1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3.

Maat: px
Weergave met pagina beginnen:

Download "1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3."

Transcriptie

1 1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. Een LP probleem heeft n>2 variabelen en n+2 constraints. Het toegelaten gebied heeft minder dan 2n 2 hoekpunten. 4. Het toegelaten gebied van een LP probleem is niet begrensd. Dan is ook de doelfunctie niet begrensd. 5. Een LP probleem heeft een optimale oplossing. Dan is er ook een CPF (Corner Point Feasible) oplossing. 6. De doelfunctie max(x 1, x 2, x 3 ) is niet-lineair. 7. De standaardvorm van een LP probleem garandeert dat er een optimale oplossing is. 8. De verzameling {(x 1, x 2,, x n ) x x nx n 2n 0} is niet convex. 9. Een LP probleem in twee dimensies met drie constraints en een begrensd toegelaten gebied. Het mogelijke aantal CPF oplossingen is 0, 1, 2 of In een LP probleem (minimalisering) geldt dat de doelwaarde in een bepaalde CPF oplossing niet groter is dan de waarde in alle naburige CPF oplossingen. Deze CPF oplossing is dan optimaal.

2 Voorbeeld simplexmethode Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x x 1 + x 2-2x 3 8 en x 1, x 2, x 3 0 Voer slackvariabelen (x 4, x 5 ) in: Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 + x 4 = 10 3x 1 + x 2-2x 3 + x 5 = 8 en x 1, x 2, x 3, x 4, x 5 0 Basisoplossing: x 1 = x 2 = x 3 = 0 x 4 = 10, x 5 = 8 Basisoplossing: (0, 0, 0, 10, 8) Doelwaarde: Z = 0 Basisvariabelen: x 4, x 5. Niet-basisvariabelen: x 1, x 2, x 3. Welke van x 1, x 2, x 3 positief maken? Sterkste stijging voor x 1 (coëfficiënt in Z). Hoe groot kan x 1 worden? x 2 = x 3 = 0 dus 4x 1 + x 4 = 10 4x 1 = 10 - x 4 10 x 1 2,5 3x 1 + x 5 = 8 3x 1 = 8 - x 5 8 x 1 2,666 x 1 kan maximaal 2,5 worden als x 4 = 0. x 4 verlaat de basis. x 1 komt in de basis.

3 Basisoplossing: (2,5, 0, 0, 0, 0,5) Doelwaarde: Z = 7,5 Basisvariabelen: x 1, x 5. Niet-basisvariabelen: x 2, x 3, x 4. Max Z = 3x 1 + 2x 2 0,5x 3 z.d.d. 4x 1 + 3x 2 + x 3 + x 4 = 10 3x 1 + x 2-2x 3 + x 5 = 8 en x 1, x 2, x 3, x 4, x 5 0 Nieuwe basisvorm: x 1 en x 5 mogen niet in de Z vergelijking en in de andere vergelijkingen met één 1, rest 0. Krijg je door vegen: Max Z = - 0,25x 2 1,25x 3 0,75x 4 + 7,5 z.d.d. x 1 + 0,75x 2 + 0,25x 3 + 0,25x 4 = 2,5-1,25x 2 2,75x 3 0,75x 4 + x 5 = 0,5 en x 1, x 2, x 3, x 4, x 5 0 Basisoplossing: (2,5, 0, 0, 0, 0,5) Z = 7,5 Oplossing is al optimaal (want alle coëfficiënten in de Z vergelijking zijn negatief). Optimale oplossing: x 1 = 2,5, x 2 = 0, x 3 = 0, Z = 7,5

4 Opgave. Max Z = 3x 1 + 5x 2 z.d.d. x 1 4 2x x 1 + 2x 2 18 en x 1, x 2 0 a. Teken alle hoekpunten. b. Teken het toegelaten gebied. c. Teken alle CPF oplossingen. d. Los het probleem op met de grafische methode. e. Vervang de doelfunctie door Z = 3x 1 + ax 2. Voor welke waarden van a is de optimale oplossing niet uniek? f. Los het probleem op met de simplexmethode

5 Opgave Hoeveel lineaire constraints zijn nodig om een n- dimensionale kubus te definiëren? Antwoord: 2n Hoeveel hoekpunten heeft een n-dimensionale kubus? Antwoord: 2 n Wat is het minimale aantal constraints waarmee je in n dimensies een begrensd gebied met niet-leeg inwendige kunt definiëren? Antwoord: n+1 Hoeveel hoekpunten heeft een n-dimensionale simplex? Antwoord: n+1

6 Koop voor aandelen Vilyps, Dikstaal en Multilever fonds prijs/aandeel dividend/aandeel Vilyps 50 7 Dikstaal 20 6 Multilever 75 9 Minimaal 30% is in Vilyps belegd. Minstens driemaal zoveel geld in Multilever belegd als in Dikstaal. Maximaliseer de verwachte opbrengst. Formuleer eerst het LP model: Max Z = 7v + 6d + 9m z.d.d. 50v + 20d + 75m = v m 60d v, d, m 0 Vereenvoudig: Max Z = 7v + 6d + 9m z.d.d. 10v + 4d + 15m = v m 4d 0 v, d, m 0

7 Max Z = 7v + 6d + 9m z.d.d. 10v + 4d + 15m = v m 4d 0 v, d, m 0 Elimineer d door substitutie van de =-constraint : d = ,5v 3,75m Max Z = v 13,5m z.d.d. v v + 20m ,5v 3,75m v, m 0 Vereenvoudig: Max Z = v 13,5m z.d.d. v 6000 v + 2m v 7m v, m 0 Vervang v = v 6000, ofwel v = v : Max Z = v 13,5m z.d.d. v + 2m v 7m v, m 0

8 Los op met de simplexmethode! Max Z = v 13,5m z.d.d. v + 2m v + 15m v, m 0 Surplusvariabele n 1, slackvariabele n 2 : Max Z = v 13,5m z.d.d. v + 2m n 1 = v + 15m + n 2 = v, m, n 1, n 2 0 Oorsprong is geen oplossing (n 1 = < 0)! Hulpvariabele p: Max Z = v 13,5m Mp z.d.d. v + 2m n 1 + p = v + 15m + n 2 = v, m, n 1, n 2, p 0 Extra term Mp in doelfunctie zorgt dat (uiteindelijk) p = 0 wordt. (M is heel groot) Hoekpunt: v = m = n 1 = 0. Basisvariabelen: p, n 2

9 Max Z = v 13,5m Mp z.d.d. v + 2m n 1 + p = v + 15m + n 2 = v, m, n 1, n 2, p 0 Elimineer p uit Z: Max Z = M+(M-8)v +(2M 13,5)m Mn 1 z.d.d. v + 2m n 1 + p = v + 15m + n 2 = v, m, n 1, n 2, p 0 Grootste stijging door m. Vergroot m, dan stijgt Z Vergroot m tot 7000, dan wordt p = 0. Vegen met m: Max Z = ,25v 6,75n 1 (M 6,75)p z.d.d. 0,5v + m 0,5n 1 + 0,5p = ,5v + 7,5n 1 + n 2-7,5p = v, m, n 1, n 2, p 0 Geen verbetering mogelijk door vergroten van v, n 1 of p. Optimaal! v = n 1 = p = 0 Oplossing: v = 6000, m = 7000, d = 8750, Z =

10 Standaardvorm voor een LP probleem: Max Z = c 1 x 1 + c 2 x c n x n z.d.d. a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m en x 1, x 2, x n 0 Hierin zijn alle b j 0. Reden voor de standaardvorm: x 1 = x 2 = = x n = 0 is een toegelaten hoekpunt en kan worden gebruikt als startpunt voor de simplexmethode.

11 Afwijkingen van de standaardvorm: 1. Minimalisering: Min Z = (Max Z) 2. Geen niet-negativiteitseis voor x j (x j 0) 2a. x j 10. Ga over op x j = x j 10, dan is x j 0. 2b. x j -7. Ga over op x j = 7 x j, dan is x j 0. 2c. Geen ongelijkheid voor x j. Schrijf x j = x + j - x - j, dan is x + - j, x j Negatief rechterlid: 3x 2 7x 4 4 3x 2 + 7x i.p.v. in constraint: surplusvariabele, i.p.v. slackvariabele + behandelen als gelijkheid! 3x 2 + 7x 4 4 3x 2 + 7x 4 x 5 = 4 3x 2 + 7x 4 x 5 + x 6 = 4 (en x 5, x 6 0, extra term Mx 6 in doelfunctie) 5. = i.p.v. in constraint: Voer kunstmatige variabele + x in én extra term Mx in doelfunctie

12 Voorbeeld omzetten naar standaardvorm Max Z = x 1 + x 2 + x 4 z.d.d. x 1 + 2x 2 5 2x 1 x 2 + x 3 4 x 2 2x 3 + x 4 = 3 en x 1 0, x 2 5, x 3 0 x 2 5 klopt niet. Nieuwe variabele x 2 := 5 x 2 0. Vervang x 2 door 5 x 2 : Max Z = x 1 x 2 + x z.d.d. x 1 2x 2 5 2x 1 + x 2 + x 3 1 x 2 2x 3 + x 4 = 2 en x 1 0, x 2 0, x 3 0 Vervang x 2 2x 3 + x 4 = 2 door x 2 + 2x 3 x 4 = 2 Geen constraint voor x 4. Vervang x 4 = x x 4 -, x 4 +, x 4-0: Max Z = x 1 x 2 + x + 4 x z.d.d. x 1 2x 2 5 2x 1 + x 2 + x 3 1 x 2 + 2x 3 x x 4 = 2 en x 1 0, x 2 0, x 3 0, x + 4, x Vervang Z door Z = Z 5.

13 Max Z = x 1 x 2 + x x 4 z.d.d. x 1 2x 2 5 2x 1 + x 2 + x 3 1 x 2 + 2x 3 x x 4 = 2 en x 1 0, x 2 0, x 3 0, x + 4, x Vervang x 1 2x 2 5 door x 1 + 2x 2 5 Voer slack x 5 en hulpvariabele x 6 in Max Z = x 1 x 2 + x + 4 x - 4 Mx 6 z.d.d. x 1 + 2x 2 5 2x 1 + x 2 + x 3 + x 5 = 1 x 2 + 2x 3 x x 4 + x 6 = 2 en x 1 0, x 2 0, x 3 0, x + 4, x - 4, x 5, x 6 0 Max Z = x 1 x 2 + x + 4 x - 4 Mx 6 Mx 8 z.d.d. x 1 + 2x 2 x 7 + x 8 = 5 2x 1 + x 2 + x 3 + x 5 = 1 x 2 + 2x 3 x x 4 + x 6 = 2 en x 1 0, x 2 0, x 3 0, x + 4, x - 4, x 5, x 6, x 7, x 8 0 Optimale oplossing: (x 1, 5-x 2, x 3, x + 4 x - 4 ) Optimale waarde: Z = Z + 5 Het probleem heeft overigens geen toelaatbare oplossingen

14 Alternatieve aanpak voor de gelijkheid: x 2 + 2x 3 x x 4 - = 2 vervang door twee ongelijkheden: Dit wordt x 2 + 2x 3 x x 4-2 x 2 + 2x 3 x x 4-2 x 2 + 2x 3 x x x 6 = 2 x 2 + 2x 3 x x x 9 + x 10 = 2 Dit geeft 3 extra variabelen in plaats van 1: x 2 + 2x 3 x x 4 - +x 6 = 2 Niet slim dus

Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0.

Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voorbeeld simplexmethode Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voer slackvariabelen (x 4, x 5 ) in: Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x

Nadere informatie

Lineaire functies? x 3x. (x 1, x 2 ) 5x 1 7x 2. x 6x 17. x ax. (a, x) ax??? 3x log x 2. substitueer x 1 = y 1, x 2 = exp(y 2 ) levert

Lineaire functies? x 3x. (x 1, x 2 ) 5x 1 7x 2. x 6x 17. x ax. (a, x) ax??? 3x log x 2. substitueer x 1 = y 1, x 2 = exp(y 2 ) levert Lineaire functies? x 3x (x 1, x 2 ) 5x 1 7x 2 x 6x 17 x ax (a, x) ax??? 3x 1 2 + 5log x 2 substitueer x 1 = y 1, x 2 = exp(y 2 ) levert 3y 1 + 5y 2 na substitutie lineair. Niet-lineaire functies kunnen

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d.

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. 1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. een toewijzingsprobleem. 2. Het aantal toegelaten hoekpunten in een

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 7.080 e-mail: j.b.m.melissen@ewi.tudelft.nl tel: 015-2782547 Studiemateriaal op : http://www.isa.ewi.tudelft.nl/~melissen (kijk bij onderwijs WI

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking

Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking. Sensitiviteitsanalyse (a) Als de prijs van legering 5 daalt, kan het voordeliger worden om gebruik te maken van deze legering. Als de

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Instructies (vandaag, 10:45 12:30) in vier zalen: Zaal Aud 10 Pav b2 Pav m23 Ipo 0.98 voor studenten met achternaam beginnend met letters A tot en met D met letters

Nadere informatie

Bijlage A Simplex-methode

Bijlage A Simplex-methode Dee bijlage hoort bij Beter beslissen, Bijlage A Simplex-methode Verreweg de meeste LP-problemen worden opgelost met behulp van het ogenoemde Simplex-algoritme, in ontwikkeld door G.B. Dantig. De meeste

Nadere informatie

Lineaire Optimilizatie Extra sessie. 19 augustus 2010

Lineaire Optimilizatie Extra sessie. 19 augustus 2010 Lineaire Optimilizatie Extra sessie 19 augustus 2010 De leerstof Handboek: hoofdstuk 2 t.e.m. 8 (incl. errata) Slides (zie toledo) Extra opgaven (zie toledo) Computersessie: Lindo syntax en output Wat

Nadere informatie

Samenvatting college 1-12

Samenvatting college 1-12 Samenvatting college 1-12 Probleemformulering Duidelijk definiëren van beslissingsvariabelen Zinvolle namen voor variabelen bv x ij voor ingrediënt i voor product j, niet x 1,..., x 20 Beschrijving van

Nadere informatie

Lineair programmeren met de TI-84 CE-T

Lineair programmeren met de TI-84 CE-T Lineair programmeren met de TI-84 CE-T Harmen Westerveld Oktober 2018 INHOUDSOPGAVE Lineair programmeren met TI-84 PLUS CE-T... 2 Introductie... 3 Voorbeeld 1: maximaliseringsprobleem... 4 De app Inequalz...

Nadere informatie

Geheeltallige programmering

Geheeltallige programmering Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

Modellen en Simulatie Speltheorie

Modellen en Simulatie Speltheorie Utrecht, 20 juni 2012 Modellen en Simulatie Speltheorie Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Program Optimaliseren Nul-som matrix spel Spel strategie Gemengde

Nadere informatie

Branch-and-Bound en Cutting Planes

Branch-and-Bound en Cutting Planes Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

Tentamen: Operationele Research 1D (4016)

Tentamen: Operationele Research 1D (4016) UITWERKINGEN Tentamen: Operationele Research 1D (4016) Tentamendatum: 12-1-2010 Duur van het tentamen: 3 uur (maximaal) Opgave 1 (15 punten) Beschouw het volgende lineaire programmeringsprobleem P: max

Nadere informatie

Examenvragen D0H45 (Lineaire optimalizatie)

Examenvragen D0H45 (Lineaire optimalizatie) Examenvragen D0H45 (Lineaire optimalizatie) Tijdstip: Vrijdag 3 februari 2012 vanaf 09.00 uur tot 12.00 uur Er zijn vier opgaven. Achter de opgaven zitten de bladzijden die u kunt gebruiken om uw antwoord

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

AANVULLINGEN WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN: OEFENINGEN

AANVULLINGEN WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN: OEFENINGEN AANVULLINGEN WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN: OEFENINGEN Hieronder volgt een korte beschrijving van de vragen van het oefeningengedeelte met antwoord. We geven ook kort weer wat regelmatig

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

Faculteit der Economie en Bedrijfskunde

Faculteit der Economie en Bedrijfskunde Faculteit der Economie en Bedrijfskunde Op dit voorblad vindt u belangrijke informatie omtrent het tentamen. Lees dit voorblad voordat u met het tentamen begint! Tentamen: Operational Research 1D (4016)

Nadere informatie

Lineair Programmeren op het polytoop

Lineair Programmeren op het polytoop Lineair Programmeren op het polytoop Paulien Neppelenbroek 12 juli 2017 Bachelorproject wiskunde Supervisor: dr. Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen,

Nadere informatie

K.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.

K.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. K.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je

Nadere informatie

ffl een willekeurige LP in standaard vorm kan omzetten ffl het bij een basis toebehorend tableau en de basisoplossing kan berekenen ffl de simplex alg

ffl een willekeurige LP in standaard vorm kan omzetten ffl het bij een basis toebehorend tableau en de basisoplossing kan berekenen ffl de simplex alg Grafentheorie en Operationele Research 158070 Handout Operationele Research gedeelte 1 Inleiding 1.1 Inhoud Het Operationele Research gedeelte van het vak 'Grafentheorie en Operationele Research' houdt

Nadere informatie

Universiteit Utrecht Departement Informatica

Universiteit Utrecht Departement Informatica Universiteit Utrecht Departement Informatica Uitwerking Tussentoets Optimalisering 20 december 206 Opgave. Beschouw het volgende lineair programmeringsprobleem: (P) Minimaliseer z = x 2x 2 + x 3 2x 4 o.v.

Nadere informatie

Hoofdstuk 11 - formules en vergelijkingen. HAVO wiskunde A hoofdstuk 11

Hoofdstuk 11 - formules en vergelijkingen. HAVO wiskunde A hoofdstuk 11 Hoofdstuk - formules en vergelijkingen HAVO wiskunde A hoofdstuk 0 voorkennis Soorten van stijgen en dalen Je ziet hier de verschillende soorten van stijgen en dalen Voorbeeld Gegegeven is de de formule:

Nadere informatie

Modellen en Simulatie Lineare Programmering

Modellen en Simulatie Lineare Programmering Utrecht, 13 juni 2013 Modellen en Simulatie Lineare Programmering Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Optimaliseren Lineaire programmering Voorbeelden Polytopen

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 11 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 11 november 2015 1 / 22 Mededelingen Huiswerk 2 nagekeken Terug

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Voorbeeld van herschrijven als transportprobleem

Voorbeeld van herschrijven als transportprobleem Voorbeeld van herschrijven als transportprobleem Het water van 3 rivieren moet worden verdeeld over 4 steden. Daar zijn kosten aan verbonden per eenheid water (zie tabel). De steden hebben minimumbehoeften

Nadere informatie

Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden.

Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden. Examen DH45 Lineaire Optimalizatie (D. Goossens) Vrijdag 29 januari 2010, 9 12u Richtlijnen: Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden. Lees aandachtig de

Nadere informatie

14 Lineair programmeren

14 Lineair programmeren 9 a q ˆ 5 geeft TK ˆ 23,5 en TO ˆ 30 e winst is dus 30000 23 500 ˆ 6500 euro. b Voerin 1 ˆ 0,1 3 2 6 6 en 2 ˆ 6. e optie intersect geeft 2,909 en 9,307. us bij een productie van 2909 en 9307 teddberen.

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord Dit vak is een voortzetting van het tweedejaarscollege Besliskunde. Een aantal andere mathematische beslissingsproblemen komt aan de orde en

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0 Voorbeeldtentamen Deterministische Modellen in de OR (158075) Opmerking vooraf: Geef bij elke opgave een volledige en duidelijke uitwerking inclusief argumentatie! Gebruik van de rekenmachine is niet toegestaan.

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) R1 L1 R2 S0 Stochastische Modellen in Operations Management (153088) 240 ms 10 ms Ack Internet Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

x 3 E H x 1 B A = (0,0,0) B = (1,0,0) C = (0,1,0) E = (0,0,1) I = (1,1,1/2) J = (1/2,1,1) H=(1,1/2,1) x 2

x 3 E H x 1 B A = (0,0,0) B = (1,0,0) C = (0,1,0) E = (0,0,1) I = (1,1,1/2) J = (1/2,1,1) H=(1,1/2,1) x 2 1. Gegeven een LP probleem (P) max z = c 1 x 1 + c 2 x 2 + c 3 x 3 (= c x) waarvoor het gebied van toegelaten oplossingen T wordt gegeven als de verzameling punten op het afknotingsvlak van een symmetrisch

Nadere informatie

Optimalisering en Complexiteit, College 11. Complementaire speling; duale Simplex methode. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 11. Complementaire speling; duale Simplex methode. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 11 Complementaire speling; duale Simplex methode Han Hoogeveen, Utrecht University Duale probleem (P) (D) min c 1 x 1 + c 2 x 2 + c 3 x 3 max w 1 b 1 + w 2 b 2 +

Nadere informatie

Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg

Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg 1 Voorwoord Welkom bij de cursus Digitaal Proefstuderen van de opleiding Econometrie en Operationele Research aan de

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 12 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 12 oktober 2016 1 / 31 Dualiteit Dualiteit: Elk LP probleem heeft

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.

3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. 3.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je

Nadere informatie

1 Transportproblemen. 1.1 Het standaard transportprobleem

1 Transportproblemen. 1.1 Het standaard transportprobleem 1 Transportproblemen 1.1 Het standaard transportprobleem Dit is het eenvoudigste logistieke model voor ruimtelijk gescheiden vraag en aanbod. Een goed is beschikbaar in gekende hoeveelheden op verscheidene

Nadere informatie

Tentamen Deterministische Modellen in de OR Dinsdag 17 augustus 2004, uur vakcode

Tentamen Deterministische Modellen in de OR Dinsdag 17 augustus 2004, uur vakcode Kenmerk: EWI04/T-DWMP//dh Tentamen Deterministische Modellen in de OR Dinsdag 7 augustus 004, 9.00.00 uur vakcode 58075 Opmerking vooraf: Geef bij elke opgave een volledige en duidelijke uitwerking inclusief

Nadere informatie

Enkele uitbreidingen op het simplexalgoritme

Enkele uitbreidingen op het simplexalgoritme Enkele uitbreidingen op het simplexalgoritme Stageverslag Rovecom Moniek Messink 2 oktober 2014 Enkele uitbreidingen op het simplexalgoritme Stageverslag Rovecom Masterscriptie Wiskunde 2 oktober 2014

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens:

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

Universiteit Utrecht Departement Informatica. Examen Optimalisering op dinsdag 29 januari 2019, uur.

Universiteit Utrecht Departement Informatica. Examen Optimalisering op dinsdag 29 januari 2019, uur. Universiteit Utrecht Departement Informatica Examen Optimalisering op dinsdag 29 januari 2019, 17.00-20.00 uur. ˆ Mobieltjes UIT en diep weggestopt in je tas. Wanneer je naar de WC wil, dan moet je je

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 1 Leo van Iersel Technische Universiteit Delft 7 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 september 2016 1 / 40 Opzet vak Woensdag: hoorcollege 13:45-15:30

Nadere informatie

Optimalisering/Besliskunde 1. College 1 3 september, 2014

Optimalisering/Besliskunde 1. College 1 3 september, 2014 Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Tentamen Modellen en Simulatie (WISB134)

Tentamen Modellen en Simulatie (WISB134) Tentamen Modellen en Simulatie (WISB) Maandag, juli 0, 9:00-:00, Educatorium Gamma Zaal Schrijf op elk vel dat je inlevert je naam en op het eerste vel je studentnummer en het totaal aantal ingeleverde

Nadere informatie

ProefToelatingstoets Wiskunde B

ProefToelatingstoets Wiskunde B Uitwerking ProefToelatingstoets Wiskunde B Hulpmiddelen :tentamenpapier,kladpapier, een eenvoudige rekenmachine (dus geen grafische of programmeerbare rekenmachine) De te bepalen punten per opgave staan

Nadere informatie

Opgave 2: Simplex-algoritme - oplossing

Opgave 2: Simplex-algoritme - oplossing Opgave 2: Simplex-algoritme - oplossing Oefening 1- a) Coefficient of x r in Current Row 0 = 0 b) Let x s be the variable entering the basis and x r the variable leaving the basis. Then (Coefficient of

Nadere informatie

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

z x 1 x 2 x 3 x 4 s 1 s 2 s 3 rij rij rij rij

z x 1 x 2 x 3 x 4 s 1 s 2 s 3 rij rij rij rij ENGLISH VERSION SEE PAGE 3 Tentamen Lineaire Optimalisering, 0 januari 0, tijdsduur 3 uur. Het gebruik van een eenvoudige rekenmachine is toegestaan. Geef bij elk antwoord een duidelijke toelichting. Als

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Tussentoets: 26 november, tijdens de instructies Tentamenstof: LP; Simplex; dualiteit (= colleges 1 4) Bij de tussentoets mag een eenvoudige (niet programmeerbare)

Nadere informatie

Optimalisering/Besliskunde 1. College 1 6 september, 2012

Optimalisering/Besliskunde 1. College 1 6 september, 2012 Optimalisering/Besliskunde 1 College 1 6 september, 2012 Algemene informatie College: donderdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft vragenuur Delft Vier verplichte huiswerkopgaven

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 2 Gröbnerbases 1. Vragen We hebben gezien dat de studie van stelsels polynoomvergelijkingen in meerdere variabelen op natuurlijke manier leidt

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 4.150 e-mail: j.b.m.melissen@tudelft.nl tel: 015-2782547 Het project is een verplicht onderdeel van het vak Het project start in week 5. Nadere informatie

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Algebra groep 2 & 3: Standaardtechnieken kwadratische functies

Algebra groep 2 & 3: Standaardtechnieken kwadratische functies Algebra groep 2 & 3: Standaardtechnieken kwadratische functies Trainingsweek juni 2008 Kwadraat afsplitsen Een kwadratische functie oftewel tweedegraads polynoom) px) = ax 2 + bx + c a 0) kan in verschillende

Nadere informatie

Hoofdstuk 9 - Lineair Programmeren Twee variabelen

Hoofdstuk 9 - Lineair Programmeren Twee variabelen Hoofdstuk 9 - Lineair Programmeren Twee variabelen bladzijde a Twee ons bonbons kost, euro. Er blijft,, =, euro over. Doris kan daarvan, = ons drop kopen., b d is het aantal ons gemengde drop (, euro per

Nadere informatie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Convexe Analyse en Optimalisering Opleiding: Bacheloropleiding Econometrie Vakcode: 64200 Datum:

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma Voorwoord Dit zijn aantekeningen voor het vak Discrete Wiskunde (2WC15), gegeven in het lentesemester van 2010. Dit vak bestaat uit twee delen: algoritmische

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Opgaven Eigenschappen van Getallen Security, 2018, Werkgroep.

Opgaven Eigenschappen van Getallen Security, 2018, Werkgroep. Opgaven Eigenschappen van Getallen Security, 2018, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes tot acht

Nadere informatie

LP-problemen modelleren. Inleiding

LP-problemen modelleren. Inleiding LP-problemen modelleren Inleiding 1 Assumpties 2 LP-problemen oplossen Grafische oplossing 3 4 Onthoud: Iso-winstcurve = niveaucurve Alle iso-winstcurves ( niveaucurves ) lopen evenwijdig Hoe tekenen we

Nadere informatie

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen

Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Uitwerkingen Tentamen Gewone Differentiaalvergelijkingen Maandag 4 januari 216, 1: - 13: uur 1. Beschouw voor t > de inhomogene singuliere tweede orde vergelijking, t 2 ẍ + 4tẋ + 2x = f(t, (1 waarin f

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Wat? Stap 1: Vertalen naar wiskunde. Doel. Mathematische modellen voor lineaire programmering. winstmaximalisatie kostenminimalisatie

Wat? Stap 1: Vertalen naar wiskunde. Doel. Mathematische modellen voor lineaire programmering. winstmaximalisatie kostenminimalisatie Mathematische modellen voor lineaire programmering cursus bladzijde 27 winstmaximalisatie kostenminimalisatie Wat? Doel Opgave gestructureerd oplossen (stappenplan) => zie cursus bladzijde 39!!! structuur

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Praktische opdracht Wiskunde A Formules

Praktische opdracht Wiskunde A Formules Praktische opdracht Wiskunde A Formules Praktische-opdracht door een scholier 2482 woorden 15 juni 2006 5,5 40 keer beoordeeld Vak Wiskunde A Inleiding Formules komen veel voor in de economie, wiskunde,

Nadere informatie

Tentamen Modellen en Simulatie (WISB134)

Tentamen Modellen en Simulatie (WISB134) Tentamen Modellen en Simulatie (WISB34) Woensdag, 7 juni 0, 3:30-6:30, Educatorium, Beta Zaal Schrijf op elk vel dat je inlevert je naam en op het eerste vel je studentnummer en het totaal aantal ingeleverde

Nadere informatie

Wiskunde in de Radiotherapie. Sebastiaan Breedveld

Wiskunde in de Radiotherapie. Sebastiaan Breedveld Wiskunde in de Radiotherapie Sebastiaan Breedveld Overzicht achtergrondinformatie bestralingsprobleem wiskundige formulatie resultaat problemen: positie onzekerheden hoeken Achtergrond studie Technische

Nadere informatie

Een selectie algoritmen voor lineair programmeren (A selection of algorithms for linear programming)

Een selectie algoritmen voor lineair programmeren (A selection of algorithms for linear programming) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Een selectie algoritmen voor lineair programmeren (A selection of algorithms for

Nadere informatie

Tentamen Lineaire Algebra 1 (Wiskundigen)

Tentamen Lineaire Algebra 1 (Wiskundigen) Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren

Nadere informatie