en het integreren van de resulterende interpolatieveelterm. We hebben y k+ = y k + f(t, y(t))dt y k + p(t)dt t k t k waarbij p(t) de interpolatieveelterm is door de 4 punten met f i een benadering van f(t i, y(t i )). (t i, f i ), (t i, f i ), (t i 2, f i 2 ), (t i 3, f i 3 ) 4
5 We kunnen nu dezelfde techniek toepassen voor de nieuwe formule: y k+ = y k + f(t, y(t))dt y k + p(t)dt t k t k Voor het berekenen van de coëfficienten kunnen we code uit AdamsBashforth.mw (Les 0) hergebruiken. We hoeven enkel de integratiegrenzen aan te passen bij het integreren van de interpolatieveelterm. We starten met de code voor het opstellen van een 4-staps Adams-Bashforth formule: with(curvefitting): p := PolynomialInterpolation([t[k]-3*h, t[k]-2*h, t[k]-h, t[k]], [f[k-3], f[k-2], f[k-], f[k]], tt); i := int(p, tt = t[k]-h.. t[k]+h); simplify(i); 3 h (4f k 2 5f k f k 3 + 8f k ) We hebben hier t[k]..t[k]+h vervangen door t[k]-h..t[k]+h. Dit geeft ons de methode y n+ y n = h 3 (8f n 5f n + 4f n 2 f n 3 ) Besluit: A = 8 3, B = 5 3, C = 4 3 en D = 3. 5
Wetenschappelijk Rekenen
Wetenschappelijk Rekenen Examen - Bacheloropleiding informatica Oefeningen 22 augustus 213 1. Hoe zou je de vector x in de uitdrukking Q x = A n y op een computationeel slimme manier berekenen? Hierbij
Wetenschappelijk Rekenen
Wetenschappelijk Rekenen Examen - Bacheloropleiding informatica Oefeningen 3 mei 23. Implementeer de functie x n+ = mod(2x n, ) waarbij je gebruik maakt van een voorstelling met reële getallen. Zorg er
Wetenschappelijk Rekenen
Wetenschappelijk Rekenen Eamen - Bacheloropleiding informatica Oefeningen 10 juni 2014 1. In de oefeninglessen hebben we gezien dat we de machine-epsilon bekomen bij het berekenen van ( 4 1) 1. Beschouw
Wetenschappelijk Rekenen
Wetenschappelijk Rekenen Examen - Derde bachelor informatica Oefeningen 0 mei 0. Gegeven is het beginwaardeprobleem y y 0, 04y + 0000y y y (0) = y = 0, 04y 0000y y 0 7 y y, y (0) = 0 0 7 y y (0) 0 Los
Examenvragen Numerieke Wiskunde 2012
Examenvragen Numerieke Wiskunde 2012 Dennis Frett, Karel Domin, Jonas Devlieghere 3 oktober 2014 1 Inhoudsopgave 1 Programma verschil, verklaar afwijking 4 2 Matrix met dominante eigenwaarde 6 3 Functiewaarden
Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen
Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen 1 Introductie Taylor polynoom, floating point getal, afrondfout Orde symbool Landau 1. Laat f(x) = x 3. Bepaal het tweede orde Taylor
2. Het benaderen van nulpunten
Het benaderen van nulpunten Benaderen van vierkantswortels Als we met een numerieke rekenmachine benadering, 7 =,64575 7 berekenen, krijgen we als resultaat een Het numeriek benaderen kan met een recursieve
Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011
Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N46) op maandag 23 Deel 1: Van 14 uur tot uiterlijk 153 uur Het gebruik van het
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N460) op donderdag 23 juni 2011, 1400-1700 uur Deel 1: Van 1400 uur tot uiterlijk
Toepassingen op discrete dynamische systemen
Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch
Examenvragen en -antwoorden
KU Leuven Verzameling Examenvragen en -antwoorden Numerieke Wiskunde [G0N90B] Auteur: Tom Sydney Kerckhove Professor: Professor M. Van Barel Met dank aan: Dennis Frett Karel Domin Jonas Devlieghere Gestart:
(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).
Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur
Tentamen Functies en Reeksen
Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy
Tentamen Lineaire Algebra B
Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een
Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica
Examen GO7E Wiskunde II (3sp maandag juni 3, 8:3-:3 uur Bachelor Geografie en Bachelor Informatica Auditorium De Molen: A D Auditorium MTM3: E-Se Auditorium MTM39: Sh-Z Naam: Studierichting: Naam assistent:
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde N460 op donderdag 4 juni 010, 14.00-17.00 uur. De uitwerkingen van de opgaven dienen
Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,
Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd
Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006
1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie
Monitoraatssessie Wiskunde
Monitoraatssessie Wiskunde 1 Overzicht van de cursus Er zijn drie grote blokken, telkens voorafgegaan door de rekentechnieken die voor dat deel nodig zullen zijn. Exponentiële en logaritmische functies;
Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u
Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M 00.07 van 16:00 tot 18:00u Beste student, Deze oefeningentoets bevat twee oefeningen betreffende het tweede deel
Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.
Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd
Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00
Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten
8. Differentiaal- en integraalrekening
Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,
AANVULLINGEN WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN: OEFENINGEN
AANVULLINGEN WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN: OEFENINGEN Hieronder volgt een korte beschrijving van de vragen van het oefeningengedeelte met antwoord. We geven ook kort weer wat regelmatig
Lineaire vergelijkingen II: Pivotering
1/25 Lineaire vergelijkingen II: Pivotering VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam [email protected], 1A40 15 april 2013 2/25 Overzicht Pivotering: Methodes Norm en conditionering
3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.
Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden
Computerrekenpakket Maple zesde jaar
Computerrekenpakket Maple zesde jaar M CREATIVE COMMONS Naamsvermelding-NietCommercieel-GelijkDelen 3.0 (CC BY-NC-SA) Dit is de vereenvoudigde (human-readable) versie van de volledige licentie. De volledige
Meetkunde en lineaire algebra
Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x
1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.
Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven
OPPERVLAKTEBEREKENING MET DE TI83
WERKBLAD OPPERVLAKTEBEREKENING MET DE TI83 Gevraagd de oppervlakte van het vlakdeel begrensd door de X as 3 grafiek f : x x 4x + x + x = en x = Oplossing Vermits we hier te doen hebben met een willekeurige
Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x
Calculus, 4//4. Gegeven de reële functie ft) met als voorschrift t arcsin x ft) = dx x a) Geef het domein van de functie ft). Op dit domein, bespreek waar de functie stijgt, daalt en bepaal de lokale extrema.
UITWERKINGEN 1 2 C : 2 =
UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De
Opgaven Functies en Reeksen. E.P. van den Ban
Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele
OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0
Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,
Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.
Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag
Naam: Studierichting: Naam assistent:
Naam: Tussentijdse Toets Wiskunde I ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, Master Chemie donderdag 4 november
TOELATINGSEXAMEN ANALYSE BURGERLIJK INGENIEUR EN BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8
BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8 1. De functie f(x) = e kx + ax + b met a, b en k R en k < 0 heeft een schuine asymptoot y = x voor x + en voldoet aan de vergelijking Bepaal a, b en
NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING. Docent: Karel in t Hout. Studiepunten: 3
NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING Docent: Karel in t Hout Studiepunten: 3 Over deze opgave dien je een verslag te schrijven waarin de antwoorden op alle vragen zijn verwerkt. Richtlijnen
Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.
Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd
Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden:
Hoofdstuk 4 Programmeren met de GR Toevoegen: een inleiding op het programmeren met de GR Hoofdstuk 5 - Numerieke methoden Numerieke wiskunde is een deelgebied van de wiskunde waarin algoritmes voor problemen
Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit
Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen
A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?
Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de
Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door
Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal
Derde serie opdrachten systeemtheorie
Derde serie opdrachten systeemtheorie Opdracht 1. We bekijken een helicopter die ongeveer stilhangt in de lucht. Bij benadering kan zo n helicopter beschreven worden door het volgende stelsel vergelijkingen
Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen
Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f
Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)
Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.
De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
Differentiaalvergelijkingen Technische Universiteit Delft
Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire
Tentamen Numerieke Wiskunde (WISB251)
1 Tentamen Numeriee Wisunde WISB51 Maa één opgave per vel en schrijf op ieder vel duidelij je naam en studentnummer. Laat duidelij zien hoe je aan de antwoorden omt. Onderstaande formules mag je zonder
Tentamen Lineaire Algebra
Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische
Stelsels differentiaalvergelijkingen
Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +
De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: [ H =
Oplossing examen TAI 11 juni 2008 Veel plezier :) Vraag 1 De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: H = [ 1 0 1 2 3 ] 4 0 1 1 1 1 1 (a) Bepaal de bijhorende generatormatrix
Opgaven bij Numerieke Wiskunde I
Opgaven bij Numerieke Wiskunde I 7 november 8 1. (a) Gegeven verschillende interpolatiepunten x, x 1, x [a, b], en getallen y, y 1, y, z 1, toon aan dat er hooguit 1 polynoom p P 3 is met p(x i ) = y i,
Primitiveren. Omgekeerd differentiëren (primitieve bepalen)
Primitiveren WISNET-HBO update april 2006 Inleiding Soms moet je juist de functie bepalen waarvan de afgeleide bekend is. Dit omgekeerd differentiëren (de primitieve bepalen) heet in het Engels de antiderivative.
Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm
college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide
(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a
Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde 3 voor B. Functies van twee variabelen.. Een functie fx, y) van twee variabelen kan analoog aan een functie van één variabele in Maple
11.0 Voorkennis V
11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix
Riemannsommen en integralen
Riemannsommen en integralen MET DE TI-NSPIRE Vervangt een deel van 0. uit VWO B deel gghm EEBII 0-0 Inhoud Oppervlakte onder de grafiek... Ondersom... 4 Bovensom... 4 Middensom... 4 Riemannsom... 5 Riemannsom
Examen Wiskundige Analyse I 1ste bach ir wet. dinsdag 5 januari Vraag 1.1. Waar of vals (1pt) Het beginvoorwaardenprobleem
Examen Wiskundige Analyse I ste bach ir wet dinsdag 5 januari 206 Vraag.. Waar of vals (pt) Het beginvoorwaardenprobleem 32x 3 y = (y ) 3, y() = 2, y () = 4 bezit een unieke oplossing, die geldig is in
Antwoorden op de theoretische vragen in de examen voorbereiding
Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters
Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes
Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen
Stelsels lineaire differentiaalvergelijkingen (homogeen)
Stelsels lineaire differentiaalvergelijkingen (homogeen) Voorbeeld Voorbeeld ( 7., Opgave 22) Op t = 0 bevatten de vaten respectievelijk 25 en 5 oz (ounces) zout. 3 september 206 Onderzoeken we hoeveel
Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen
Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Bij het vak Lineaire Algebra hebben we reeds kennis gemaakt met stelsels eerste orde lineaire differentiaalvergelijkingen We hebben
Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek
Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de
11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20
.0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:
Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.
Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf
Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012
Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Inleiding In de cursus Calculus 2 voor Bouwkunde (2DB90) wordt evenals in de cursus Calculus 1 gebruikt het boek: Calculus, Early Transcendental
De parabool en de cirkel raken elkaar in de oorsprong; bepaal ook de coördinaten van de overige snijpunten A 1 en A 2.
BURGERLIJK INGENIEUR-ARCHITECT - 5 SEPTEMBER 2002 BLZ 1/10 1. We beschouwen de cirkel met vergelijking x 2 + y 2 2ry = 0 en de parabool met vergelijking y = ax 2. Hierbij zijn r en a parameters waarvoor
Project Dynamica: oefenopgaven met R
Project Dynamica: oefenopgaven met R De onderstaande opgaven dienen in R gemaakt te worden; uitwerkingen hoeven niet ingeleverd te worden. Zie de website http://www.r-project.org/ voor R manuals. Start
Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30
Hertentamen WIN12 Wiskundige Technieken 2 Di 17 april 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica
UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen
Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)
Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,
3.1 Kwadratische functies[1]
3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt
Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:
Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van
Training integreren WISNET-HBO. update aug 2013
Training integreren WISNET-HBO update aug 2013 Primitiveren De primitieve bepalen betekent in feite de functie bepalen waarvoor geldt dat Anders geschreven: Links en rechts maal dx: df = f dx De betekenis
Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen
Hoofdstuk : Partiële differentiaalvergelijkingen en Fourierreeksen Partiële differentiaalvergelijkingen zijn vergelijkingen waarin een onbekende functie van twee of meer variabelen en z n partiële afgeleide(n)
TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,
TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen
Bepaalde Integraal (Training) Wat reken je uit als je een functie integreert
Bepaalde Integraal (Training) WISNET-HBO update april 2009 Wat reken je uit als je een functie integreert De betekenis van de integraal is een optelling van uiterst kleine onderdelen. In dit voorbeeld
Introductie in R. http://www.math.montana.edu/stat/tutorials/r-intro.pdf http://www.math.montana.edu/stat/docs/splus_notes.ps
Introductie in R R is een programmeer taal met een groot aantal voorgeprogrammeerde statistische functies. Het is de open source versie van S-plus. Wij gebruiken R dan ook omdat het gratis is. Documentatie
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),
Oefeningen Numerieke Wiskunde
Oefeningen Numerieke Wiskunde Oefenzitting 2: Foutenanalyse, Conditie en Stabiliteit Vereiste voorkennis Foutenanalyse van de som De begrippen conditie en stabiliteit 1 Oefeningen 1.1 Foutenanalyse van
Inleiding MATLAB (2) november 2001
Inleiding MATLAB (2) Stefan Becuwe Johan Vervloet november 2 Octave gratis MATLAB kloon Min of meer MATLAB compatibel http://www.octave.org/ % Script PlotVb % % Plot regelmatige driehoek t/m tienhoek PlotVb.m
Tentamen Lineaire Algebra UITWERKINGEN
Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen
college 2: partiële integratie
39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:
TRILLINGEN EN GOLVEN HANDOUT FOURIER
TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES
3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
