Oefeningen Numerieke Wiskunde

Maat: px
Weergave met pagina beginnen:

Download "Oefeningen Numerieke Wiskunde"

Transcriptie

1 Oefeningen Numerieke Wiskunde Oefenzitting 2: Foutenanalyse, Conditie en Stabiliteit Vereiste voorkennis Foutenanalyse van de som De begrippen conditie en stabiliteit 1 Oefeningen 1.1 Foutenanalyse van som, product en scalair product Voer een foutenanalyse uit voor de volgende algoritmen en interpreteer: (a) som <in: a(1),a(2),...,a(n); uit: P= n i=1 a(i)> 1. S a(1) 2.1. S S+a(i) Oplossing: S S ( a(1) (n 1) + a(2) (n 1) + a(3) (n 2) a(n) )ɛ mach (b) product <in: a(1),a(2),...,a(n); uit: P= n i=1 a(i)> 1. P a(1) 2.1. P P*a(i) Oplossing: P P n i=1 a(i) (n 1)ɛ mach (c) scalair_product <in: a(1),a(2),...,a(n); b(1),b(2),...,b(n); uit: SP= n i=1 a(i)b(i)> 1. SP a(i)*b(1) 2.1. SP SP+(a(i)*b(i)) Oplossing: SP SP ( a(1)b(1) n + a(2)b(2) n + a(3)b(3) (n 1) a(n)b(n) 2)ɛ mach. 1.2 Foutenanalyse voor de evaluatie van een veelterm Maak voor elk van de volgende algoritmen een foutenanalyse en bereken ook telkens de hoeveelheid rekenwerk. Vergelijk de verschillende algoritmen. (a) Achterwaartse evaluatie: V = a(n)x n + a(n 1)x n a(1)x 1 + a(0) eval1 <in: a(n),a(n-1),...,a(0),x; uit: V> 1. V a(n)*x n 2. voor i=n-1:-1:0, 2.1. V V+a(i)*x i 1

2 Oplossing: { V V ( a(n)x n 2n + a(n 1)x n 1 (2n 1) + a(n 2)x n 2 (2n 3) a(0) ) ɛ mach n(n+1) 2 V + n O (b) Horner V = (... ((a(n)x + a(n 1))x + a(n 2))x +...)x + a(0) eval2 <in: a(n),a(n-1),...,a(0),x; uit: V> 1. V a(n) 2. voor i=n-1:-1:0, 2.1. V V*x+a(i) Oplossing: { V V ( a(n)x n 2n + a(n 1)x n 1 (2n 1) + a(n 2)x n 2 (2n 3) a(0) ) ɛ mach n V + n O (c) Voorwaartse evaluatie V = a(0) + a(1)x a(n)x n eval3 <in: a(0),a(1),...,a(n),x; uit: V> 1. p(0) x 2. V a(0) 3. voor i=1:n, 2.1. V V+(a(i)*p(i-1)) 2.2. p(i) x*p(i-1) Oplossing: { V V [ n a(0) + (n + 1)( a(1)x + a(2)x a(n)x n ] ɛ mach 2n V + n O 1.3 Het sommatie-algoritme van Kahan Probeer aan de hand van de volgende schematische voorstelling van het algoritme van Kahan (cursus pag. 25) te achterhalen wat het achterliggende idee is. S + T Y l T S Y l Y l = C, correctieterm 1.4 Conditie en stabiliteit van een functie-evaluatie Vooraleer we aan de oefening beginnen, nog even opfrissen wat conditie en stabiliteit betekenen: 2

3 Conditie is iets wat te maken heeft met het probleem zelf, niet met de manier waarop je het oplost (algoritme). Als je kleine perturbaties aanbrengt op de gegevens en je krijgt grote (absolute of relatieve) perturbaties op de uitkomst, dan heb je een slechte (absolute of relatieve) conditie. Stabiliteit is iets wat te maken heeft, met de manier waarop je het probleem oplost (algoritme). Een probleem kan met verschillende algoritmen worden opgelost en elk van die algoritmen kan een goede of slechte benadering van de oplossing geven. Je kan onderscheid maken tussen 3 soorten stabiliteit: Voorwaartse of sterke stabiliteit heb je als je met de exacte gegevens als invoer een uitvoer krijgt die (absoluut of relatief) weinig verschilt met de exacte uitkomst. Zwakke stabiliteit doordat ook de conditie een grote rol speelt of een uitvoer goed of slecht zal zijn (een slechte conditie zorgt er immers voor dat kleine perturbaties op de gegevens, grote gevolgen op de uitkomst kunnen hebben) zullen we de conditie mee in rekening brengen. De verhouding van de sterke stabiliteit met het conditiegetal (is hetzelfde bij absoluut en relatief) is de zwakke stabiliteit. Achterwaartste stabiliteit. Met de exacte gegevens bereken je de uitkomst met het algoritme (en dus krijg je niet de exacte uitkomst) en je zoekt naar de exacte gegevens die bij deze berekende uitkomst horen. Het verschil van deze gegevens en de exacte gegevens (in verhouding tot de grootte van de gegevens en ɛ mach ) is de achterwaartse stabiliteit. (a) Onderzoek de conditie van de functie f(x) = 1 + 2x x. Ga na waar δ cy en c y het grootst zijn, teken de functie en interpreteer je resultaat. (b) Onderzoek de stabiliteit t.o.v. de relatieve fout voor de volgende twee algoritmen die f(x) berekenen: eval_1 <in: x; uit: y> 1. y 2*x 2. y 1+y 3. z 1+x 4. z 1/z 5. y y-z eval_2 <in: x; uit: y> 1. y 2*x 2. y 3+y 3. y y*x 4. z 1+x 5. y y/z Oplossing: c y = ( ) (1+x) x, δ 2 c y = 2 Extra Oefeningen 2.1 Rare optelling 3+4x+2x2 (1+x)(3+2x) δx Zij b = 10, p = 10, M = , en beschouw de volgende rij getallen [1, M, 2M, 3M]. Wordt het nauwkeurigste resultaat bekomen als je deze rij optelt van voor naar achter of van achter naar voor? Is dit consistent met wat je bekwam in oefening 1? 3

4 2.2 Intervallen In numerieke methoden voor kwadratuur en het oplossen van differentiaalvergelijkingen maakt men vaak gebruik van equidistante punten in een interval [a, b], i.e. x i = a + ih, i = 0... n met h = (b a)/n. Vergelijk de volgende 2 methoden om x i te berekenen: 1. x i = x i 1 + h (x 0 = a) 2. x i = a + ih In tegenstelling tot wat je zou vermoeden wordt methode 1 nog regelmatig gebruikt in bijvoorbeeld Runge- Kutta-methoden met vaste staplengte. Geen van beide methoden garandeert dat x n = b, wat van belang kan zijn bij het oplossen van differentiaalvergelijkingen. Zoek zelf een uitdrukking voor x i zodat zeker x n = b. 2.3 Hornerschema Zij p(x) = a 0 + a 1 x a n x n met n = 2m. Als men y = x 2 stelt kan men p(x) herschrijven als p(x) = (a 0 + a 2 y a 2m y m ) + x(a 1 + a 3 y a 2m 1 y m 1 ) Voer een foutenanalyse uit voor deze evaluatie van p(x) als je voor elk van de twee delen Horner gebruikt. 2.4 Berekenen van ex 1 x Beschouw de volgende 2 algoritmen om f(x) = (e x 1)/x te berekenen: exp_1 <in: x; uit: f(x)> 1. if (x=0) f 1 f (exp(x)-1)/x end exp_2 <in: x; uit: f(x)> 1. y exp(x) 2. if (y=1) f 1 f (y-1)/log(y) end In tegenstelling tot wat je waarschijnlijk vermoedt, werkt het tweede algoritme veel beter dan het eerste (probeer!). Voer een foutenanalyse uit en probeer te begrijpen wat het achterliggende fenomeen is. 2.5 Bepalen van basis en mantisse Probeer te verantwoorden waarom de algoritmen bepaal_b en bepaal_p uit oefenzitting 1, gebruikt kunnen worden voor het bepalen van de basis b en het aantal cijfers in de mantisse p van een machine. 2.6 Problemen in bepaal b en bepaal p Wat kan er mislopen in de algoritmen bepaal_b en bepaal_p als je de test (x + 1) x = 1 vervangt door x + 1 x? Beschouw het geval dat b = 2 en je werkt met afronden naar boven (in basis 2 is dit klassiek afronden). 4

5 2.7 Gegroepeerd sommeren Bereken voor het volgende algoritme de hoeveelheid rekenwerk en bewijs door inductie dat het geldt dat S S log 2 (n) ɛ mach n i=1 a(i) groep_som <in: a(1),a(2),...,a(n), onder, boven; uit: S= if boven=onder then S a(onder) 1. midden onder + floor((boven-onder+1)/2) 2. S groep_som(a,onder,midden-1)+groep_som(a,midden,boven) boven i=onder a(i)> Hint: Probeer het algoritme te vereenvoudigen door n = 2 k te stellen. Je kan immers altijd nullen toevoegen tot n een macht van 2 is. 5

Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen

Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen 1 Introductie Taylor polynoom, floating point getal, afrondfout Orde symbool Landau 1. Laat f(x) = x 3. Bepaal het tweede orde Taylor

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Utrecht, 25 november Numerieke Wiskunde. Gerard Sleijpen Department of Mathematics.

Utrecht, 25 november Numerieke Wiskunde. Gerard Sleijpen Department of Mathematics. Utrecht, 25 november 2014 Numerieke Wiskunde Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ [a, b] R, : [a, b] R Benader f door eenvoudige functies Voorbeelden eenvoudige

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 1ste semester 23 januari 2007 Aanvullingen van de Wiskunde 1. Gegeven zijn twee normen 1 en 2 op een vectorruimte V. Wanneer zegt men dat de 1 fijner is dan 2? Wat is dan het verband tussen convergentie

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters, stelsels 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17 Hints en uitwerkingen huiswerk 013 Analyse 1 H17 Rocco van Vreumingen augustus 014 1 Inhoudsopgave 1 Hints 1 3 Hints 4 3 Hints 3 4 4 Hints 4 5 5 Hints 5 5 6 Hints 6 6 7 Hints 7 6 8 Hints 8 6 9 Hints 9

Nadere informatie

Numerieke methoden voor stelsels gewone differentiaalvergelijkingen. Prof. Dr. Marnix Van Daele

Numerieke methoden voor stelsels gewone differentiaalvergelijkingen. Prof. Dr. Marnix Van Daele Numerieke methoden voor stelsels gewone differentiaalvergelijkingen Prof. Dr. Marnix Van Daele Deel I Beginwaardeproblemen of IVPs 1 Hoofdstuk 2 Introductie tot numerieke methoden voor IVPs 2.1 Nomenclatuur

Nadere informatie

Tuyaux 3de Bachelor Wiskunde WINAK

Tuyaux 3de Bachelor Wiskunde WINAK Tuyaux 3de Bachelor Wiskunde WINAK Eerste Semester 2011-2012 Inhoudsopgave 1 Inleiding 2 2 Maattheorie 3 2.1 Theorie....................................... 3 2.2 Oefeningen.....................................

Nadere informatie

Riemannsommen en integralen

Riemannsommen en integralen Riemannsommen en integralen MET DE TI-NSPIRE Vervangt een deel van 0. uit VWO B deel gghm EEBII 0-0 Inhoud Oppervlakte onder de grafiek... Ondersom... 4 Bovensom... 4 Middensom... 4 Riemannsom... 5 Riemannsom

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Relatieve fout, maximum relatieve fout, absolute fout en maximum absolute fout. γ < ε X X X. = γ X

Relatieve fout, maximum relatieve fout, absolute fout en maximum absolute fout. γ < ε X X X. = γ X 2 oct 95 Inhoud foutenanalyse interpolatie, approximatie, splines FFT numerieke integratie numerieke lineaire algebra (niet te vinden in de cursus, wel kopiekes bij ig) Stelsels niet lineaire vergelijkingen

Nadere informatie

Rekenen met letters deel 2

Rekenen met letters deel 2 Rekenen met letters deel 2 Sectie wiskunde RGO RGO-Middelharnis 1 1 c RGO-wiskunde 1 1 Herhaling 2 1 Herhaling 3a (a + 2b) 4b 3a ( 3a 3b) 3b 2a (a 2b) + 3a 2a + 3b ( 2a + 3b) a + (a 2b) 4b b (4a 2b) a

Nadere informatie

(x x 1 ) + y 1. x x k+1 x k x k+1

(x x 1 ) + y 1. x x k+1 x k x k+1 Les Talor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

Grafieken van veeltermfuncties

Grafieken van veeltermfuncties (HOOFDSTUK 43, uit College Mathematics, door Frank Ayres, Jr. and Philip A. Schmidt, Schaum s Series, McGraw-Hill, New York; dit is de voorbereiding voor een uit te geven Nederlandse vertaling). Grafieken

Nadere informatie

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Wetenschappelijk Rekenen

Wetenschappelijk Rekenen Wetenschappelijk Rekenen Eamen - Bacheloropleiding informatica Oefeningen 10 juni 2014 1. In de oefeninglessen hebben we gezien dat we de machine-epsilon bekomen bij het berekenen van ( 4 1) 1. Beschouw

Nadere informatie

Lineaire vergelijkingen II: Pivotering

Lineaire vergelijkingen II: Pivotering 1/25 Lineaire vergelijkingen II: Pivotering VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, 1A40 15 april 2013 2/25 Overzicht Pivotering: Methodes Norm en conditionering

Nadere informatie

Biofysische Scheikunde: Statistische Mechanica

Biofysische Scheikunde: Statistische Mechanica Biofysische Scheikunde: Statistische Mechanica Vrije Universiteit Brussel 27 november Outline 1 Statistische Definitie van 2 Statistische Definitie van Outline 1 Statistische Definitie van 2 Statistische

Nadere informatie

Opgaven bij Numerieke Wiskunde I

Opgaven bij Numerieke Wiskunde I Opgaven bij Numerieke Wiskunde I 7 november 8 1. (a) Gegeven verschillende interpolatiepunten x, x 1, x [a, b], en getallen y, y 1, y, z 1, toon aan dat er hooguit 1 polynoom p P 3 is met p(x i ) = y i,

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen de Bachelor EIT 2de en de Bachelor Wiskunde Academiejaar 215-216 1ste semester 26 januari 216 Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen 1. Gegeven een homogene lineaire partiële

Nadere informatie

maplev 2010/7/12 14:02 page 157 #159 Taylor-ontwikkelingen

maplev 2010/7/12 14:02 page 157 #159 Taylor-ontwikkelingen maplev 200/7/2 4:02 page 57 #59 Module 2 Taylor-ontwikkelingen Onderwerp Voorkennis Expressies Zie ook Taylor-ontwikkelingen van functies van éń of meer variabelen. Taylor-ontwikkelingen. taylor, convert(expressie,polynom),

Nadere informatie

(2) Bepaal de absolute waarde van (1 + i) 10 + ( x x 1 = 1. (4) Bepaal lim

(2) Bepaal de absolute waarde van (1 + i) 10 + ( x x 1 = 1. (4) Bepaal lim Tentamen Calculus I, 4 februari 009, 9:00 :00. Schrijf op elk in te leveren blad je naam, en op het eerste blad het aantal ingeleverde bladen. Alle (negen) opgaven tellen even zwaar. Het gebruik van boek(en),

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Examenvragen en -antwoorden

Examenvragen en -antwoorden KU Leuven Verzameling Examenvragen en -antwoorden Numerieke Wiskunde [G0N90B] Auteur: Tom Sydney Kerckhove Professor: Professor M. Van Barel Met dank aan: Dennis Frett Karel Domin Jonas Devlieghere Gestart:

Nadere informatie

6 Ringen, lichamen, velden

6 Ringen, lichamen, velden 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x 2 + 2x + 2 irreducibel is in Z 3 [x]. Oplossing 6.1 Aangezien de veelterm van graad 3 is,

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool 11/5/2013. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: cirkel en parabool 11/5/2013 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Rocco van Vreumingen 29 augustus 2014 1 Inhoudsopgave 1 Hints 1 3 2 Hints 2 4 3 Hints 3 5 4 Hints 4 5 5 Hints 5 6 6 Hints 6 6 7 Hints 7 6 8 Antwoorden

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

Opdrachten numerieke methoden, week 1

Opdrachten numerieke methoden, week 1 Opdrachten numerieke methoden, week Opdracht : De potentiaal in een diode. [Bewijs dat ψ = u T arcsinh D 2n i ) ] ) ) D = n p = n i e ψ u T e ψ u ψ T = 2n i sinh u T ) D ψ = u T arcsinh 2n i.2 [Conditiegetal

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

II. ZELFGEDEFINIEERDE FUNCTIES

II. ZELFGEDEFINIEERDE FUNCTIES II. ZELFGEDEFINIEERDE FUNCTIES In Excel bestaat reeds een uitgebreide reeks van functies zoals SOM, GEMIDDELDE, AFRONDEN, NU enz. Het is de bedoeling om functies aan deze lijst toe te voegen door in Visual

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool. 16 september dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool. 16 september dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: cirkel en parabool 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening 307 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http:users.telenet.betoelating) . Inleiding Dit oefeningenoverzicht

Nadere informatie

Numerieke Analyse. Prof. Dr. Guido Vanden Berghe

Numerieke Analyse. Prof. Dr. Guido Vanden Berghe Numerieke Analyse Prof. Dr. Guido Vanden Berghe Chapter 7 Numeriek berekenen van afgeleiden Doelstelling De topics behandeld in dit hoofdstuk zullen vooral van belang zijn voor de paragrafen over randwaarde

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

(x x 1 ) + y 1. x x 1 x k x x x k 1

(x x 1 ) + y 1. x x 1 x k x x x k 1 Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen 1ste Bachelor Fysica en Sterrenkunde Academiejaar 014-015 1ste semester 1 oktober 014 Wiskundige Technieken 1. Beschouw een scalaire functie f : R R en een vectorveld

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D2. Datum: dinsdag 29 april 28. Tijd: 14: 17:. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Wetenschappelijk Rekenen

Wetenschappelijk Rekenen Wetenschappelijk Rekenen Examen - Bacheloropleiding informatica Oefeningen 3 september 204. Beschouw de matrix A = 8 6 3 5 7 4 9 2 Deze matrix heeft 5 als dominante eigenwaarde. We proberen deze eigenwaarde

Nadere informatie

Rekenen aan wortels Werkblad =

Rekenen aan wortels Werkblad = Rekenen aan wortels Werkblad 546121 = Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk zijn hoe de antwoorden

Nadere informatie

STEEDS BETERE BENADERING VOOR HET GETAL π

STEEDS BETERE BENADERING VOOR HET GETAL π STEEDS BETERE BENADERING VOOR HET GETAL KOEN DE NAEGHEL Samenvatting. We bespreken een oplossing voor de (veralgemeende) opgave Noot 4 uit Wiskunde & Onderwijs nr.139. Onze inspiratie halen we uit het

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING. Docent: Karel in t Hout. Studiepunten: 3

NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING. Docent: Karel in t Hout. Studiepunten: 3 NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING Docent: Karel in t Hout Studiepunten: 3 Over deze opgave dien je een verslag te schrijven waarin de antwoorden op alle vragen zijn verwerkt. Richtlijnen

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N46) op maandag 23 Deel 1: Van 14 uur tot uiterlijk 153 uur Het gebruik van het

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 1/3/2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

maplev 2010/9/8 17:01 page 349 #351

maplev 2010/9/8 17:01 page 349 #351 maplev 00/9/8 7:0 page 49 5 Module Stabiliteit van evenwichten Onderwerp Voorkennis Expressies Bibliotheken Zie ook Stabiliteit van evenwichten van gewone differentiaalvergelijkingen. Gewone differentiaalvergelijkingen

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Numerieke methoden voor het oplossen van randwaardeproblemen

Numerieke methoden voor het oplossen van randwaardeproblemen Faculteit Wetenschappen Vakgroep Toegepaste Wiskunde, Informatica en Statistiek Numerieke methoden voor het oplossen van randwaardeproblemen Lien Gillis e Master Wiskunde Promotor: Prof. Dr. Van Daele

Nadere informatie

2. Het benaderen van nulpunten

2. Het benaderen van nulpunten Het benaderen van nulpunten Benaderen van vierkantswortels Als we met een numerieke rekenmachine benadering, 7 =,64575 7 berekenen, krijgen we als resultaat een Het numeriek benaderen kan met een recursieve

Nadere informatie

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Koen Rutten, Aris van Dijk 30 mei 2007 Inhoudsopgave 1 Verzamelingen 2 1.1 Definitie................................ 2 1.2 Eigenschappen............................

Nadere informatie

Tentamen Gewone Differentiaal Vergelijkingen II

Tentamen Gewone Differentiaal Vergelijkingen II Tentamen Gewone Differentiaal Vergelijkingen II.0.007 Jullie mogen een willekeurige van de vier opgaven als bonusopgave bekijken. (Dus drie opgaven volledig en goed gedaan is al een 10.) Opgave 1 Bekijk

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: gemiddelden, ongelijkheden enz 23/5/2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Inleiding MATLAB (2) november 2001

Inleiding MATLAB (2) november 2001 Inleiding MATLAB (2) Stefan Becuwe Johan Vervloet november 2 Octave gratis MATLAB kloon Min of meer MATLAB compatibel http://www.octave.org/ % Script PlotVb % % Plot regelmatige driehoek t/m tienhoek PlotVb.m

Nadere informatie

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt

Nadere informatie

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur

Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Toets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017, 13:30 16:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer)

Nadere informatie

Hoofdstuk 7 - veranderingen. getal & ruimte HAVO wiskunde A deel 2

Hoofdstuk 7 - veranderingen. getal & ruimte HAVO wiskunde A deel 2 Hoofdstuk 7 - veranderingen getal & ruimte HAVO wiskunde A deel 2 0. voorkennis Plotten, schetsen en tekenen Een grafiek plotten Een grafiek schetsen Een grafiek tekenen Na het invoeren van de formule

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

N3 LINEAIRE INTERPOLATIE

N3 LINEAIRE INTERPOLATIE N3 LINEAIRE INTERPOLATIE 3.18 Inleiding Het komt vaak voor dat we slechts gedeeltelijke informatie hebben over het vloeiende verloop van een functie f en toch de waarde van de functie y = f(x) in een bepaald

Nadere informatie

Constanten. Variabelen. Expressies. Variabelen. Constanten. Voorbeeld : varid.py. een symbolische naam voor een object.

Constanten. Variabelen. Expressies. Variabelen. Constanten. Voorbeeld : varid.py. een symbolische naam voor een object. een symbolische naam voor een object. Variabelen Constanten Variabelen Expressies naam : geeft de plaats in het geheugen aan waarde : de inhoud van het object identifier : een rij van letters en/of cijfers

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }

Nadere informatie

Examen Analyse 2 : Theorie (zonder Maple). (7 januari 2014)

Examen Analyse 2 : Theorie (zonder Maple). (7 januari 2014) Examen Analyse 2 : Theorie (zonder Maple). (7 januari 204). Maclaurin reeksen. Geef met bewijs de Maclaurin reeksontwikkeling van de logaritmische functie ln( + x). Geef ook het convergentie-interval van

Nadere informatie

Hieronder zie je hoe dat gaat. Opgave 3. Tel het aantal routes in de volgende onvolledige roosters van linksboven naar rechtsonder.

Hieronder zie je hoe dat gaat. Opgave 3. Tel het aantal routes in de volgende onvolledige roosters van linksboven naar rechtsonder. Groepsopdracht 1: Volledige en onvolledige roosters Voor een volledig rooster kun je de driehoek van Pascal gebruiken om te weten te komen hoeveel routes er van A naar B zijn. Bij onvolledige roosters

Nadere informatie

Naam: Studierichting: Naam assistent:

Naam: Studierichting: Naam assistent: Naam: Tussentijdse Toets Wiskunde I ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, Master Chemie donderdag 4 november

Nadere informatie

w (n). w n+1 = w n+1 = w n + hf(w n ), w n+1 = w n + hf(w n+1 ), 1195w (n) [ ( 2) ( 2) =

w (n). w n+1 = w n+1 = w n + hf(w n ), w n+1 = w n + hf(w n+1 ), 1195w (n) [ ( 2) ( 2) = We bekijken het stelsel vergelijkingen { y 95y + 995y y 97y 997y, met als beginvoorwaarden { y (0) y (0) Op tijdsniveau t nh definieren we de vector w (n) w n+ w (n) Euler Voorwaarts is dan en Euler Achterwaarts

Nadere informatie

Errata Moderne wiskunde 9e editie havo D deel 1 hoofdboek

Errata Moderne wiskunde 9e editie havo D deel 1 hoofdboek Onderstaande verbeteringen zijn gebaseerd op de eerste druk van deze titel. In bijdrukken worden fouten hersteld. Het is dus goed mogelijk, dat hier verbeteringen staan, die bij een nieuwe druk al zijn

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

maplev 2010/7/12 14:02 page 55 #57 lhs, rhs, assign, isolate, solve, identity, RootOf, allvalues, fsolve, avoid Module 3, 8, 14 en 25.

maplev 2010/7/12 14:02 page 55 #57 lhs, rhs, assign, isolate, solve, identity, RootOf, allvalues, fsolve, avoid Module 3, 8, 14 en 25. maplev 2010/7/12 14:02 page 55 #57 Module 5 Oplossen van stelsels vergelijkingen Onderwerp Voorkennis Expressies Zie ook Stelsels vergelijkingen. lhs, rhs, assign, isolate, solve, identity, RootOf, allvalues,

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv bladzijde 68 a Uit de eerste rij van de tabel volgt y= maar uit de tweede rij volgt y= 0 8 Dus en y zijn niet recht evenredig b y is dan 0 = 8 keer zo groot geworden c Als met 6 wordt vermenigvuldigd dan

Nadere informatie

Elementaire rekenvaardigheden

Elementaire rekenvaardigheden Hoofdstuk 1 Elementaire rekenvaardigheden De dingen die je niet durft te vragen, maar toch echt moet weten Je moet kunnen optellen en aftrekken om de gegevens van de patiënt nauwkeurig bij te kunnen houden.

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

Oplossingen Oefeningen Bewijzen en Redeneren

Oplossingen Oefeningen Bewijzen en Redeneren Oplossingen Oefeningen Bewijzen en Redeneren Goeroen Maaruf 20 augustus 202 Hoofdstuk 3: Relaties. Oefening 3..2 (a) Persoon p is grootouder van persoon q. (b) (p, q) O o O r P : [ (p, r) O (r, q) O ]

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

Achtste college complexiteit. 2 april Polynoomevaluatie Matrixvermenigvuldiging Euler- en Hamiltonkringen

Achtste college complexiteit. 2 april Polynoomevaluatie Matrixvermenigvuldiging Euler- en Hamiltonkringen College 8 Achtste college complexiteit 2 april 2019 Polynoomevaluatie Matrixvermenigvuldiging Euler- en Hamiltonkringen 1 Polynoomevaluatie Zij p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0 een polynoom

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel 2. 6 november 2015 van 10:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel 2. 6 november 2015 van 10:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Eindtoets Experimentele Fysica 1 (3A1X1) - Deel 2 6 november 2015 van 10:00 12:00 uur Puntenwaardering voor de opgaven: Opgave 1: a) 4; b) 6; c) 5 Opgave 2: a) 5; b) 3;

Nadere informatie

Overgangsverschijnselen

Overgangsverschijnselen Hoofdstuk 5 Overgangsverschijnselen Doelstellingen 1. Overgangsverschijnselen van RC en RL ketens kunnen uitleggen waarbij de wiskundige afleiding van ondergeschikt belang is Als we een condensator of

Nadere informatie

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden:

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden: Hoofdstuk 4 Programmeren met de GR Toevoegen: een inleiding op het programmeren met de GR Hoofdstuk 5 - Numerieke methoden Numerieke wiskunde is een deelgebied van de wiskunde waarin algoritmes voor problemen

Nadere informatie

Rekenen met letters- Uitwerkingen

Rekenen met letters- Uitwerkingen Rekenen met letters- Uitwerkingen Onder voorbehoud van rekenfouten RGO-Middelharnis 1 1 c RGO-wiskunde 1 2 Inhoudsopgave 1 Korter schrijven............................ 3 2 Opgaven................................

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x Calculus, 4//4. Gegeven de reële functie ft) met als voorschrift t arcsin x ft) = dx x a) Geef het domein van de functie ft). Op dit domein, bespreek waar de functie stijgt, daalt en bepaal de lokale extrema.

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: functieverloop 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Reeksontwikkeling Koen Van de moortel, 20070925-20071008 www.astrovdm.com

Reeksontwikkeling Koen Van de moortel, 20070925-20071008 www.astrovdm.com Reeksontwikkeling Koen Van de moortel, 20070925-20071008 www.astrovdm.com Vereiste voorkennis: limieten, reeksen, afgeleiden, goniometrische en exponentiële funkties, komplexe getallen Probleemstelling

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a. 98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden

Nadere informatie