Derde serie opdrachten systeemtheorie
|
|
|
- Franciscus Wouters
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Derde serie opdrachten systeemtheorie Opdracht 1. We bekijken een helicopter die ongeveer stilhangt in de lucht. Bij benadering kan zo n helicopter beschreven worden door het volgende stelsel vergelijkingen x(t + 1) = Ax(t) + Bu(t), Σ y(t) = Cx(t), x(0) = x. De tijd t loopt met stappen van een seconde. De toestand x(t) heeft drie kentallen. Het eerste, x 1 (t), geeft de horizontale snelheid van de helicopter in meters per seconde op tijd t weer (positief is vooruit en negatief is achteruit). Het tweede, x 2 (t), de verandering van de hellingshoek in radialen per seconde, en het derde, x 3 (t), de hellingshoek zelf in radialen. We werken dus onder de vereenvoudigende aanname dat de helicopter alleen voorwaarts en achterwaarts kan vliegen en alleen voorover en achterover kan hellen. De piloot en een automatische stabilisator bedienen de rotor die voor- of achterover kan worden bewogen. De input is dus de hellingshoek van de rotor, u(t) in radialen. Van het model is verder gegeven dat het de helicopter redelijk beschrijft als de snelheid onder de 20 meter per seconde blijft, x 1 (t) < 20, en als verder x 2 (t) < 0,5 en x 3 (t) < 0,5. De matrices van het systeem zijn de volgende. A = C = ( )., B = Met de bij deze opdracht horende file op de web-pagina maak je in matlab de benodigde data: de matrices A, B en C, de startvector x0 (x 0 ), het karakteristieke polynoom pf (p F ), nodig voor het bepalen van de feed-back, de ruis EE (ɛ) voor de onderdelen 6, 7, 8 en 9, en de matrices Q en R voor onderdeel 8. Maak daarvoor eerst de kolom Snummer van jullie studentnummers in matlab. Vragen 1. We voeren een paar experimenten uit met het model van de helicopter. Neem aan dat de begintoestand gegeven is door x(0) = x 0. Bekijk in een grafiek en becommentarieer de snelheid van de helicopter gedurende (maximaal) één minuut die volgt uit de verschillende acties van de piloot, beschreven door de volgende inputfuncties u. 1,
2 (a) u(t) = 0 voor alle t. (b) u(t) = 1 πt sin voor t = 0, 1, Voor later gebruik: bereken in geval (a) een matrix X waarvan de kolommen de vectoren x(0), x(1),..., x(60) zijn en een matrix Y met als kolommen y(0), y(1),..., y(60). Wat valt er in geval (a) over de toestand (niet alleen de snelheid) van de helicopter op te merken? 2. Op basis van de resultaten van het vorige onderdeel zou men kunnen vermoeden dat A niet stabiel is. Ga na of A stabiel is, en of het systeem waarneembaar en bestuurbaar is. 3. We gaan een rijvector F construeren zó dat de matrix A + BF stabiel is. Daartoe leiden we eerst een formule af voor de feedback F in termen van de karakteristieke polynomen en p F (z) van respectievelijk A en A + BF. (a) We geven dat 1 F (zi A) 1 B = p F (z). Met andere woorden, 1 p F (z) het systeem is de overdrachtsfunctie (transferfunction) van { z(t + 1) = Az(t) + Bu(t), y(t) = F z(t), (De formule voor p F (z) is analoog aan die uit de inleiding van serie 2). (b) Zij nu p F (z) = α 1 z 1 + α 2 z 2 + α 3 z 3 + z 3 R 3 (z) met lim z R 3 (z) = 0. Toon aan dat F ( B AB A 2 B ) = ( F B F AB F A 2 B ) = ( α 1 α 2 α 3 ). (Aanwijzing: bedenk wat dit met impulsresponsmatrices te maken heeft.) (c) Het polynoom pf, dat je in matlab maakt, wordt het karakteristieke polynoom van de matrix A+BF. Bereken daarmee de F. Wat zijn nu de eigenwaarden van A+BF en stemmen die overeen met je verwachting? Aan welke voorwaarde moet (A, B) voldoen opdat de boven beschreven berekeningen met succes kunnen worden uitgevoerd? 2
3 4. Bepaal nu een toestandswaarnemer (state observer) voor Σ: door R te berekenen. z(t + 1) = Az(t) + Bu(t) + R ( y(t) Cz(t) ), Aanwijzing: Bepaal R door het algorithme voor de bepaling van F in onderdeel 3 aan te passen voor rijen in plaats van kolommen. Je moet nu zelf een karakteristiek polynoom p R voor A RC kiezen. Het polynoom p F uit het vorige onderdeel heeft eigenwaarden die voor een toestandswaarnemer een wat grote absolute waarde hebben. Kies dus zelf geschikte nulpunten voor het karakteristiek polynoom van A RC. Nuttig is daarbij de matlab-functie poly die ondermeer bij voorgeschreven nulpunten een bijbehorend polynoom kan produceren. Controleer de eigenwaarden van A RC. We kiezen de waarden van u(t) en y(t) zoals berekend in vraag 1(a), en gaan hiermee doe toestanden x(t) schatten. We berekenen dus de z(t) voor een aantal waarden van t uitgaande van z(0) = 0. Lijkt inderdaad x(t) z(t) naar nul te gaan? (x(t) was bij vraag 1(a) bewaard!) 5. Maak nu een automatische stabilisator voor de helicopter, die door terugkoppeling van de snelheid y naar de rotorhoek u de helicopter stabiliseert. Bereken dus het resulterende closed loop systeem x(t + 1) = Ax(t) + Bu(t), t = 0, 1,..., Hier: Σ cl y(t) = Cx(t), t = 0, 1,..., u(t) = F z(t), t = 0, 1,..., z(t + 1) = Az(t) + Bu(t) + R ( y(t) y(t) ), t = 0, 1,..., y(t) = Cz(t), t = 0, 1,.... x(t) is de (onbekende) toestand van het systeem; y(t) is de (gemeten) output van het systeem; z(t) is de (bekende) schatting van de toestand van het systeem; u(t) is de berekende input van het systeem; y(t) is de (berekende) schatting van de output, gebaseerd op de geschatte toestand; R is de matrix bepaald bij de vorige vraag; F is de feedback bepaald bij vraag 3. Elimineer u(t), y(t), en y(t) uit Σ cl. Er komt Σ cl { x(t + 1) = Ax(t) + BF z(t), t = 0, 1,..., z(t + 1) = RCx(t) + (A RC + BF )z(t), t = 0, 1,... 3
4 Bereken in matlab de matrices in deze vorm van het gesloten systeem. Boven is bekeken wat het effect is van x(0) = x 0 (in matlab x0) zonder ingrijpen van de piloot. Hier nemen we aan dat we wel de snelheid kennen maar niet de andere componenten van de toestand. Begin daarom met x(0) = x 0 en z(0) = ( x 0 (1) 0 0 ) T en ga na wat het verloop van de toestand x is gedurende een minuut. 6. Het model dat we bekijken is niet precies. In de eerste plaats is het een benadering. Daarnaast zijn er kleine storingen door bijvoorbeeld wind en speling in het mechaniek. We gaan deze onnauwkeurigheden simuleren met een verstoring ɛ(t), die in matlab als de 3 61 matrix EE wordt gegenereerd. Bewaar de tijdreeks ɛ voor later gebruik! Kies nu u(t) = 0 voor alle t en x = 0. Het systeem wordt dan x(t + 1) = Ax(t) + ɛ(t), y(t) = Cx(t), x(0) = 0. Bekijk het verloop van x(t) gedurende een minuut door het in grafieken voor de drie componenten weer te geven. Voorzie die grafieken van commentaar (wat zie je, hoe komt dat, etc.). 7. Nu doen we hetzelfde als bij het vorige onderdeel maar nu met het door ouputterugkoppeling gestabiliseerde closed loop-systeem: x(t + 1) = Ax(t) + BF z(t) + ɛ(t), t = 0, 1,..., z(t + 1) = RCx(t) + (A RC + BF )z(t), t = 0, 1,... x(0) = 0. z(0) = 0. Bekijk het verloop van de toestand gedurende een minuut. Wat is het verschil met de vorige vraag? 8. We willen nu dat onze stabiliserende terugkoppeling extra eigenschappen heeft. We willen niet dat de helling groot wordt of te veel verandert. Met andere woorden, we kiezen er voor om in de eerste plaats de helicopter horizontaal te houden. Daarom voeren we een kostenfunctie in bij het berekenen van de terugkoppeling. We kiezen voor de kosten J(x(0), u) = Q(1, 1)x 1 (t) 2 + Q(2, 2)x 2 (t) 2 + Q(3, 3)x 3 (t) 2 + Ru(t) 2. t=0 Bereken nu een voor deze kostenfunctie optimale terugkoppeling. Herhaal nu met deze terugkoppeling het experiment uit van vraag 7. Vergelijk de resultaten en geef aan of de kostenfunctie het gewenste resultaat heeft gehad. 4
5 9. Neem nu zelf een andere kostenfunctie, leg de achtergronden van je keuze uit, en experimenteer met de daarbij horende terugkoppeling. Ga na of de terugkoppeling het beoogde effect heeft gehad. 5
Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:
Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x
Stelsels differentiaalvergelijkingen
Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +
Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen
Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen 1 Introductie Taylor polynoom, floating point getal, afrondfout Orde symbool Landau 1. Laat f(x) = x 3. Bepaal het tweede orde Taylor
Hoofdstuk 3 : Determinanten
(A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld
Complexe eigenwaarden
Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie
Geleid herontdekken van de golffunctie
Geleid herontdekken van de golffunctie Nascholingscursus Quantumwereld Lodewijk Koopman [email protected] januari-maart 2013 1 Dubbel-spleet experiment Er wordt wel eens gezegd dat elektronen interfereren.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
Toepassingen op differentievergelijkingen
Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij
De comfortabele auto
De comfortabele auto 1e Matlab practicum Inleiding Wiskundige Systeemtheorie (156056) (inleveren tot en met vrijdag 13 Maart 2009, via Teletop). Dit is de eerste van twee verplichte Matlab/Simulink-practica
Schriftelijke zitting Regeltechniek (WB2207) 3 november 2011 van 9:00 tot 12:00 uur
Schriftelijke zitting Regeltechniek (WB2207) 3 november 2011 van 9:00 tot 12:00 uur Onderstaande aanwijzingen nauwkeurig lezen. Vul op het voorblad uw naam, voorletters, studienummer en opleiding in. Dit
Schriftelijke zitting Systeem- en regeltechniek 2 (WB2207) 31 oktober 2006 van 14:00 tot 17:00 uur
Schriftelijke zitting Systeem- en regeltechniek 2 (WB2207) 31 oktober 2006 van 14:00 tot 17:00 uur Onderstaande aanwijzingen nauwkeurig lezen. Vul op het voorblad uw naam, voorletters, studienummer en
Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening
Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail
Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem
PLANETENSTELSELS - WERKCOLLEGE 3 EN 4 Opdracht 3: Baanintegratie: Planeet in een dubbelstersysteem In de vorige werkcolleges heb je je pythonkennis opgefrist. Je hebt een aantal fysische constanten ingelezen,
Toepassingen op discrete dynamische systemen
Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch
Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011
Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
Aanvullingen bij Hoofdstuk 8
Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los
Schriftelijke zitting Systeem- en regeltechniek 2 (WB2207) 29 januari 2009 van 14:00 tot 17:00 uur
Schriftelijke zitting Systeem- en regeltechniek 2 (WB2207) 29 januari 2009 van 14:00 tot 17:00 uur Onderstaande aanwijzingen nauwkeurig lezen. Vul op het voorblad uw naam, voorletters, studienummer en
Hoofdstuk A9 Hellinggrafieken - alternatief
Hoofdstuk A9 Hellinggrafieken - alternatief Hellinggrafieken a. Maak instap opgaven I-a en I-b (zonder de formules van instap opgave I- te gebruiken). snelheid (m/s) tijd (seconden) b. Hoe kun je met de
Supplement Wiskunde 2017/2018. Inhoudsopgave
Inhoudsopgave Hoofdstuk 1: Missende stof in de verslagen... 2 Hoofdstuk 2: Overbodige stof in de verslagen... 7 Hoofdstuk 3: Fouten in de verslagen... 8 Tentamen halen? www.rekenmaarverslagen.nl 1 Hoofdstuk
Meetkunde en lineaire algebra
Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters
Antwoorden. 1. Rekenen met complexe getallen
1. Rekenen met complexe getallen 1.1 a. 9 b. 9 c. 16 d. i e. 1 1. a. 1 b. 3 c. 1 d. 4 3 e. 3 4 1.3 a. 3 i b. 3 i c. i d. 5 i e. 15 i 1.4 a. 33 i b. 7 i c. 4 3 i d. 3 5 i e. 5 3 i 1.5 a. 1 ± i b. ± i c.
Schriftelijke zitting Systeem- en regeltechniek 2 (WB2207) 31 januari 2008 van 9:00 tot 12:00 uur
Schriftelijke zitting Systeem- en regeltechniek 2 (WB227) 31 januari 28 van 9: tot 12: uur Onderstaande aanwijzingen nauwkeurig lezen. Vul op het voorblad uw naam, voorletters, studienummer en opleiding
Vectoranalyse voor TG
college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid
Lineaire vergelijkingen II: Pivotering
1/25 Lineaire vergelijkingen II: Pivotering VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam [email protected], 1A40 15 april 2013 2/25 Overzicht Pivotering: Methodes Norm en conditionering
vandaag is Annie twee jaar jonger dan Ben en Cees samen
Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud
Tussentoets Analyse 2. Natuur- en sterrenkunde.
Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.
Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
IJkingstoets Wiskunde-Informatica-Fysica juli 2018: algemene feedback
IJkingstoets wiskunde-informatica-fysica juli 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica juli 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen 8 studenten
Akternatieve doorrekenen. 7.2 Tabellen
7.2 Tabellen Een tabel geeft een overzicht van de uitkomsten van een berekening voor verschillende waarden van een of meerdere variabelen. Excel kent twee soorten tabellen. Een eenzijdige en een tweezijdige
natuurkunde vwo 2017-I
natuurkunde vwo 07-I Cessna 4 maximumscore 5 uitkomst: α = 7,8 voorbeeld van een berekening: In verticale richting geldt: F = Fz = mg = 70 9,8= 6,965 0 N. De motorkracht kan berekend worden met behulp
11.0 Voorkennis V
11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix
Figuur 1: Blok-schema van een DC motor, a) Geef de overdrachtsfuntie G(s) = T(s)/V(s). Schrijf G(s) in de vorm K B(s) A( s
1. Een blok-schema van een DC motor is gegeven in figuur 1. Vis) 1 m 1 Ls+R Js+b (0(5) K, Figuur 1: Blok-schema van een DC motor, a) Geef de overdrachtsfuntie G(s) = T(s)/V(s). Schrijf G(s) in de vorm
De bisectie methode uitgelegd met een makkelijk voorbeeld
De Bisectie methode De bisectie methode uitgelegd met een makkelijk voorbeeld De bisectie methode is een recursieve methode om punten van een functie te gaan afschatten. Hierbij gaat men de functiewaarde
PROJECT 1: Kinematics of a four-bar mechanism
KINEMATICA EN DYNAMICA VAN MECHANISMEN PROJECT 1: Kinematics of a four-bar mechanism Lien De Dijn en Celine Carbonez 3 e bachelor in de Ingenieurswetenschappen: Werktuigkunde-Elektrotechniek Prof. Dr.
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire
Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek
Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de
Onderzoeken welke onderdelen noodzakelijk zijn om een PV-installatie autonoom te laten werken.
Experiment 5 5 Onderdelen van een autonome PV-installatie Onderzoeken welke onderdelen noodzakelijk zijn om een PV-installatie autonoom te laten werken. grondplaat 1 zonnemodule 1 halogeenlamp 1 motor
Matrices en Stelsel Lineaire Vergelijkingen
Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een
Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen
Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet
Hoofdstuk 3 : Determinanten
Hoofdstuk 3 : Determinanten Paragraaf 3.2 : Determinanten (Les ) Definitie determinant aa bb De determinant van de [2 x 2]-matrix AA = is een getal met waarde cc dd det(a) = ad bc. aa bb Notatie : dddddd(aa)
3. Structuren in de taal
3. Structuren in de taal In dit hoofdstuk behandelen we de belangrijkst econtrolestructuren die in de algoritmiek gebruikt worden. Dit zijn o.a. de opeenvolging, selectie en lussen (herhaling). Vóór we
Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015
Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen
opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename
Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen
Schriftelijke zitting Systeem- en regeltechniek 2 (WB2207) 26 oktober 2010 van 14:00 tot 17:00 uur
Schriftelijke zitting Systeem- en regeltechniek 2 (WB2207) 26 oktober 2010 van 14:00 tot 17:00 uur Onderstaande aanwijzingen nauwkeurig lezen. Vul op het voorblad uw naam, voorletters, studienummer en
Hoofdstuk 5 - Recursie
Hoofdstuk 5 - Recursie Een banktegoed waarover je jaarlijks rente krijgt uitgekeerd is een voorbeeld van recursie. Je kunt steeds het nieuwe banktegoed berekenen op basis van het banktegoed van vorig jaar.
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire
Wetenschappelijk Rekenen
Wetenschappelijk Rekenen Examen - Bacheloropleiding informatica Oefeningen 3 september 204. Beschouw de matrix A = 8 6 3 5 7 4 9 2 Deze matrix heeft 5 als dominante eigenwaarde. We proberen deze eigenwaarde
Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig.
7 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Functies en grafieken. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: functie invoerwaarde
Stelsels lineaire vergelijkingen
Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte
Antwoorden op de theoretische vragen in de examen voorbereiding
Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire
Opgaven bij Numerieke Wiskunde I
Opgaven bij Numerieke Wiskunde I 7 november 8 1. (a) Gegeven verschillende interpolatiepunten x, x 1, x [a, b], en getallen y, y 1, y, z 1, toon aan dat er hooguit 1 polynoom p P 3 is met p(x i ) = y i,
NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING. Docent: Karel in t Hout. Studiepunten: 3
NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING Docent: Karel in t Hout Studiepunten: 3 Over deze opgave dien je een verslag te schrijven waarin de antwoorden op alle vragen zijn verwerkt. Richtlijnen
wiskunde B vwo 2015-II
Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande
Examen VWO. Wiskunde B1 (nieuwe stijl)
Wiskunde B1 (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Vrijdag 4 mei 13.30 16.30 uur 0 0 Voor dit examen zijn maximaal 84 punten te behalen; het examen bestaat uit 18
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)
TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,
TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen
Eindexamen wiskunde B1-2 vwo 2002-I
Uit de kust Een kustlijn bestaat uit drie rechte stukken AB, BC en CD, die hoeken van 90 met elkaar maken. De lengte van elk recht stuk is 4 kilometer. Zie figuur. In de figuur zijn twee stippellijnen
Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 0 tijdvak woensdag 0 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage.. Dit eamen bestaat uit 0 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer
Optimalisering en Complexiteit, College 11. Complementaire speling; duale Simplex methode. Han Hoogeveen, Utrecht University
Optimalisering en Complexiteit, College 11 Complementaire speling; duale Simplex methode Han Hoogeveen, Utrecht University Duale probleem (P) (D) min c 1 x 1 + c 2 x 2 + c 3 x 3 max w 1 b 1 + w 2 b 2 +
Lights Out. 1 Inleiding
Lights Out 1 Inleiding Het spel Lights Out is een elektronisch spel dat gelanceerd werd in 1995 door Tiger Electronics. Het originele spel heeft een bord met 25 lampjes in een rooster van 5 rijen en 5
a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.
. Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn
Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.
Bal in de sloot Een bal met een straal van cm komt in een figuur sloot terecht en blijft drijven. Het laagste punt van de bal bevindt zich h cm onder het wateroppervlak. In figuur zie je een doorsnede
Geadjungeerde en normaliteit
Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt
Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,
Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd
Stelsels lineaire differentiaalvergelijkingen (homogeen)
Stelsels lineaire differentiaalvergelijkingen (homogeen) Voorbeeld Voorbeeld ( 7., Opgave 22) Op t = 0 bevatten de vaten respectievelijk 25 en 5 oz (ounces) zout. 3 september 206 Onderzoeken we hoeveel
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De
Examen VWO. Wiskunde B1,2 (nieuwe stijl)
Wiskunde B, (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Vrijdag 4 mei 3.30 6.30 uur 0 0 Voor dit examen zijn maximaal 86 punten te behalen; het examen bestaat uit 8 vragen.
Docentenversie. Hoofdstuk A9 Hellinggrafieken - alternatief. snelheid (m/s)
Docentenversie Vooraf Dit hoofdstuk bestaat uit drie delen: Wat zijn hellinggrafieken en hoe maak je ze? Met het differentiequotient voor alle punten van de grafiek de helling uitrekenen. Die waarden kun
Schriftelijke zitting Systeem- en regeltechniek 2 (WB2207) Oefententamen
Schriftelijke zitting Systeem- en regeltechniek 2 (WB2207) Oefententamen Onderstaande aanwijzingen nauwkeurig lezen. Vul op het voorblad uw naam, voorletters en studienummer in. Dit tentamen bestaat uit
a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.
Deze examentoets en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 100 minuten ongeveer 22 vragen Et3 stof vwo6 volgens het PTA: Onderwerpen uit samengevat: Rechtlijnige beweging Kracht
De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl.
et1-stof Havo4: havo4 A: hoofdstuk 1 t/m 4 Deze opgaven en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 1 minuten ongeveer deelvragen. Oefen-examentoets et-1 havo 4 1/11 1. Een lancering.
Eindexamen wiskunde B1 vwo 2002-I
Eindexamen wiskunde B1 vwo 00-I Verschuivend zwaartepunt Een kubusvormige bak met deksel heeft binnenmaten 10 bij 10 bij 10 cm en weegt 1 kilogram. Het zwaartepunt B van de bak ligt in het centrum van
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra donderdag 29 januari 205, 9.00-2.00 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken.
Matrices en Grafen (wi1110ee)
Matrices en Grafen (wi1110ee) Electrical Engineering TUDelft September 1, 2010 September 1, 2010 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : [email protected] homepage : http:
Tentamen Lineaire Algebra
Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische
3 Wat is een stelsel lineaire vergelijkingen?
In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper
Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00
Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus
Examenvragen Hogere Wiskunde I
1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies
